二年级下册数学试题-奥数习题讲练:第十讲 数字分组和拆分(解析版)全国通用
二年级下 数学思维训练 奥数 第1讲 数字的拆分

第1讲 数字的拆分
2018
数字的分解
5 14
6 15
5 23
6 24
5 32
5 41
6
6
3 34 2
数字的拆分
自然数的拆分:把一个自然数(0除外)拆分成几 个自然数相加的形式
方法:枚举法: ① 从大到小 (有序) ②从小到大
注意:一般情况下选用“从小到大”比较好,告 诉最大数的情况下选用“从大到小”比较好
所以分糖方案是:5个人分别分到88块、 88块、8块、8块、8块。
拓展练习
1、把7拆成几个不完全相同的自然数相加 的形式,共有多少种拆分方法
拓展练习
2、兔妈妈拔了12个萝卜,它要把这些萝 卜分给3个兔宝宝吃,每个兔宝宝至少要 有1个,并且它们分到的萝卜数量都不同, 可以怎样分呢?
拓展练习
3、4个小朋友去学校图书馆一共借了12本 书,图书室规定,每个人最多只能借5本 书,现在这4个小朋友手里的书数量都不 相同,他们手中各有几本书?
再见
THANK YOU
例5 有七个盘子,每个盘子中分别装有1个、2 个、3个、5个、6个、7个和9个梨,要从 这些盘子中取出15个梨,但要求每个盘子 中的梨要么都拿,要么都不拿,共有多少 种不同而取 法相对容易些
15=9+6=9+5+1=9+3+2+1=7+6+2 =7+5+3=7+5+2+1=6+5+3+1
答:共有7种不同的取法
例6 有人认为8是个吉利数字,他们得到的东 西数量都用“8”表示,有200块糖要分给5 个人,设计一个吉利的分糖方案。
三年级下册数学试题:奥数精讲练:第十讲数字谜(二)(含答案)全国通用

第十讲 数字谜(二)在一些乘除法的运算中,也可以用字母或汉字来表示数字,在一些乘除法的运算中,也可以用字母或汉字来表示数字, 形成数字谜算式.这一讲,将介绍如何巧解乘除法数字谜。
绍如何巧解乘除法数字谜。
例1 右面算式中相同的字母代表相同的数字,不同的字母代表不同的数字,右面算式中相同的字母代表相同的数字,不同的字母代表不同的数字,问问 A 和 E 各代表什么数字?代表什么数字?分析分析 由于被乘数的最高位数字与乘数相同,且积为六位数,故由于被乘数的最高位数字与乘数相同,且积为六位数,故 A≥3。
①若 A =3,因为3×3×3=93=9,则 E=1,而个位上1×3=3≠1,因此,,因此,A≠3。
②若 A=4,因为4×4×4=164=16,16+6=22,则,则 E=2,而个位上,而个位上 2×4=8≠2,因此,因此A≠4。
③若 A=5,因为5×5×5=255=25,25+8=33,则 E=3,而3×3×5=155=15, 积的个位为5不为3,因此A≠5。
④若 A=6,因为6×6×6=366=36,36+8=44,则 E=4.个位上,4×4×6=246=24, 写4进2.十位上,因为2×2×6+2=146+2=14,D 可以为2,但不论,但不论 C 为什么数字,C×C×66+1个位都不可能为4,因此,因此 D 不可能为2. 因为7×7×6+2=446+2=44,所以可以有所以可以有 D=7.百位上,因为50×50×6+4=346+4=34, 所以 C=5.千位上,不论不论 B 为什么数字,B×B×6+36+3的个位都不可能为4,因此B 无解.故A≠6。
⑤若 A=7,因为7×7×77=49,49+6=55,则 E =5.个位上,5×5×7=357=35,写5进3.十位上,因为6×6×7+3=457+3=45,所以D=6.百位上,因为3×3×77 +4=25,所以,所以 C =3.千位上,因为9×9×77+2=65,所以,所以 B=9. 万位上,因为7×7×77+6=55,所以得到该题的一个解。
二年级奥数数字分组和拆分

把一个自然数(0除外)拆成几个自然数相加的形式,叫自然数的拆分.在这节课中,我们就将来研究关于自然数的拆分问题.希望通过学习,使学生从中学到一些有序和全面思考问题的方法.知识点:掌握自然数拆分的一般方法——枚举.【教学思路】小松鼠把9个松果分成不一样多的三份,6=1+2+3,所以可以分成.小白兔说它把9个蘑菇分成个数不同的4份.这是不对的.因为1+2+3+4=10.9个蘑菇是分不出个数不同的4份的.① 小松鼠和小白兔上学迟到了.熊猫老师问:“你俩今天为什么迟到了?” 小松鼠说:“我在上学的路上遇到三个小弟弟,他们饿(e)得很,我就采了6个松果.分成数量不同的3份,送给他们每人一份.”② 小白兔说:“我在上学的路上遇到四个小妹妹.她们饿得很,我就采了9个蘑菇.分成数量不同的4份,送给她们每人一份.” 熊猫老师说:“松鼠说的是实话.小白兔说的是谎话.”③ 小白兔听后,惭愧地低下头,说:“老师,我错了,今后我一定做个诚实的孩子.” 小朋友.熊猫老师怎么知道小白兔说的是谎话?把一个自然数(0除外)分拆成几个自然数相加的形式,这种方法叫做自然数的分拆.下面让我们一起来学习怎样分拆自然数,从中学到一些有序和全面思考问题的方法.强强和明明两人到游乐园玩射击游戏,如下图他们每人打了两发子弹,均击中了靶子(即无脱靶现象).强强两发共打了12环,明明两发共打了8环.又已知没有哪两发子弹打在同一环中,请你推算一下他俩打中的是哪几环?【教学思路】要求强强和明明各打中的环数,即是把12,8按环数进行拆分的问题.也就是要把12和8拆分成两个数相加.因为靶子中的环数只有2、4、6、8、10环.所以这两个数只能从这些数中选择.因为12=8+4=10+2,8=6+2.根据“没有哪两发子弹打在同一环中’’的条件,可以知道甲打中的是8环和4环,乙打中的是6环和2环.把5拆成几个自然数相加的形式,共有多少种不同的拆分方法?(0除外)【教学思路】要做到拆分得不重、不漏,要注意有序思考,一般我们采用枚举法.例如先拆成两部分,再拆成三部分、四部分,最后拆成五部分.拆分过程是:5=1+4=2+35=1+1+3=1+2+25=1+1+1+25=1+1+1+1+1答:共有6种不同的拆分方法.按下面的要求,把自然数6进行拆分.【教学思路】(1)6=1+5=2+4=3+3 ;6=1+1+4=1+2+3=2+2+2 ;6=1+1+1+3=1+1+2+2 ;6=1+1+1+1+2 ;6=1+1+1+1+1+1 共10种方法.(2)从(1)中,把完全相同的3种方法剔除6=3+3=2+2+2=1+1+1+1+1+1,则还剩7种.(3)“几个完全不相同的自然数”也就是“不同的自然数”,即拆分的数不能相同.那么就只有6=1+5=2+4=1+2+3 ,3种拆分方法.