三静态电磁场及其边值问题的解
谢处方《电磁场与电磁波》(第4版)课后习题-第3章 静态电磁场及其边值问题的解【圣才出品】

第3章 静态电磁场及其边值问题的解(一)思考题3.1 电位是如何定义的?中的负号的意义是什么?答:由静电场基本方程▽×E=0和矢量恒等式可知,电场强度E 可表示为标量函数φ的梯度,即式中的标量函数φ称为静电场的电位函数,简称电位;式中负号表示场强方向与该点电位梯度的方向相反。
3.2“如果空间某一点的电位为零,则该点的电场强度也为零”,这种说法正确吗?为什么?答:不正确。
因为电场强度大小是该点电位的变化率。
3.3“如果空间某一点的电场强度为零,则该点的电位为零”,这种说法正确吗?为什么?答:不正确。
此时该点电位可能是任一个不为零的常数。
3.4 求解电位函数的泊松方程或拉普拉斯方程时,边界条件有何意义?答:边界条件起到给方程定解的作用。
3.5 电容是如何定义的?写出计算电容的基本步骤。
答:两导体系统的电容为任一导体上的总电荷与两导体之间的电位差之比,即其基本计算步骤:①根据导体的几何形状,选取合适坐标系;②假定两导体上分别带电荷+q和-q;③根据假定电荷求出E;④由求得电位差;⑤求出比值3.6 多导体系统的部分电容是如何定义的?试以考虑地面影响时的平行双导线为例,说明部分电容与等效电容的含义。
答:多导体系统的部分电容是指多导体系统中一个导体在其余导体的影响下,与另一个导体构成的电容。
计及大地影响的平行双线传输线,如图3-1-1所示,它有三个部分电容C11、C12和C22,导线1、2间的等效电容为;导线1和大地间的等效电容为;导线2和大地间的等效电容为图3-1-13.7 计算静电场能量的公式和之间有何联系?在什么条件下二者是一致的?答:表示连续分布电荷系统的静电能量计算公式,虽然只有ρ≠0的区域才对积分有贡献,但不能认为静电场能量只存在于有电荷区域,它只适用静电场。
表示静电场能量存在于整个电场区域,所有E≠0区域对积分都有贡献,既适用于静电场,也用于时变电磁场,当电荷分布在有限区域内,闭合面S无限扩大时,有限区内的电荷可近似为点电荷时,二者是一致的。
电磁场与电磁波第三章静态场及其边值问题的解PPT课件

解法的优缺点
分离变量法的优点是简单易行,适用于具有多个变量 的偏微分方程。但是,该方法要求边界条件和初始条
件相互独立,且解的形式较为复杂。
有限差分法的优点是简单直观,适用于各种形状的求 解区域。但是,该方法精度较低,且对于复杂边界条
件的处理较为困难。
有限元法的优点是精度较高,适用于各种形状的求解 区域和复杂的边界条件。但是,该方法计算量大,且
05 实例分析
实例一:简单电场的边值问题求解
总结词
通过一个简单的电场边值问题,介绍如 何运用数学方法求解静态场的边值问题 。
VS
详细描述
选取一个简单的电场模型,如平行板电容 器间的电场,通过建立微分方程和边界条 件,采用有限差分法或有限元法进行数值 求解,得出电场分布的解。
实例二:复杂电场的边值问题求解
恒定磁场与准静态场的定义与特性
恒定磁场
磁场强度不随时间变化的磁场。
准静态场
接近静态场的动态场,其特性随 时间缓慢变化。
特性
恒定磁场与准静态场均不产生电 磁波,具有空间稳定性和时间恒
定性。
恒定磁场与准静态场的边值问题
边值问题
描述场域边界上物理量(如电场强度、磁场强度)的约束条件。
解决边值问题的方法
静电屏蔽
在静电屏蔽现象中,静态 场用于解释金属屏蔽壳对 内部电荷或电场的隔离作 用。
高压输电
在高压输电线路中,静态 场用于分析电场分布和绝 缘性能。
02 边值问题的解法
定义与分类
定义
边值问题是指在一定的边界条件下,求解微分方程或积分方程的问题。在电磁场理论中,边值问题通常涉及到电 场、磁场和波的传播等物理量的边界条件。
