平面问题的有限元分析算例
Ansys机械工程应用精华60例第8例 平面问题的求解实例—厚壁圆筒问题

8.3.4
创建实体模型
拾 取 菜 单 Main Menu → Preprocessor → Modeling → Create → Areas → Circle → By Dimensions。弹出如图 8-8 所示的对话框,在“RAD1” 、 “RAD2” 、 “THETA2”文本框中分 别输入 0.1、0.05 和 90,单击“OK”按钮。 77
第8例
平面问题的求解实例——厚壁圆筒问题
“Item, Comp”两个列表中分别选“Stress” 、 “Y-direction SY” ,单击“OK”按钮。 注意:该路径上各节点 X、Y 方向上的应力即径向应力r 和切向应力t。
图 8-15
映射数据对话框
8.3.12
作路径图
拾取菜单 Main Menu→General Postproc→Path Operations→Plot Path Item→On Graph。弹 出如图 8-16 所示的对话框,在列表中选“SR” 、 “ST” ,单击“OK”按钮。
8.3.6
施加约束
拾取菜单 Main Menu→Solution→Define Loads→Apply→Structural→Displacement→On Lines。弹出拾取窗口,拾取面的水平直线边,单击“OK”按钮,弹出如图 8-11 所示的对话 框,在列表中选择“ UY ” ,单击“ Apply”按钮,再次弹出拾取窗口,拾取面的垂直直线 边,单击“OK”按钮,在图 8-11 所示对话框的列表中选择“UX” ,单击“OK”按钮。
76
第8例
平面问题的求解实例——厚壁圆筒问题
图 8-3 单元类型对话框
图 8-4
单元类型库对话框
图 8-5
平面框架结构的有限元分析

三梁平面框架结构的有限元分析一、问题说明如图1所示的框架结构,其顶端受均布载荷作用,用有限元方法分析该结构的位移。
结构中各个部分的参数为:弹性模量E=300GPa,截面惯性矩I=6.5×105mm4,横截面积A=680mm2。
相应的有限元分析模型见图2,利用梁板壳分析程序完成该模型的力学分析。
图1框架结构图2有限元分析模型二.Fortran程序的输入数据(1)Facile.11 4 3 6 0 12 42 1 11 1 11 3 51 2 2 3 3 40 0 0 0 1000 01000 1000 0 1000 0 0(2)Facile.2111 211 1111 0 0 0 1 03E5 1.6E5680 6.5E5 6.5E5 6.5E50 0(3)Facile.312 41 02 03 04 05 06 0 19 0 20 0 21 0 22 023 0 24 08 -1200 12 -200000 14 -1200 18 200000输出的数据文件为:Facile7和Facile8,其中各节点位移结果在文件Facile8中。
三.计算结果各节点的位移计算结果见表1。
四.Ansys分析结果Ansys计算结果如下图所示,图3为节点x方向的位移云图,图4为节点y 方向的位移云图,图5为节点转角云图。
图3 节点x方向的位移图4 节点y方向的位移图5 节点转角各节点的位移值见表2。
五.结果对比通过对比表1和表2中的数据可以发现,Fortran程序与Ansys分析的结果十分接近。
有限元作业—三梁平面框架结构的有限元分析

三梁平面框架结构的有限元分析针对如图1所示的框架结构,其顶端受均布力作用,用有限元方法分析该结构的位移。
结构中各个截面的参数都为:E=3.0 10 Pa,I =6.5 10〃m,2A =6.8 10 m,生成相应的有限元分析模型。
在ANSY平台上,完成相应的力学分析。
416~N nt3000N② ③144mI ------------------------------------------------------------------------------------------ |图1框架结构受一均布力作用ANSYS军答:对该问题进行有限元分析的过程如下。
(1)进入ANSYS设定工作目录和工作文件)程序—An sys —ANSYS In teractive —Worki ng directory (设置工作目录)—Initial jobname(设置工作文件名):beam3 —Run —OK(2)设置计算类型ANSYS Main Menu: Preferences , —Structural —OK(3)选择单元类型ANSYS Main Me nu: Preprocessor —Eleme nt Type —Add/Edit/Delete , —Add, —beam 2node188 —OK (返回到Element Types 窗口)—CloseCross-sectional area:6.8e-4 (梁的横截面积)—OK —Close八 Library of Element Types Library of Element TypesElement type referenc ■亡 number(4)定义材料参数ANSYS Mai n Me nu: Preprocessor — Material Props — Material Models —Structural — Lin ear — Elastic — Isotropic: EX:3e11 ( 弹性模量)—OKANSYS Main Menu: Preprocessor — Real Constants , — Add/Edit/Delete —Add — Type 1 Beam3 — OK — Real Constant Set No: 1 ( 第 1 号实常数),Ry finite 戟『気2 node 1882 node 188Canttl—鼠标点击该窗口右上角的“ ”来关闭该窗口。
弹性力学平面问题的有限元法实例