猪妈妈让小猪三兄弟去摘野果,它要求三兄弟一共要摘10个,每只小猪至少摘2个,按照妈妈的要求,现在小猪们要分配任务了,它们有多少种不同的分配方法?【教学思路】要求有几种不同的分配方法,就是求把10拆成3个不完全相同的自然数,因为每个小猪至少要摘2个,所以0,1除外,共有多少种拆分方法呢.拆分过程是:lO=2+2+610=2+3+510=2+4+410=3+3+4答:共有4种不同的分组方法.巩固拓展体育课上,10个小朋友分成三组做游戏,一共有多少种不同的分组方法?(1)把6拆成几个自然数相加的形式(0除外),共有多少种不同的拆分方法?(2)把6拆成几个不完全相同的自然数相加的形式(0除外),共有多少种不同的拆分方法?(3)把6拆成几个完全不相同的自然数相加的形式(0除外),共有多少种不同的拆分方法?【教学思路】10个小朋友分成三组做游戏,那么每组最少要有1个人,这道题和上一题比不同就是,就是多了拆成1的部分.具体拆分过程如下:10=1+1+8=1+2+7=1+3+6=1+4+510=2+2+6=2+3+5=2+4+410=3+3+4答:一共有8种不同的分组方法.兔妈妈拔了12个萝卜,它要把这些萝卜分给三个兔宝宝吃,每个小兔至少要有1个,并且它们分到的萝卜数量都不同.可以怎样分呢?【教学思路】这道题也就是要我们把12拆分成3个不同的自然数,可以做如下考虑:若将12分拆成三个不同的自然数之和,三个数中最小的数应为1,其次是2,那么第三个数就应是9得:12=1+2+9.下面进行变化,如从9中取1加到2上,又得:12=1+3+8.继续按类似方法变化,可得下列各式:12=1+4+7=2+3+7,12=1+5+6=2+4+6,12=3+4+5.共有7种不同的分拆方式.巩固拓展4个小朋友去学校图书室一共借了12本书.图书室规定,每个人最多只能借9本书,现在这四个小朋友手里的书数量都不一样多.想一想,他们手中各有几本书?【教学思路】把12拆分成4个不同的自然数只有唯一一种方法:12=5+4+2+1,所以这几个小朋友手中的书分别是5本、4本、2本、1本。
二年级下册数学试题-奥数习题讲练:第十讲数字分组和拆分(解析版)全国通用

把一个自然数( 0 除外)拆成几个自然数相加的形式,叫自然数的拆分 . 在这节课中,我们就将来研究关于自然数的拆分问题 . 希望通过学习,使学生从中学到一些有序和全面思考问题的方法 .知识点:掌握自然数拆分的一般方法——枚举 .们每人一份小朋小松鼠说: 友.熊猫老师怎么知道小白兔说的是谎话小白兔说:“我在上学的路上遇到四个小妹妹 量不同的 4 份,送给她们每人一份① 小松鼠和小白兔上学迟到了 . 熊猫老师问: “你俩今天为什么迟到了 她们饿得很,我就采了 9 个蘑菇 .分成数 熊猫老师说:“松鼠说的是实话 .小白兔说的是谎话 .”③ 小白兔听后,惭愧地低下头,说:“老师 我在上学 的路上遇到三个小弟弟,他们饿 (e)得很,我就采了 6 个松果 .分成数量不同的 3 份,送给他 教学思路】 小松鼠把 9 个松果分成不一样多的三份, 6=1+2+3,所以可以分成 .小白兔说它把 9 个蘑菇 分成个数不同的 4 份. 这是不对的 . 因为 1+2+3+4=10.9 个蘑菇是分不出个数不同的 4 份的 .把一个自然数( 0 除外)分拆成几个自然数相加的形式,这种方法叫做自然 数的分拆 .下面让我们一起来学习怎样分拆自然数,从中学到一些有序和全面思考问题的方法如下图他们每人打了两发子弹, 均击中了靶子 ( 即无脱靶现象 ). 强强两发共打了 12 环,明明两发共打了 8 环. 又已知没有哪两发子弹打在同一环中,请 你推算一下他俩打中的是哪几环?教学思路】 要求强强和明明各打中的环数,即是把 12,8按环数进行拆分的问题 .也就是要把 12和 8拆分成两个数相加 . 因为靶子中的环数只有 2、4、6、8、10环. 所以这两个数只能从这些数 中选择 . 因为 12=8+4=10+2, 8=6+2. 根据“没有哪两发子弹打在同一环中' '的条件,可以 知道甲打中的是 8环和 4环,乙打中的是 6环和 2环.把 5 拆成几个自然数相加的形式, 共有多少种不同的拆分方法教学思路】 要做到拆分得不重、不漏,要注意有序思考,一般我们采用枚 举法 . 例如先拆成两部分,再拆成三部分、四部分,最后拆成 五部分 . 拆分过程是: 5=1+4=2+3 5=1+1+3=1+2+2 5=1+1+1+2 ?(0 除外 )5=1+1+1+1+1答:共有 6 种不同的拆分按下面的要求,把自然数 6 进行拆分 .1)把 6 拆成几个自然数相加的形式( 0 除外),共有多少种不同的拆分方法?2)把 6 拆成几个不完全相同的自然数相加的形式(0 除外),共有多少种不同的拆分方法?3)把 6 拆成几个完全不相同的自然数相加的形式(0 除教学思路】( 1 ) 6=1+5=2+4=3+3 ; 6=1+1+4=1+2+3=2+2+2 ; 6=1+1+1+3=1+1+2+2 ;6=1+1+1+1+2 ; 6=1+1+1+1+1+1 共 10 种方法 .(2)从( 1)中,把完全相同的 3 种方法剔除 6=3+3=2+2+2=1+1+1+1+1+1,则还剩7 种. (3)“几个完全不相同的自然数”也就是“不同的自然数”,即拆分的数不能相同 . 那么就猪妈妈让小猪三兄弟去摘野果,它要求三兄弟一共要摘 10 个,每只小猪至少摘 2 个,按照妈妈的要求,现在小猪们要分配任务了,它们有多少种不同的分配方法 ?教学思路】要求有几种不同的分配方法,就是求把10 拆成3个不完全相同的自然数,因为每个小猪至少要摘 2个,所以 0,1 除外,共有多少种拆分方法呢 . 拆分过程是: lO=2+2+6 10=2+3+510=2+4+410=3+3+4答:共有 4 种不同的分组方法体育课上, 10 个小朋友分成三组做游戏,一共有多少种不同的分组方法?1教学思路】 10 个小朋友分成三组做游戏,那么每组最少要有 个人,这道题和上一题比不同就是,就是多了拆成 的部分 . 具体拆分过程如下: 10=1+1+8=1+2+7=1+3+6=1+4+5 10=2+2+6=2+3+5=2+4+4 10=3+3+4 答:一共有 8 种不同的分组方法 .分到的萝卜数量都不同 . 可以怎样分呢?教学思路】 这道题也就是要我们把 12 拆分成 3 个不同的自然数, 可以做如下考虑:若将 12 分拆成三个不同的自然数 之和,三个数中最小的数应为 1,其次是 2,那么第 三个数就应是 9 得:12= 1+2+9.下面进行变化,如从 9中取 1 加到 2上,又得: 12= 1+3+8. 继续按类似方法变化,可得下列各式: 12 =1+4+7= 2+3+7, 12 =1+5+6= 2+4+6, 12 = 3+4+5.共有 7 种不同的分拆方式.巩固拓展4个小朋友去学校图书室一共借了 12本书. 图书室规定,人最多只能借 9 本书,现在这四个小朋友手里的书数量都不 一样多 . 想一想,他们手中各有几本书?【教学思路】 把 12 拆分成 4 个不同的自然数只有唯一一种方法: 12=5+4+2+1,所以这几个小朋友手中的 书分别是 5本、 4本、2本、1 本。