特性
空间均匀性
电磁场与电磁波 第4章 静态场的边值问题

设 q’ 距球心为b,则 q 和 q’ 在球外 任一点(r,,)处产生的电位为
第四章 静态场的边值问题
1 ( q q) 4π 0 R R
1(
q
4π 0 r 2 d 2 2rd cos
q
)
r 2 b2 2rb cos
径为a 的圆的反演点。
第四章 静态场的边值问题
将式(4-2-3)代入(4-2-2),可得球外任意点(r,,)的电位
q (
1
a
)
4π 0 r 2 d 2 2rd cos d r 2 b2 2rb cos
(4-2-5)
若导体球不接地且不带电,则当球外放置点电荷 q 后,它的
电位不为零,球面上净电荷为零。此情形下,为满足边界条件,
第四章 静态场的边值问题
第四章 静态场的边值问题
在给定的边界条件下求解泊松方程或拉普拉斯方程称为边 值问题。根据场域边界面上所给定的边界条件的不同,边值问 题通常分为 3 类:
第一类边值问题,给定位函数在场域边界面上的值; 第二类边值问题,给定位函数在场域边界面上的法向导数值; 第三类边值问题又称混合边值问题,一部分边界面上给定的 是位函数值,另一部分边界面上给定的是位函数的法向导数 值。
4.3.1 直角坐标系中的分离变量
直角坐标系中,标量拉普拉斯方程为
2 2 2
0 x2 y2 z2
(4-3-1)
第四章 静态场的边值问题
设 (x,y,z) = X (x)Y(y)Z(z),代入方程(4-3-1),整理可得
1 X
d2 X dx2
1 Y
d 2Y dy2
1 Z
d2Z dz2
电磁场与电磁波期末复习知识点归纳

标量场:梯度描述
静态场(稳态场):不随t变
场
场 矢量场:散度和旋度描述 时变场:随t变化
单位矢量:模为1的矢量
与矢量 A同方向的单位矢量:
eA
Aˆ
A A
A eAA
坐标单位矢量:与坐标轴正向同方向的单位矢量
如:ex
ey
ez或者xˆ
yˆ
zˆ
A Axex Ayey Azez
◇ 唯一性定理的意义:是间接求解边值问题的理论依据。
● 镜像法求解电位问题的理论依据是“唯一性定理”。
点电荷对无限大接地导体平面的镜像
z
r1
P
q h
r r2 介质
x
h
介质
q
点电荷对接地导体球面的镜像。
P
r
a
r2
o θ q d’
d
r1 q
q a q, d
d a2 d
第4章 时变电磁场
nˆ B1 B2 0
nˆ H1 H2 0
第三章 静态电磁场及其边值问题的解
静电场中: E 0
E(r) (r )
静磁场:B A
已知电位表达式可以用E(r) (r )求场强E
已知电场强度也可以求电位(P)
等于边界电流面密度。
1、E1t E2t
nˆ (E1 E2 ) 0
2、B1n B2n
3、D1n D2n s
nˆ B1 B2 0 nˆ (D1 D2 ) s
4、H1t H2t Js
nˆ H1 H2 Js
《电磁场与电磁波》习题参考答案

况下,电场和磁场可以独立进行分析。( √ )
12、静电场和恒定磁场都是矢量场,在本质上也是相同的。( × )
13、静电场是有源无旋场,恒定磁场是有旋无源场。( √ ) 14、位移电流是一种假设,因此它不能象真实电流一样产生磁效应。(
×)
15、法拉第电磁感应定律反映了变化的磁场可以产生变化的电场。( √ ) 16、物质被磁化问题和磁化物质产生的宏观磁效应问题是不
D.有限差分法
6、对于静电场问题,仅满足给定的泊松方程和边界条件,
而形式上不同的两个解是不等价的。( × )
7、研究物质空间内的电场时,仅用电场强度一个场变量不能完全反映物 质内发生的静电现象。( √ )
8、泊松方程和拉普拉斯方程都适用于有源区域。( × )
9、静电场的边值问题,在每一类的边界条件下,泊松方程或拉普拉斯方 程的解都是唯一的。( √ )