分析与决策
(1)何种类型?
平面问题中的结构问题,且为静力问题;
平面问题中具有对称性,为减少[K],简化模型取
1/4;
简化后加约束,(1)在ox面上,位移u是对称的,
位移v是反对称的;在oy面上,位移u是反对称的, 位移v是对称的; (2)在ox面上,载荷对称,在oy 面上,载荷对称;
(1)何种类型?
4.5剖分面(续)
以垂线剖分面。依次单击preprocessor-modelingoperate-booleans-divide-area by line,弹出对话框, 选择对话框中的box单选,用窗口选择两个面元素, 后单击apply,在窗口中选L6-ok,完成面元素剖分。 单击plotctrls菜单中的numbering命令,关闭line numbers –ok; 单击plot菜单中的area命令,用面元素显示模型, 剖分的模型如图所示,由2个面变为4个面,面元素 的编号同时发生变化。
Preprocessor-material
props-material models-弹出define material model behavior 对话框-列表框material models available中, 依次单击structural-linear-elastic-isotropic, 添加弹性模量2.1e+11,泊松比0.3-ok;
操作过程
一、建立新文件
二、类型的选择 Structural-ok;
二、前处理
1、添加单元类型 选择:Quad 4node 42(单元库编号); 具有厚度:选择 option-plane str w/thk(平面应力有厚度);
2、设置实常数(Real constants)
有限元算例分析

一、平面3节点三角形单元分析的算例如图所示为一矩形薄平板,在右端部受集中力F=10000N 作用,材料常数为:弹性模量1E 二1 107 Pa 、泊松比,板的厚度为t 二0.1m ,试按平面应力问题计算各个节点位3移及支座反力。
閹4-^20右瑞部受集中力作用的平面问题(高深梁)解:(1) 结构的离散化与编号形单元。
载荷F 按静力等效原则向节点 1节点2移置等效。
约束的支反力列阵: R =「0 0 0 0 R X 3 &3 R x4 Ry 4T其中(R X 3, R y3)和(R x4,R y4)分别为节点3和节点4的两个方向的支反力。
(2)各个单元的描述当两个单元取图示中的局部编码(i,j,m)时,其单元刚度矩阵完全相同,即a=X j y m —X m y j , b i=y j —y m , C i=X j —X m a j =X m y i -xy m , b j =y m -y i , c^x^X i a m =X j y m —X m y j , b m =y i —y j , c^x^X j对该结构进行离散,单元编号及节点编号如图4-20(b)所示,即有二个3节点三角 节点位移列阵:q - g v u 2 v 2U 3 V 3 U 4 V 4 r1-^b r b s 十 ---- C r C s2 1 - J亠 -------- b r C s 2^C r b s十丁农I1 - J GG 2brbs"b r C sk iik ⑴,(2)k jjkmma)制赳描述 b)冇限元分折模型节点外载列阵:k ijk jmk mj1 00132I23-12T1I3023434323220042一』—112427433212d413L 333T(3)建立整体刚度方程按单元的位移自由度所对应的位置进行组装可以得到整体刚度矩阵,成k二k⑴k⑵具体写出单元刚度矩阵的各个子块在总刚度矩阵中的对应位置如下该组装过程可以写代入整体刚度方程Kq =P中,有(5)支反力的计算将所求得的节点位移式代入总刚度方程中,可求得支反力如下9Et/ 2 4 、 “(-U i ——V i + — V 2) = —2 F 32 3 3 9Et 2 1 4(U v U 2)»0.07F 32 3 3 3 9Et 2 (-U 2 V 2) =2F32 3 9Et 2 1 (u 2 v 2) = 1.07F7 亍474 3 n — 3-1—3斗1 3 q21-4一 一 □0 33 3 34 r74 "q—0 □-13 3 7亍31341-4 033 33 I2 4 "7'4"-1 7 0亍T7亍r 141 32— —□=-4 33J3 3 i hi BW-Wa-ivKaH4q7 4 0 □ -1——-—33 3 331 2413■^= -^^a--433373 J9Z732(4) 边界条件的处理及刚度方程求解该问题的位移边界条件为 U 3 = 0,V 3 二 0, U 4 二 0,V4 -0 将其代入上式中,划去已知节点位移对应的第5行至第8行(列),有13由上式可求出节点位移如下[U i w u 2 v 2]Et131.88 -8.99-1.50 -8.42 TR X 4 R y432 3 3、MATLAB —平面3节点三角形单元分析的算例(Triangle2D3Node)解:(1)结构的离散化与编号将结构离散为二个3节点三角形单元,单元编号及节点编号如图4-20(b)所示。
有限元分析——平面问题