第10讲 一笔画成(数学游戏)-二年级奥数下册同步精讲精练(西师大版)

191第十讲 一笔画成(数学游戏)ʌ知识概述ɔ一笔画 是一种常见的数学游戏㊂一笔画是指笔不离开纸,并且每条线只能画一次又不重复的平面图形㊂一笔能写成的字还真不少㊂如:1㊁2㊁3㊁6㊁7㊁8㊁9㊁0㊁一㊁乙㊁ 一笔能画成的图形也不少,如:那么究竟哪些图形能一笔画成呢?我们先来认识 双数点 和 单数点 ㊂双数点:就是从某一点出发,引出来的线的条数是双数(2,4,6,8,10, ),这样的点就叫双数点㊂如下面的 ㊃ 都是双数点㊂单数点,就是从某一点出发,引出的线的条数是单数(1,3,5,7,9, ),这样的点就叫单数点,如下面的 ㊃ 都是单数点㊂凡是图形中的点都是双数点,这个图形就一定能一笔画成㊂如:凡是图形中有双数点也有单数点,但只有两个单数点,也可以一笔画192成㊂如:凡是图形的单数点的个数多于2个,就不能一笔画成㊂如:例题精学例1 下面的图形能不能一笔画成?如果能,应怎样画?ʌ思路点拨ɔ 图中共有7个交点,其中有6个点是2条线段的交点,1个点是4条线段的交点,因此都是双数点,可以一笔画成㊂画法如下图㊂同步精练1.下面两个图形能一笔画成吗?如果能,请一笔画成功㊂2.下面的图形能不能一笔画成?如果能,应怎样画?3.下面的图形能不能一笔画成?为什么?193194例2 下面的图形能不能一笔画成?如果能,应该怎样画?ʌ思路点拨ɔ 这个图形中有6个交点,其中A ,B ,C ,D 四个点都是双数点,都有4条线相交;E ,F 这两个点都是单数点,都有3条线相交㊂这个图形的单数点不多于2个,所以能一笔画成㊂画法:从一个单数点开始,到另一个单数点结束㊂E ңD ңA ңB ңC ңD ңC ңF ңB ңA ңE ңF F ңB ңC ңD ңA ңB ңA ңE ңD ңC ңF ңE同步精练1.下面的图形能不能一笔画成?如果能,应该怎样画?如果不能,请说明理由㊂2.下面的图形能不能一笔画成?如果能,应该怎样画?3.下面的图形能不能一笔画成?如果能,应该怎样画?195例3 有一条河,河中有两个小岛,河上有7座桥,把这两个岛与河岸联系起来,能不能不重复地走遍七座桥,最后又回到出发点?ʌ思路点拨ɔ 我们可以把这个七桥图形中的岸和岛看作点,而桥可以看作连接这些点的一条线㊂问题 能不能不重复地走遍这七座桥 ,实际上是 下面的图形能不能一笔画成功㊂A 点是左边的岛,D 点是右边的岛,C 点是北岸,B 点是南岸,C D 上有两座桥,B D 上有两座桥㊂图中的4个点都是单数点,不能一笔画成,所以不能不重复地走遍这七座桥㊂同步精练1.下图是一个迷阵图,箭头指出了迷阵的入口和出口㊂请你画线表示从入口进入迷阵,从出口走出来㊂能不能走通?1962.下图是某展览馆的平面图,相邻两个展室之间有一个门相通,每个展室都有一扇门通往馆外㊂一个参观者怎样走才能不重复地走过每一扇门?如果这种走法不存在,应关闭展览室的哪扇门才能实现上述走法?3.下图中有11个邮递员的投递点,邮递员叔叔要向这11个地点送信,邮递员能不能重复地一次走遍各个点?如果能应怎样走?197例4 下面的图形中有6个单数点,因此不能一笔画成功㊂但只要给下图加两条线,这个图形就能一笔画成功了㊂怎样加线?ʌ思路点拨ɔ 由于图中有6个单数点,因此不能一笔画成,如果只有两个单数点就能一笔画成了㊂在两个单数点之间连线,这两个单数点就成为双数点,画两条线就可以使4个单数点变为4个双数点,只剩下两个单数点了㊂加线方法如下:同步精练1.下图中九个点代表9棵果树,一个园丁推着水车从A 点出发,能不能给每一棵树浇上水而不走重复路线?(B 点㊁C 点为灌水的地点)2.下面的图形能不能用一笔画成功?如果能,应该怎样画?3.奥运会五环图能不能一笔画成功?如果能,可以怎样画?198练习卷一㊁填空题㊂1.下面的交点是单数点还是双数点?2.下图中有( )个交点,( )个双数点,( )个单数点,( )一笔画出(填 能 或 不能 )㊂3.下图中有( )个交点,( )个双数点,( )个单数点,( )一笔画出(填 能 或 不能 )㊂二㊁问答题㊂1.下图能不能一笔画出?如果能,应该怎样画?2.一只小虫从A 点出发,能不能不走重复路线一次走到B 点?如果能,应该怎样走?1993.小华和爸爸分别从公园的两个入口进入,谁能一次不重复地走完所有的路?4.下面的图形能不能一笔画成?为什么?如果能一笔画成,请标出起点和终点㊂三㊁解决问题㊂1.一个居民小区有四幢楼房,围墙把四幢楼房围起来,只有东㊁南㊁西㊁北四个门进出小区,小区的路有3横3竖,有一幢楼还有一条过道,把这幢楼分成两部分,人可以从过道通过㊂一个人能不能从东门进入小区,不走重复路线,一次把每条路都走遍?如果能,应该怎样走?如果不能,应从哪个门进去?200 2.园林里浇花的王大叔要到下图中的各点(字母处)浇花,他怎样走才能不重复地一次走遍每条小路?四㊁操作题㊂给下图加最少的线,使这个图形能一笔画成功㊂练习卷1.4鸡鹅兔(后三空或填鹅鸭兔)2.(1)小猴36(2)小兔18(3)23.4.(1)卡通人物唐老鸭米老鼠蝙蝠侠孙悟空哪吒喜欢人数/人2312159 (2)孙悟空唐老鸭蝙蝠侠第十讲一笔画成(数学游戏)例1图中的7个交点都是双数点,所以能一笔画成㊂[同步精练]1.(1)10个交点都是双数点,可以一笔画成㊂307308(2)有4个单数点,不能一笔画成㊂2.只有2个单数点,能一笔画成,画法是:从一个单数点出发,到另一个单数点为终点㊂3.有4个单数点,不能一笔画成㊂例2 这个图形只有两个单数点,所以能一笔画成㊂画法为从一个单数点开始,到另一个单数点结束㊂如:E ңD ңA ңB ңC ңD ңC ңF ңB ңA ңE ңF[同步精练]1.有4个单数点,不能一笔画成㊂2.如下图,只有2个单数点,能一笔画成,从一个单数点出发,以另一个单数点为终点㊂3.