是( D )。
A.镜像电荷是否对称
B.电位所满足的方程是否未改变
C.边界条件是否保持不变 D.同时选择B和C
5、静电场边值问题的求解,可归结为在给定边界条件下,对拉普拉斯
方程的求解,若边界形状为圆柱体,则宜适用( B )。
A.直角坐标中的分离变量法
B.圆柱坐标中的分离变量法
C.球坐标中的分离变量法
两个基本方程:
3、写出麦克斯韦方程组,并简述其物理意义。
答:麦克斯韦方程组的积分形式:
麦克斯韦方程组的微分形式:
每个方程的物理意义: (a) 安培环路定理,其物理意义为分布电流和时变电场均为磁
场的源。 (b) 法拉第电磁感应定律,表示时变磁场产生时变电场,即动
磁生电。 (c) 磁场高斯定理,表明磁场的无散性和磁通连续性。 (d)高斯定理,表示电荷为激发电场的源。
《电磁场理论》3.1 唯一性定理

第一类边值问题:已知电位函数在全部边界面上的分 布值。 S f 第二类边值问题:已知电位函数在全部边界面上的法 向导数。 f n S 第三类边值问题(混合边值问题):已知一部分边界 面上的电位函数值,和另一部分边界面上电位函数的法 向导数。 S f1 S S1 S2 f 2 1 01:52 2 n S2
+
-
z
+ +++
(r , )
+
+
-
1 (r, ) E0r cos
-
aO
- - -
-
当引入一个不带电的导体小球后, E0 球表面出现感应电荷。 静电平衡下的导体球为等电位体,球内电场为零, r>a空间内的电位由两个部分组成 01:52 12 1 2
1 2
唯一性定理:满足泊松方程或拉普拉斯方程及所给
的全部边界条件的解是唯一的。
利用反证法来证明。假设在一个由表面边界S包围的 体积V内,泊松方程有两个解 1 2 ,则有
2 1 2 * 1 2 2 * 21 22 0 令
01:52 11
例2:一不带电的孤立导体球(半径为a)位于均匀电 场中, E E0 e z ,如图所示,求电位函数。 解:在没有引入导体球时,均匀电场 E 的电位函数为
1 ( z ) E0 e z e z dz C E0 z C
若取z=0为电位参考点,则C=0, 1 ( z) E0 z 在球坐标内,z r cos
常数
n
n
(1)
根据式(1)仍然有
同理,有 C
V
2 ( ) dV 0
第3章 静态电磁场及其边值问题的解剖析

ε
(Poisson方程)
(2)
该式即为静电位满足的微分方程— Poisson方程。Poisson 方程和上述方程组等价,故它也唯一确定了静电场。
在无电荷分布区域
2 r 0
(Laplace方程)
求解Poisson方程或Laplace方程时,解电位中的积分常 数需要应用电位的边界条件确定:
第三章 静态电磁场及其 边值问题的解
3.1 静电场分析
1. 基本方程
微
D ρ
分
形
或
积 分
SD dS V ρdV
形
式 E 0
式 l E dl 0
这组方程揭示静电场的基本性质:有散、无旋、保守性
2. 边界条件
eˆn E1 E2 0 或
E1t E2t
eˆn D1 D2 S
1 r2
d dr
r2
d
dr
0
r
c1 r
c2
c
c1、c2待定积分常数。
边界条件:
求解区域的边界是r=a
和r=的两闭合球面
① r a, U
② r , 0
利用条件 1得 c1 aU 利用条件 2得 c2 0
故解 r aU
r
5. 导体系统的电容
电容是导体系统的一种基本属性,它是 描述导体系统储存电荷能力的物理量。任何导体和导体之 间以及导体和大地之间都存在电容。
-E0
r
eˆz
rE0
E0r cosθ
在柱坐标系中,取x轴与电场方向一致,则
P
-E0
r
eˆx E0
eˆρ ρ eˆzz
E0 cos
o
E0
在坐
点
第3章静态场的边值问题及解的唯一性定理