Re=
NT
s
Pstds
江西五十铃发动机有限公司
技术中心 12 /33
4、整体分析 整体刚度矩阵 整体刚度矩阵组装的基本步骤:
先求出各个单元的单元刚度矩阵; 将单元刚度矩阵中的每个子块放在整体刚度矩阵中的对应位置上,得到单 元的扩大刚度矩阵; 将全部单元的扩大矩阵相加得到整体刚度矩阵。
不失一般性,仅考虑模型中有四个单元,如图所示,四个单元的整体节点位 移列阵为
τZX z= + t/2 =0
因板很薄,载荷又不沿厚度变化,应力沿板 的厚度方向是连续分布的,可以认为,在整
Z
个板内各点都有
σZ=0 τYZ=0 τZX=0
O
tX
图1 平面应力问题
根据剪应力的互等性、物理方程,可得描述平面应力问题的八个独立的基本变量 为
江西五十铃发动机有限公司
技术中心 4 /33
σ=[σX σY τXY]T ε=[εX εY γXY]T
x2 y2 ɑ1= x 3 y 3
1 y2 b1=- 1 y 3
1 c1= 1
x2 x3
(1,2,3)
上式表示下标轮换,即1 2,2 3,3 1同时更换。
江西五十铃发动机有限公司
技术中心 9 /33
重写位移函数,并以节点位移的形式进行表达,有
uv((xx,,yy))N(x,y)qe
其中形函数矩阵为
Y
江西五十铃发动机有限公司
图2 平面应变问题
技术中心 5 /33
根据几何方程、物理方程可得,描述平面应变问题的独立变量也是八个,且与 平面应力问题的一样。只是弹性矩阵变为
1
D=
E1
1 1 2 1
1
有限元超全实例

输入关键点号和坐标值,按“Apply”。 所有关键点数据 输完后按“OK”结束对话框,屏幕上即显示上述关键点的位 置和序号。
Main Menu>Preprocessor>Modeling>Create>Lines> Lines >in Active CS, 弹出下示对话框。然后用直线顺序连 接上述五个关键点,组成题设要求的形状。
例一:
如图所示的零件,所受到均布力载荷为q,分析在 该作用力下的零件的形变和应力状况,本题简化 为二维平面问题进行静力分析,零件材料为Q235。
数据(长度单位mm,分布力单位N/cm) A B C D q 278 64 148 Ф 64 3 00
序号 30
1、创建几何模型
1)以左上角一点为坐标原点确定各节点坐标 序号 X坐标(mm) Y坐标(mm) 1 0 0 2 0 -150 3 130 -64 4 278 -64 5 278 0 6 139 0 2)创建5个关键点,并形成单元。 Main Menu>Preprocessor>Modeling>Create>Keypoints >in Active CS, 弹出下示对话框。
3)加载荷 Main Menu>Solution>Define Loads >Apply> Structural>Pressure >On lines ,弹出如下对话框,单击零件右 上受载边界线,按“OK”确定,在继续弹出的对话框中输入载荷 值-300,完成后按“Ok”确定。
4)求解 Main Menu:Solution>Solve>Current LS
3)查看位移分布图 Main Menu:General Postporc>Plot Result> Contour Plot>Nodal Solution ,在弹出的对话框中顺序选择: Nodal Solution >DOF Solution>Displacement Vector Sum, 位移分布如右图:
4.5.14.5平面问题有限元分析步骤及计算实例

K
88
K 12 11 K21 1
K 12 31
K41 2
K22 1 K32 1
K 12 33
K43 2
K
44
2
由于[Krs]=[Ksr]T,又单元1和单元2的节点号按1、2、
3对应3、4、1,则可得:
K11 1
K33 2
3E 16
3 0
0 1
K21 1 K43 2
K12 1
3E 8
3 1 0
0 0 1
3 1 1
1 3 1
0 0 1
013
q/E 0
q/E 0
3E 8
8q
0 /(3E) 0
0 q1
0
0
单元应力可看作是单元形心处的应力值。
7)引入约束条件,修改刚度方程并求解
根据约束条件:u1 =v1=0;v2=0;u4=0和等效节点力列
阵:F 0 0 0 0 0 q / 2 0 q / 2T
五. 边界条件的处理及整体刚度矩阵的修正 整体刚度矩阵的奇异性可以通过引入边界约束条件来排除弹性体的
刚体位移,以达到求解的目的。
(两种)方法 “化1置0法”
“乘大数法”
⑴修改后的总刚为非奇异,对应的总体平衡方程可求解; ⑵如果已知位移不等于0,采用第二种方法,固定约束用 第一种方法。 ※求解可以采用解方程组的任何一种方法。(高斯消去法 常用),可借用一些计算机软件:如Matlab,Excel等。
所以 q / E0 0 1/ 3 0 1/ 3 1 0 1T
习题和思考题
• 4.1三角形常应变单元的特点? • 4.2平面问题有限元法的基本思想和解题步骤。 • 4.3简述形函数的概念和性质。 • 4.4平面问题整体刚度矩阵的推导过程。 • 4.5矩形单元的特点? • 4.6有限元方法解的收敛准则。