都是双数点,能一笔画成㊂例3 用A 点表示左边的岛,D 点表示右边的岛,C 点表示北岸,B 点表示南岸,把题目转化成下图㊂因为图中4个交点都是单数点,不能一笔画成,所以不能不重复地走遍这七座桥㊂309[同步精练]1.能走通,图略㊂2.走法不存在㊂如果关闭C ㊁D 间,D ㊁E 间及D ㊁F 间这三个门,参观者就可无重复地走过每扇门㊂下面是其中的一种走法:F ңC ңA ңD ңB ңA ңB ңE ңF ㊂3.图中只有两个单数点,能一笔画成㊂画法:③ң④ң②ң①ң③ң⑩ңң⑨ң⑩ң⑧ң⑨ң⑦ң⑧ң⑤ң⑦ң⑥ң⑤ң②例4 把左上角两个单数点连线,把右下角两个单数点连线,这4个单数点都成为双数点㊂图中只剩下2个单数点,就能一笔画成了㊂[同步精练]1.能不走重复路线,方法不唯一,如:2.4个点都是双数点,能一笔画成㊂3.8个点都是双数点,能一笔画成㊂310练习卷一㊁1.双数单数双数单数2.1266不能3.770能二㊁1.有4个双数点,没有单数点,能一笔画成㊂2.只有两个单数点,能一笔画成㊂从AңB走法如下:3.图中只有两个单数点,能一笔画成,爸爸的进入点是双数点,不能一次不重复地走完所有的路,小华的进入点是单数点,能一次不重复地走完所有的路㊂4.(1)能(2)不能(3)不能三㊁1.东门处是双数点,不能不走重复路线一次把每条路都走遍㊂从西北㊁北门进去都可以㊂2.可以从A点出发,以E点为终点;也可以从E点出发,以A点为终点㊂四㊁最少加2条线,A E和B E,就可以一笔画成㊂311第十一讲 操作图形(图形的切㊁拼)例1[同步精练]1.方法很多㊂如2.3.例2[同步精练]1.。
小学二年级奥数题-数的拆分

小学二年级奥数题-数的拆分
一年级学生年龄小,是学生学习的起始阶段,对培养学生的数学能力有很大意义。
下面是小编为您整理的二年级奥数题,来供大家学习和参阅!
题目
1、数的拆分
把15分拆成不大于9的两个整数之和,有多少种不同的分拆方式,请一一列出
2、找出下面各数列的规律,并填空.
(1)1,2,3,4,5,□,□,8,9,10.
(2)1,3,5,7,9,□,□,15,17,19.
(3)2,4,6,8,10,□,□,16,18,20.
(4)1,4,7,10,□,□,19,22,25.
(5) 5,10,15,20,□,□,35,40,45.
答案
1、解:共有2种不同的分拆方式:
15=9+6
15=8+7
2、(1)是自然数列,它的规律是:后一个数比前一个数大1;空出依次是:6,7;
(2)是奇数列,它的规律是:后一个数比前一个数大2;空出依次是:11,13;
(3)是偶数列,它的规律是:后一个数比前一个数大2;空出依次是:12,14;
(4)是等差数列,它的规律是:后一个数比前一个数大3;空出依次是:13,16;
(5)是等差数列,它的规律是:后一个数比前一个数大5;空出依次是:25,30;
注意:自然数列、奇数列、偶数列也是等差数列。
二年级下册数学试题-奥数习题讲练:第十讲 几排几座(解析版)全国通用

第十讲几排几座生活中我们经常遇到这样的问题,去看电影你要根据电影票来找你的位置,上课的时候你要根据老师的要求找对自己的座位等.这些问题里面也蕴涵着一些数学问题,如根据自己座位的位置怎样计算全班的总人数类似的一些问题.解答这些问题需要一定的数学方法,在这节课中我们将一起来学习,在解决这类问题的时候老师要引导学生结合画图来进行分析.课前复习1.同学们排成一行做操,从前面数小红是第6人,从后面数小红是第11人,这行一共有多少人?2.同学们排成一排,李红从左向右排在第5个,王亮在她右边和她间隔3个人,王亮从右向左数排在第6个,这一排一共有多少个同学?3.在体育课上32名同学排成一排,从左起往右数,王明是第8个;从右起往左数,李霞是第9个,王明和李霞之间有多少个同学?【分析】秋季我们已经学过简单的排队问题,今天这节课我们将在排队的基础上,进一步研究方阵等一些问题,因此上课前我们对之前所学知识做一个复习.(1)6+11-1=16(人),这行一共有16人.(2)5+3+6=14(人),这一排一共有14个小朋友.(3)32-8-9=15(人),王明和李霞之间有15个同学.同学们进教室上课,每个人都有一个座号,如果要让人知道你坐的位置,就要说清楚你的座位是几排、几座,你能说说你的座位在哪里吗?进电影院看电影,看着电影票上的几排、几座,你能找到自己的位置吗?同学们在操场上排队,如果排成方阵,知道了自己站的位置,你能算出全班的总人数吗?今天这节课我们就一起来研究这些问题.找位置【例1】按要求画图形.(1) 第4排第4格内画○.(2) 第1排第2格内画◇.(3)第3列第2格内画△.【分析】每个图形的位置由两个方面的要求确定.第(1)题,我们可以先找到第4排,横着数是排.再找第4格,竖着第4列.在右下角的格子内画上○.同样的方法做第(2)题,先找到第1排,再找到第二格,画上◇.第(3)题,先找到第3列,再找到第2格,画上△.拓展练习按要求画图.1.第2列第3格内画◇.2.第3排第4格内画○.3.第4排第1格内画☆.【例2】下图是一个棋盘形居住小区的示意图.每一小圆圈表示一栋楼房,由北向南数各排依次称为第1排,第2排,……第8排;从西往东数依次称为第1栋,第2栋,……第8栋.每栋之间的通道相距100米.小明家住2排7栋,小亮家住7排3栋,图书馆在3排2栋,你能分别找出小明、小亮的家和图书馆的位置吗?算一算,小明和小亮谁去图书馆更近?【分析】先标出小明与小亮家的位置如图所示,在这里一定要弄清楚排和栋的意思,先找在第几排,横着来看;再找在第几栋,竖着来看.最后来计算小明和小亮家到图书馆的距离,小明家到图书馆最少要600米,小亮家到图书馆最少要走500米,所以小亮到图书馆的距离更近一些.【例3】小聪去看电影,他的座位号比10少8,排数是座位号的3倍,你知道他的座位是第几排第几座吗?【分析】先求比10少8的数:10-8=2.即座位数为2.再求2的3倍,2×3=6,即排数为第6 排.小聪坐在第6排第2座.【例4】星期天,小狗买了两张电影票,立刻打电话给小猫:“今天下午2时,请你到儿童电影院看电影,我在座位上等你.”“好,我在几排几座?”小猫高兴地说.小狗马上说:“你的排数,十位数字减去个位数字等于十位数字除以个位数字;你的座号,十位数字加个位数字等于十位数字乘以个位数字.”小朋友,你知道小猫的座位是几排几座吗?【分析】先看座位的排数是两位数,“十位数字减个位数字等于十位数字除以个位数字”,只有4-2=4÷2,可知排数的十位数字是4,个位数字是2,排数是:42.再看座号,“十位数字加个位数字等于十位数字乘以个位数字,”只有2+2=2×2,说明座号的十位数字和个位数字都是2,座号是22.