l 2π
ln
r0 r
l 2π
ln
1 r
C
1)长直线电荷与接地的长直圆柱导体平行,求圆柱外电位分布
在圆柱与线电荷之间,在圆柱内离轴线的距离b 处,平行放置一
根镜像线电荷 , 代替圆柱导体上的感应电荷. l
第3 章
若令镜像线电荷 产 生的电位也取相同的 l
作r0为参考点,则
及l
在 圆柱面上 P 点共同产生的电位为
R
l
h
R′
x
-h
l ln x2 (z h)2 , z 0
l′
2 x2 (z h)2
均匀带电直线的电位分布
z 0,R R z0 0
l ln R C l ln R0
2
2 R
显然,满足边界条件。所以,原问题不变,所得的解是正确的。
第3 章
例3. 点电荷对相交半无限大接地导体平面的镜像 如图所示,两个相互垂直相连的半无限大接地导体平板,点
3、对于均匀分布在球面上的-q'电荷,可用另一个镜像电荷q"= q' 代替,但必须位于球心。
第3 章
结论:点电荷q对非接地导体球面的镜像电荷有两个:
镜像电荷1: 电量:q ' a q
位置: d ' a2
d
镜像电荷2: d
电量: q '' q ' a q
d
r r'
q O
'' d'
q' d
q
4 0 r
0
q q
即像电荷q'与原点电荷q电量相等,电性相反;用q'代替了
导体上的感应电荷。
在z>0区域内,P点的电位为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(rr ) l0 ln
2 L2 L
l 0
ln
2 L2 L
l 0
ln 2L
40 2 L2 L 20
20
当L 时,上式变为无穷大,这是因为电荷不是分布在有限区
域内,而将电位参考点选在无穷远点之故。这时可在上式中加上
一个任意常数,则有
(rr ) l0 ln 2L C 20
并选择有限远处为电位参考点。例如,选择ρ= a 的点为电位参
4 C R
点电荷的电位:(rr ) q C 4 R
3. 电位差
将
E
两端点乘 dl,则(
dx
dy
dy)
d
x y y
上式两边从点P到点Q沿任意路径进行积分,得
电场力做 的功
Q
Q
P E dl P d (P) (Q)
关于电位差的说明
P、Q 两点间的电位差
P、Q 两点间的电位差等于电场力将单位正电荷从P点移至Q 点 所做的功,电场力使单位正电荷由高电位处移到低电位处; 电位差也称为电压,可用U 表示; 电位差有确定值,只与首尾两点位置有关,与积分路径无关。
z
+q r2
d
o
r r1
-q
P(r, , )
r2 r 2 (d / 2)2 rd cos
电偶极子
用二项式展开,由于
r
d
,得
r1
r
d 2
cos
,
r2
r
d 2
cos
代入上式,得
(r)
qd cos 40r 2
p
er
40r 2
p r
40r 3
p qd表示电偶极矩,方向由负电荷指向正电荷。
由球坐标系中的梯度公式,可得到电偶极子的远区电场强度
4. 电位参考点 静电位不惟一,可以相差一个常数,即
C ( C)
为使空间各点电位具有确定值,可以选定空间某一点作为参考 点,且令参考点的电位为零,由于空间各点与参考点的电位差为确 定值,所以该点的电位也就具有确定值,即
选参考点
令参考点电位为零
电位确定值(电位差)
选择电位参考点的原则 应使电位表达式有意义;
3.1 静电场分析
学习内容 3.1.1 静电场的基本方程和边界条件 3.1.2 电位函数 3.1.3 导体系统的电容与部分电容 3.1.4 静电场的能量 3.1.5 静电力
3.1.1 静电场的基本方程和边界条件
1. 基本方程
微分形式:
D
E 0
本构关系: D E
积分形式:SD
dS
q
CE dl 0
R
r
r
E(r)
1
4
V
(r) R3
RdV
1
4
V