因此,小猫的座号是第42排22座.【例5】爸爸乘飞机去北京开会,领到登机牌时发现自己的座位在第二十几排,排数的个位数字等于十位数字的2倍.座位号都是用a、b、c、d、e、f代替1、2、3、4、5、6.爸爸座位的字母号对应的数字正好等于排数两个数字之和.请问爸爸的座位是第几排什么字母座?【分析】座位在二十几排,可见排数的十位数字是2,个位数字是十位数字的2倍,那么个位数字应该是4,爸爸的座位在第42排.再来看座位号,爸爸座位的字母号对应的数字正好等于排数两个数字之和,那么座位号对应的数字应该是4+2=6,6对应的字母是f,因此爸爸的座位是第42排第f座.拓展练习妞妞到图书室借《蓝猫警长》,管理员要她自己去取,书柜数是一个两位数,它的十位数字是个位数字的2倍,柜数是层数的7倍,每个书柜层数不超过5层.妞妞应到第几柜第几层去找《蓝猫警长》这本书?【分析】书柜数是一个两位数,它的十位数字是个位数字的2倍,那么这个书柜的编号可能是:21,42,63,84,再来看书会放在哪一层,柜数是层数的7倍,每个书柜层数不超过5层.只有21÷7=3,符合条件.因此《蓝猫警长》这本书应该放在第21柜第3层.【例6】一只猫捉了12只老鼠,其中有一只小白鼠.这只猫自言自语地说:“我要分三次吃掉它们,我先让它们站好队编号,我从第一只开始吃,然后隔一只吃掉一只;吃完后我让它们不许动,第二次还是从剩下的第一只吃起,隔一只吃一只;第三次也是照这个办法吃,把最后一只放了.”猫的话被聪明的小白鼠听见了,于是它很快选好了一个位置,最后没有被吃掉.小朋友,你知道小白鼠选的是第几号位置吗?【分析】因为每隔一只吃一只,我们可以分析出猫每次会吃哪些老鼠:第一次吃的老鼠是:1,3,5,7,9 ,11;还剩下:2,4,6,8,10,12;第二次吃的老鼠是:2,6,10;还剩下:4,8,12;第三次吃的老鼠是:4,12;还剩下:8最后剩下的排在第8的老鼠会被放掉,所以小白鼠就站在了这排的第8个.方阵与队列【例7】影院门前人如海,进院对号坐下来,正数我坐13排,倒数还是13排,出个题目你猜猜,影院座位有几排?【分析】一个人在电影院里坐的座位从前排往后排数是13排,从后排往前数,也在13排,根据这两个条件可求出这个电影院里一共有多少排座位.我们可以想,正数我坐13排,就是说他的前面有12排,倒数也是13排,就是说他的后面也有12排,再加上他坐的这一排,就可以求出共有多少排了.还可以这样想,正数13排,他坐的这一排算进去了,倒数13排,他坐的这一排也算进去了,这样他坐的这一排就重复算了一次,减1就可以算出电影院里共有多少排座位了.解法一:(13-1)+(13-1)+1=25(排)解法二:13+13-1=25(排)答:电影院里座位有25排.【例8】四队同学做早操,每队人数都一样,小燕前面八个人,倒着数来她第八,共有几人做早操,小燕站在第几行?【分析】上面的歌谣,要我们求做操的总人数和小燕站在第几行.这个队伍有四列,每列人数都一样多关键要求出每列有多少人.从“小燕前面八个人”,可知小燕站在第九个位置,即第九行.从“倒着数来她第八”.可知她后面有七个人.从而可求出每列有多少人了.每列人数:8+8=16(人)或9+7=16(人)做操人数:16×4=64(人)小燕站的行数为:8+1=9(行)答:共有64人做早操,小燕站在第9行.拓展练习同学排队做早操,小红站在正中央,从前往后她第5,从后往前也第5,从左往右她第5,从右往左还第5,细心的同学算一算,共有几人做早操?【分析】从前往后她第5,从后往前也第5,可求出一共有5+5-1=9(行);从左往右她第5,从右往左还第5,可求出一共有5+5-1=9(列);一共有同学9×9=81(个).【例9】小朋友排成十字做早操,小明前面4个人,后面5个人,左边6个人,后面4个人.一共几人做早操?【分析】例8和例9要注意区分,例8是排成方阵,例9是排成“十”字,那么就只有一排和一列,如图所示.小明前面4个人,后面5个人,可以计算出这列有:4+5+1=10(人)同学,左边6个人,后面4个人,可算出这排有6+4+1=11(人)同学,而横着数和竖着数时,小明多数了一次,在计算总人数的时候应该减掉.一共有10+11-1=20(人),或者10+4+6=20(人),或者4+5+1+6+4=20(人).【例10一天,小花猫去找小狗妮妮玩.看见好多小狗排了一个方阵图形的队伍在做形体训练.小花猫一眼就看到了妮妮,它站的位置是它的前边有3只小狗,它的后边也有3只小狗,它的左边有4只小狗,它的右边也有4只小狗.小朋友,你知道方阵中共有多少只小狗吗?小花猫要找的那只小狗妮妮是第几行第几列呢?【分析】妮妮的前边有3只小狗,它的后边也有3只小狗,一共有几行呢?3+3+1=7(行);妮妮的左边有4只小狗,它的右边也有4只小狗,一共有几列呢?4+4+1=9(列);一共有多少只小狗呢?7×9=63(只).小狗妮妮站在第4行第5列.总结方法:要求方阵的总人数,一般用行数×列数=总人数.【例11】学校准备在正方形的操场上进行队列训练,要求四个角上各站1名同学,每边共站6个同学,那么这次一共有多少个同学参加训练?【分析】每边各站6个同学,一共并不是需要24个同学,因为四个角上站的同学既属于所在的列又属于所在的行,被重复计算了2次,所以应从24里面减掉.所以一共有4×6-4=20(个)同学.【例12】学生进行队列表演,排成了一个正方形队列,如果去掉一行一列,要去掉11人,问这个方阵共有多少人?【分析】学生排成一正方形队列表演,去掉一行一列,去掉了11人,那我们就要思考每行去掉了几个同学,因为是正方形队列,所以每行每列人数一样多,但在数的时候,站在角落的同学被数了两个,那么现在求每行的人数时就要在11里面多加一个.现在每行的人数是:(11+1)÷2=6(人),共6×6=36(人).拓展练习某校三年级学生排成一个方阵,最外一层的人数为36人,问方阵外层每边有多少人?这个方阵共有三年级学生多少人?【分析】方阵外层每边有(36+4)÷4=10人,共10×10=100人.附加题(老师可根据自己的课堂进度灵活处理讲义内容,附加题仅供老师参考使用.)军训的学生进行队列表演,排成了一个10行10列的正方形队列,如果去掉一行一列,要去掉多少人?【分析】一行一列各10人,顶点处重复.10×2-1=19人,因为角上的一个同学被重复数了两次,所以要把多算的一次减掉.游行队伍中,手持鲜花的少先队员在一辆彩车四周围成了每边两层的方阵,最外面一层每边13人,彩车周围的少先队员有多少人?【分析】外层13×4-4=48人,内外相差8人(教师可举例说明),内层48-8=40人,共88人.同学们做操,小林站在左起第5列,右起第3列;从前数前面有4个同学,从后数后面有6个同学.每行每列的人数同样多,做操的同学一共有多少人?【分析】一共有几行?列式:4+6+1=11(行)一共有几列?列式:5+3-1=7(列)一共有多少人?列式:11×7=77(人)练习十1. 森林里正准备召开运动会,熊大伯是裁判长.运动会开始了,熊大伯宣布:“运动会现在开始,请各代表报告人数.”一只小猴登上前台:“报告裁判长!小猴代表队的运动员排成了一排,我和小弟、小妹是这一排的最后三个人,报完数后,我们三人报的数加起来的和是24.”小朋友们,你知道共有几只小猴参加运动会吗?【答案】7+8+9=24,所以一共有9只小猴参加了运动会.2. 一群小猴排成整齐的队伍做操,队伍是一个方阵.长颈鹿站在队伍旁边,一下子看到了他的好朋友金丝猴.长颈鹿数了数,金丝猴的左边有4只猴,右边也有4只猴,前面有5只猴,后面也有5只猴.小朋友,你能算出有多少只猴在做操吗?【答案】一共有多少行?列式:5+5+1=11(行);一共有多少列?列式:4+4+1=9(列)一共有多少只猴子?11×9=99(只)3. “六一”前夕,学校举行画展,把展出的画挂成一排,卉卉的画从左往右数挂在第16位,彤彤的画从右向左数挂在第10位,彤彤的画挂在卉卉的左边,中间隔着2幅画,这次画展一共展出多少幅画?【答案】方法一:从右往左数卉卉在第几位?列式:10-3=7(位);这次画展一共展出多少幅画?列式:16+7-1=22(位).方法二:从左往右数彤彤在第几位?列式:16-3=13(位)这次画展一共展出多少幅画?列式:13+10-1=22(位).方法三:16+10-2-1-1=22(位)4. 学生进行队列表演,排成了一个正方形队列,如果去掉一行一列,要去掉13人,问这个方阵共有多少人?【答案】每行:(13+1)÷2=7(人),总人数:7×7=49(人).5.三年级学生排成一个方阵进行体操表演,最外一层的人数为32人,问方阵外层每边有多少人?这个方阵共有三年级学生多少人?【答案】每行:(32+4)÷4=9(人),总人数:9×9=81(人).别看它是一条黑母牛,牛奶一样是白的.珍妮是个总爱低着头的小女孩,她一直觉得自己长得不够漂亮.有一天,她到饰物店去买了只绿色蝴蝶结,店主不断赞美她戴上蝴蝶结挺漂亮,珍妮虽不信,但是挺高兴,不由昂起了头,急于让大家看看,出门与人撞了一下都没在意.珍妮走进教室,迎面碰上了她的老师,"珍妮,你昂起头来真美!"老师爱抚地拍拍她的肩那一天,她得到了许多人的赞美.她想一定是蝴蝶结的功劳,可往镜前一照,头上根本就没有蝴蝶结,一定是出饰物店时与人一碰弄丢了.自信原本就是一种美丽,而很多人却因为太在意外表而失去很多快乐.温馨提示:无论是贫穷还是富有,无论是貌若天仙,还是相貌平平,只要你昂起头来,快乐会使你变得可爱--人人都喜欢的那种可爱.。
二年级奥数数字分组与拆分

数字分组与拆分巧求周长知识框架把一个自然数(0除外)分拆成几个自然数相加的形式,这种方法叫做自然数的分拆.下面让我们一起来学习怎样分拆自然数,从中学到一些有序和全面思考问题的方法.例题精讲【例1】小兵和小军用玩具枪做打靶游戏,见下图所示.他们每人打了两发子弹,并且都打中靶子.小兵共打中6环,小军共打中5环.四发子弹没有打到同一环中的.你知道他俩打中的都是哪几环吗?【例2】强强和明明两人到游乐园玩射击游戏,如下图他们每人打了两发子弹,均击中了靶子(即无脱靶现象).强强两发共打了12环,明明两发共打了8环.又已知没有哪两发子弹打在同一环中,请你推算一下他俩打中的是哪几环?【例3】把5拆成几个自然数相加的形式,共有多少种不同的拆分方法?(0除外)【例4】按下面的要求,把自然数6进行拆分.(1)把6拆成几个自然数相加的形式(0除外),共有多少种不同的拆分方法?(2)把6拆成几个不完全相同的自然数相加的形式(0除外),共有多少种不同的拆分方法?(3)把6拆成几个完全不相同的自然数相加的形式(0除外),共有多少种不同的拆分方法?【例5】猪妈妈让小猪三兄弟去摘野果,它要求三兄弟一共要摘10个,每只小猪至少摘2个,按照妈妈的要求,现在小猪们要分配任务了,它们有多少种不同的分配方法?【例6】体育课上,10个小朋友分成三组做游戏,一共有多少种不同的分组方法?【例7】兔妈妈拔了12个萝卜,它要把这些萝卜分给三个兔宝宝吃,每个小兔至少要有1个,并且它们分到的萝卜数量都不同.可以怎样分呢?【例8】某个外星人来到地球上,随身带有地球人使用的硬币1元、2元、4元、8元各一枚,如果他想买7元钱的一件商品,他应如何付款?如果买9元、10元、13元、14元和15元的商品呢?他又将如何付款?【例9】有六个盘子,每个盘子中分别装有1个、2个、3个、5个、7个和9个梨.要从这些盘子中取出15个梨,但要求每个盘子中的梨要么都拿,要么都不拿.共有多少种不同的拿法?课堂检测【随练1】小松鼠和小白兔上学迟到了.熊猫老师问:“你俩今天为什么迟到了?”小松鼠说:“我在上学的路上遇到三个小弟弟,他们饿得很,我就采了6个松果.分成数量不同的3份,送给他们每人一份.”小白兔说:“我在上学的路上遇到四个小妹妹.她们饿得很,我就采了9个蘑菇.分成数量不同的4份,送给她们每人一份.”熊猫老师说:“松鼠说的是实话.小白兔说的是谎话.”小白兔听后,惭愧地低下头,说:“老师,我错了,今后我一定做个诚实的孩子.”小朋友.熊猫老师怎么知道小白兔说的是谎话?【随练2】一天,金吒、木吒和哪吒三兄弟去馒头店买馒头吃.店主是一个老者,见三兄弟长的非常可爱,就想考一考他们.店主说:“三位小朋友,如果能答对一个问题,今天的馒头就请你们免费品尝.”三人一听非常高兴.只见老者拿出5个盒子,然后说:“请你们把18个馒头分装在这5个盒子里,要求每个盒子都不能空着,每个盒子中的馒头数都不相同.”只见金吒走上前摆弄了一下,18个馒头很快就装进了5个盒子里,老者连连称赞.接着木吒又走上前,很快又完成了任务.最后哪吒想了想说:“看我的!”一会儿工夫又把这18个馒头装进了这5个盒里.老者看了连连点头说:“好!好!.三兄弟三种方法,你们真是聪明的孩子.看来这免费的馒头你们是吃定了!”哪咤三兄弟笑呵呵的吃起了馒头.小朋友,你知道金吒、木吒和哪吒是怎样放的馒头吗?家庭作业【作业1】从l~9九个数中选取,将1l写成两个不同的自然数之和,有多少种不同的写法?【作业2】把7拆成几个不完全相同的自然数相加的形式,共有多少种不同拆分方法?(0除外)【作业3】有12个苹果分给3个小朋友,要求每人至少分到3个苹果,那么有几种分法?