(r)( 1 )dV
R
[
1
4
V
(r)(
1 R
)dV
]
故得 (rr ) 1
(rr)dV C
( 1 ) R
R
R3
4 V R 面电荷的电位:(rr ) 1
S
(rr) dS
C
4 S R
线电荷的电位:(rr ) 1
l (rr)dl C
,而
例3.1.3 求长度为2L、电荷线密度为l0 的均匀带电线的电位。
解 采用圆柱面坐标系,令线电荷与 z 轴相重合,中点位于
坐标原点。由于轴对称性,电位与 无关。
在带电线上位于 z 处的线元 dl dz,它
z (,, z)
到点 P(,, z)的距离 R 2 (z z)2 ,
L
则
R
(rr) l0 L
• 静态电磁场:场量不随时间变化,包括: 静电场、恒定电场和恒定磁场
• 时变情况下,电场和磁场相互关联,构成统一的电磁场 • 静态情况下,电场和磁场由各自的源激发,且相互独立
本章内容
3.1 静电场分析 3.2 导电媒质中的恒定电场分析 3.3 恒定磁场分析 3.4 静态场的边值问题及解的惟一性定理 3.5 镜像法 3.6 分离变量法
2. 边界条件
en en
(D1 D2 ) (E1 E2 )
S
0
或
D1n D2n S
E1t E2t 0
若分界面上不存在面电荷,即ρS=0,则
eenn
(D1 D2 ) (E1 E2 )
0 0
或
D1n D2n
E1t
E2t
场矢量的折射关系
tan 1 E1t / E1n 1 / D1n 1 tan 2 E2t / E2n 2 / D2n 2
考点,则有
C l0 ln 2L 20 a
(rr ) l0 ln a 20
两点间电位差有定值
应使电位表达式最简单。若电荷分布在有限区域,通常取无
限远作电位参考点;
同一个问题只能有一个参考点。
例 3.1.1 求电偶极子的电位. 解 在球坐标系中
(r) q ( 1 1 ) q r2 r1 40 r1 r2 40 r1r2
r1 r 2 (d / 2)2 rd cos
1
dz
40 L 2 (z z)2
z ' dl dz
y
l0 ln[z z
L
2 (z z)2 ]
4 0
L
x
l0 ln 2 (z L)2 (z L)
-L
40 2 (z L)2 (z L)
在上式中若令 L ,则可得到无限长直线电荷的电位。当 L R 时,上式可写为
导体表面的边界条件
介质1
en 1
E1
1
介质2
E2
2
2
在静电平衡的情况下,导体内部的电场为0,则导体表面的边
界条件为
en en
D
S
E 0
或
EDtn
0
S
3.1.2 电位函数
1. 电位函数的定义
由
E 0
E
即静电场可以用一个标量函数的梯度来表示,标量函数 称为静
电场的标量电位或简称电位。
2. 电位的表达式 对于连续的体分布电荷,由
E(r)
(er
r
e
1 r
e
1
r sin
)
等位线方程:
q
4 0 r 3
(er
2 cos
e
sin
)
p cos 40r 2
C
r 2 C'cos
电场线微分方程:
dr rd
Er E 将 E和 Er代入上式,解得E线方程为
r C1 sin 2
电场线 等位线 电偶极子的场图
例3.1.2 求均匀电场的电位分布。
解 选定均匀电场空间中的一点o为坐标原点,而任意点P 的
位置矢量为r,则
(P) (o)
or r Pr r r r P E0 gdl o E0 gdr E0 gr
若选择点o为电位参考点,即 (o) 0,则
(P)
r E0
grr
x
P
r
o
z
E0
即rr 在er在球圆坐Er,柱0标er(z则P面z系e)r,有坐z中E故标0,Er系取0(g中Prr极),轴取与erErzE0grgrr的0rrE与E方00x轴向erx方g一EE向0致0(rer一,co致s,ez z即) Er0E0erxcEo0s