【作业4】将15分拆成不大于9的四个不同的自然数之和,有多少种不同的分拆方式,请一一列出.【作业5】把100个馒头分装在七个盒里,要求每个盒里装的馒头的数目都带有数字6,想想看,应该怎样分?【作业6】按下面的要求,把15进行拆分.(1)将15分拆成不大于9的三个不同的自然数之和有多少种不同分拆方式,请一一列出.(2)将15分拆成三个不同的自然数相加之和,共有多少种不同的分拆方式,请一一列出.【作业7】4个小朋友去学校图书室一共借了21本书.图书室规定,每个人最多只能借9本书,现在这四个小朋友手里的书数量都不一样多.请你算一算,一共有多少种不同的分配方法?【作业8】美国硬币有1分、5分、10分和25分四种.现有10枚硬币价值是1元钱,其中有3枚25分的硬币.问余下的硬币有哪几种,每种各有多少枚?(此题是美国小学数学奥林匹克试题).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
把一个自然数(0除外)拆成几个自然数相加的形式,叫自然数的拆分.在这节课中,我们就将来研究关于自然数的拆分问题.希望通过学习,使学生从中学到一些有序和全面思考问题的方法.知识点:掌握自然数拆分的一般方法——枚举.【教学思路】小松鼠把9个松果分成不一样多的三份,6=1+2+3,所以可以分成.小白兔说它把9个蘑菇分成个数不同的4份.这是不对的.因为1+2+3+4=10.9个蘑菇是分不出个数不同的4份的.① 小松鼠和小白兔上学迟到了.熊猫老师问:“你俩今天为什么迟到了?” 小松鼠说:“我在上学的路上遇到三个小弟弟,他们饿(e)得很,我就采了6个松果.分成数量不同的3份,送给他们每人一份.”② 小白兔说:“我在上学的路上遇到四个小妹妹.她们饿得很,我就采了9个蘑菇.分成数量不同的4份,送给她们每人一份.” 熊猫老师说:“松鼠说的是实话.小白兔说的是谎话.”③ 小白兔听后,惭愧地低下头,说:“老师,我错了,今后我一定做个诚实的孩子.” 小朋友.熊猫老师怎么知道小白兔说的是谎话?把一个自然数(0除外)分拆成几个自然数相加的形式,这种方法叫做自然数的分拆.下面让我们一起来学习怎样分拆自然数,从中学到一些有序和全面思考问题的方法.强强和明明两人到游乐园玩射击游戏,如下图他们每人打了两发子弹,均击中了靶子(即无脱靶现象).强强两发共打了12环,明明两发共打了8环.又已知没有哪两发子弹打在同一环中,请你推算一下他俩打中的是哪几环?【教学思路】要求强强和明明各打中的环数,即是把12,8按环数进行拆分的问题.也就是要把12和8拆分成两个数相加.因为靶子中的环数只有2、4、6、8、10环.所以这两个数只能从这些数中选择.因为12=8+4=10+2,8=6+2.根据“没有哪两发子弹打在同一环中’’的条件,可以知道甲打中的是8环和4环,乙打中的是6环和2环.把5拆成几个自然数相加的形式,共有多少种不同的拆分方法?(0除外)【教学思路】要做到拆分得不重、不漏,要注意有序思考,一般我们采用枚举法.例如先拆成两部分,再拆成三部分、四部分,最后拆成五部分.拆分过程是:5=1+4=2+35=1+1+3=1+2+25=1+1+1+25=1+1+1+1+1答:共有6种不同的拆分方法.按下面的要求,把自然数6进行拆分.(1)把6拆成几个自然数相加的形式(0除外),共有多少种不同的拆分方法?(2)把6拆成几个不完全相同的自然数相加的形式(0除外),共有多少种不同的拆分方法?(3)把6拆成几个完全不相同的自然数相加的形式(0除外),共有多少种不同的拆分方法?【教学思路】(1)6=1+5=2+4=3+3 ;6=1+1+4=1+2+3=2+2+2 ;6=1+1+1+3=1+1+2+2 ;6=1+1+1+1+2 ;6=1+1+1+1+1+1 共10种方法.(2)从(1)中,把完全相同的3种方法剔除6=3+3=2+2+2=1+1+1+1+1+1,则还剩7种.(3)“几个完全不相同的自然数”也就是“不同的自然数”,即拆分的数不能相同.那么就只有6=1+5=2+4=1+2+3 ,3种拆分方法.猪妈妈让小猪三兄弟去摘野果,它要求三兄弟一共要摘10个,每只小猪至少摘2个,按照妈妈的要求,现在小猪们要分配任务了,它们有多少种不同的分配方法?【教学思路】要求有几种不同的分配方法,就是求把10拆成3个不完全相同的自然数,因为每个小猪至少要摘2个,所以0,1除外,共有多少种拆分方法呢.拆分过程是:lO=2+2+610=2+3+510=2+4+410=3+3+4答:共有4种不同的分组方法.巩固拓展体育课上,10个小朋友分成三组做游戏,一共有多少种不同的分组方法?【教学思路】10个小朋友分成三组做游戏,那么每组最少要有1个人,这道题和上一题比不同就是,就是多了拆成1的部分.具体拆分过程如下:10=1+1+8=1+2+7=1+3+6=1+4+510=2+2+6=2+3+5=2+4+410=3+3+4答:一共有8种不同的分组方法.兔妈妈拔了12个萝卜,它要把这些萝卜分给三个兔宝宝吃,每个小兔至少要有1个,并且它们分到的萝卜数量都不同.可以怎样分呢?【教学思路】这道题也就是要我们把12拆分成3个不同的自然数,可以做如下考虑:若将12分拆成三个不同的自然数之和,三个数中最小的数应为1,其次是2,那么第三个数就应是9得:12=1+2+9.下面进行变化,如从9中取1加到2上,又得:12=1+3+8.继续按类似方法变化,可得下列各式:12=1+4+7=2+3+7,12=1+5+6=2+4+6,12=3+4+5.共有7种不同的分拆方式.巩固拓展4个小朋友去学校图书室一共借了12本书.图书室规定,每个人最多只能借9本书,现在这四个小朋友手里的书数量都不一样多.想一想,他们手中各有几本书?【教学思路】把12拆分成4个不同的自然数只有唯一一种方法:12=5+4+2+1,所以这几个小朋友手中的书分别是5本、4本、2本、1本。
某个外星人来到地球上,随身带有地球人使用的硬币1元、2元、4元、8元各一枚,如果他想买7元钱的一件商品,他应如何付款?如果买9元、10元、13元、14元和15元的商品呢?他又将如何付款?【教学思路】这道题目的实质是要求把7、9、10、13、14、15各数按1、2、4、8进行分拆.7=1+2+49=1+810=2+813=1+4+814=2+4+815=1+2+4+8所以外星人可按以上方式付款.巩固拓展有七个盘子,每个盘子中分别装有1个、2个、3个、5个、6个、7个和9个梨.要从这些盘子中取出15个梨,但要求每个盘子中的梨要么都拿,要么都不拿.共有多少种不同的拿法?【教学思路】这道题也就是让我们把15进行拆分,拆分得数字只能从1、2、3、5、6、7、9中进行选择.这样我们可以先从最大的数9考虑选取,其次选7,最后选6.具体拆分情况如下:15=9+6 15=7+6+2 15=6+5+3+115=9+5+1 15=7+5+315=9+3+2+1 15=7+5+2+1答:一共有7种不同的拿法.拓展与提高——巧装馒头一天,金吒、木吒和哪吒三兄弟去馒头店买馒头吃.店主是一个老者,见三兄弟长的非常可爱,就想考一考他们.店主说:“三位小朋友,如果能答对一个问题,今天的馒头就请你们免费品尝.”三人一听非常高兴.只见老者拿出5个盒子,然后说:“请你们把18个馒头分装在这5个盒子里,要求每个盒子都不能空着,每个盒子中的馒头数都不相同.”只见金吒走上前摆弄了一下,18个馒头很快就装进了5个盒子里,老者连连称赞.接着木吒又走上前,很快又完成了任务.最后哪吒想了想说:“看我的!”一会儿工夫又把这18个馒头装进了这5个盒里.老者看了连连点头说:“好!好!.三兄弟三种方法,你们真是聪明的孩子.看来这免费的馒头你们是吃定了!”哪咤三兄弟笑呵呵的吃起了馒头.小朋友,你知道金吒、木吒和哪吒是怎样放的馒头吗?从本故事中抽取数学问题:※把18个馒头分装在5个盒子里,要求每个盒子都不空着,每个盒子中的馒头数都不相同.应该怎样装?【教学思路】这道题也就是要我们把18拆分成5个不同的自然数相加,我们可以先写出5个连续的自然数相加最接近18的数.15=1+2+3+4+5 ,多出来的3个,可以分别加在1、2、3、4、5上,通过尝试可得:18=1+2+3+4+818=1+2+3+5+718=1+2+4+5+6所以一共有三种不同的放法.附加题(老师可根据自己的课堂进度灵活处理讲义内容,附加题仅供老师参考使用.)有人以为8是个吉利数字,他们得到的东西的数量都能要够用“8”表示才好.现有200块糖要分发给一些人,请你帮助想一个吉利的分糖方案.【教学思路】可以这样想:因为200的个位数是0,又知只有5个8相加才能使和的个位数字为0,这就是说,可以把200分成5个数,每个数的个位数字都应是8.这样由8×5=40及200-40=160,可知再由两个8作十位数字可得80×2=160即可.最后得到下式:88+88+8+8+8=200.从1~12这十二个自然数中选取,把26分拆成四个不同的自然数之和.【教学思路】用枚举法按一定的顺序来列举,具体拆分如下:以12开头的分拆方式共10种以ll开头的分拆方式共10种以10开头的分拆方式共8种 以9开头的分拆方式共4种26=8+7+6+5} 以8开头的分拆方式共1种不同的分拆方式总数为:10+10+8+4+1=33种.总结:明显看出,欲求出所有的不同的分拆方式,必须使分拆过程按一定的顺序进行.美国硬币有1分、5分、10分和25分四种.现有10枚硬币价值是1元钱,其中有3枚25分的硬币.问余下的硬币有哪几种,每种各有多少枚?(此题是美国小学数学奥林匹克试题).【教学思路】由于有3枚25分的硬币,它们的价值是:25×3=75(分).所以其余的7枚硬币的价值是:100-75=25(分).将25分拆成7个数之和,(注意没有各数不同的限制)25=1+1+1+1+1+10+10.所以这7枚硬币是5枚1分,2枚10分.按下面的要求,把15进行拆分.【答案】(1)共8种.15=9+5+1 15=8+6+1 15=7+6+2 15=6+5+4=9+4+2 =8+5+2 =7+5+3=8+4+3(2)共12种.15=12+2+1 15=ll+3+l 15=10+4+l 15=9+5+1 15=8+6+l 15=7+6+2 15=6+5+4 =10+3+2 =9+4+2 =8+5+2 =7+5+3(1)将15分拆成不大于9的三个不同的自然数之和有多少种不同分拆方式,请一一列出.(2)将15分拆成三个不同的自然数相加之和,共有多少种不同的分拆方式,请一一列出.1. 从l~9九个数中选取,将1l写成两个不同的自然数之和,有多少种不同的写法?【答案】11=2+9=3+8=4+7=5+6,共有4种不同的写法.2.把7拆成几个不完全相同的自然数相加的形式,共有多少种不同拆分方法?(0除外)【答案】拆分过程中除了要有序思考之外,还要注意题目中要求的“不完全相同的自然数”,即可以有相同的数,但不能完全相同.拆分过程是:7=1+6=2+5=3+47=1+1+5=1+2+4=1+3+3=2+3+27=1+1+l+4=1+1+2+37=1+2+2+27=1+1+1+1+3=1+1+1+2+27=1+1+l+1+1+2答:一共有13种不同的拆分方法.3. 有12个苹果分给3个小朋友,要求每人至少分到3个苹果,那么有几种分法?【答案】12=3+3+6=3+4+5=4+4+4 ,共有3种分法 .4. 将15分拆成不大于9的四个不同的自然数之和,有多少种不同的分拆方式,请一一列出.【答案】共6种.具体拆分如下:15=9+3+2+1 15=8+4+2+1 15=7+5+2+l 15=6+5+3+1=7+4+3+l =6+4+3+25. 把100个馒头分装在七个盒里,要求每个盒里装的馒头的数目都带有数字6,想想看,应该怎样分?【答案】从已有经验中可知6×6=36,这样就可以把每个盒里装6个馒头,共装6个盒,还有一个盒装100-36=64个馒头.64个这个数,刚好含有数字6,满足题目要求.即得100=64+6+6+6+6+6+6.6.七只箱子分别放有1个、2个、4个、8个、16个、32个、64个苹果.现在要从这七只箱子里取出87个苹果,但每只箱子内的苹果要么全部取走,要么不取,你看怎么取法?【答案】可这样想:总数要87个,最先取数最多的一箱64个苹果,这样还差87-64=23个苹果;再取则不能取装有32个苹果的那箱,只能取装有16个的那箱,这样还差23-16=7个苹果;再取装有1个、2个、4个的三箱苹果,正好:什么东西越老反而显得越年轻?为什么小丽养的一只小胖猪不吃也不喝呢?什么宫殿进去容易出来难?有一种棋只有两种棋子,你知道是什么棋吗?湖面上没有桥也没有船,小刚是怎么过去有一个人最会弄虚作假了,能把东西变没了,的呢? 还能逗大家开心,他是谁呢?小明把闹表调到早晨六点钟,他在五点钟就一个人手里拿着一些黄豆和绿豆,他把豆子醒了,可他不知道闹表放到哪去了,他想什放到桌子上,立刻就把黄豆和绿豆分开了,么办法能够找到呢? 请你猜猜他是怎么做到的呢?【答案】(1)照片;(2)是她的储蓄罐;(3)迷宫;(4)围棋;(5)湖面上结冰了,走过去的;(6)魔术师;(7)道六点钟闹表响了不就找到了;(8)只有一颗黄豆,一颗绿豆.。