不等式的解集教案

合集下载

8年级数学北师大版下 册教案第2章《不等式的解集》

8年级数学北师大版下 册教案第2章《不等式的解集》

教学设计不等式的解集
拓展应用1、已知x﹣2﹤a的解集如图所示,则a的值为()
A、3
B、1
C、-3
D、4
2、不等式x﹤3的正整数解有()个。

A、1个
B、2个
C、3个
D、4个
3、不等式x﹤a的正整数解恰好是1,2,则a的取值范围为()
A 1<a<2
B 2<a<3
C 2≤a<3
D 2<a≤3
4. 在某次数学竞赛中,老师对优秀学生给予奖励,准备了30元,买了3个笔记本和若干支笔,已知笔记本每本4元,笔每支2元,问可以买多少支笔?
小结这节课你有哪些收获
板书设计
2.3不等式的解集
1.不等式的解:使不等式成立的未知数的值
2.不等式的解集:不等式的所有解
3.解不等式:
4.不等式解集的数轴表示:①画数轴
②找界点
③定方向
解集的表示
不等式的解
特殊到一般
思想
不等式的解集
数形结合
思想
不等式。

八年级下册数学不等式的解集教案

八年级下册数学不等式的解集教案

八年级下册数学不等式的解集教案一、教学目标1. 理解不等式的解集的概念,掌握求解不等式解集的方法。

2. 能够求解一元一次不等式、一元二次不等式和带有绝对值的不等式。

3. 能够运用不等式的解集解决实际问题,提高解决问题的能力。

二、教学内容1. 不等式的解集的概念:解集是指使不等式成立的所有实数的集合。

2. 求解不等式解集的方法:a) 一元一次不等式:根据不等式的性质,通过移项、合并同类项求解。

b) 一元二次不等式:先求出对应的一元二次方程的根,根据一元二次方程的图像确定解集。

c) 带有绝对值的不等式:根据绝对值的性质,分情况讨论求解。

三、教学重点与难点1. 教学重点:a) 不等式的解集的概念。

b) 求解一元一次不等式、一元二次不等式和带有绝对值的不等式的方法。

2. 教学难点:a) 带有绝对值的不等式的求解。

b) 运用不等式的解集解决实际问题。

四、教学方法与手段1. 教学方法:a) 采用启发式教学,引导学生主动探索不等式的解集求解方法。

b) 通过例题讲解,让学生掌握不等式解集的求解步骤。

c) 开展小组讨论,培养学生合作解决问题的能力。

2. 教学手段:a) 使用多媒体课件,直观展示不等式的解集。

b) 提供练习题,巩固所学知识。

五、教学安排1. 课时:2课时2. 教学过程:a) 第1课时:介绍不等式的解集的概念,讲解求解一元一次不等式和一元二次不等式的方法。

b) 第2课时:讲解带有绝对值的不等式的求解方法,运用不等式的解集解决实际问题。

六、教学活动1. 导入新课:通过复习一元一次方程的解集,引导学生理解不等式的解集的概念。

2. 讲解例题:a) 求解不等式2x 3 > 7 的解集。

b) 求解不等式x^2 6x + 9 ≥0 的解集。

c) 求解不等式|x 2| ≤3 的解集。

3. 练习与讨论:学生独立完成练习题,小组内讨论解题过程和方法。

七、课后作业1. 完成练习册上的相关习题,巩固所学知识。

2. 选择一道实际问题,运用不等式的解集进行解答,并在课堂上分享。

不等式的解集教学案

不等式的解集教学案

___________________________
解得:________________
探究 4 用数轴表示不等式的解集
①在数轴上表示不等式的解集是数形结合在本节中的具体体现;
②确定两点:一是确定”界点”,二是确定”方向”;
③若解集包括”界点”,则用实心圆点; 若解集不包括”界点”,则用空心圆
圈;
④对于方向,相对于界点而言,大于向右画数轴, 定界点, 定方向.
不等式
用数轴表示
x 2

0
2
.
x2
0
2
x2 0
x2 0
当 1.判断下列说法是否正确,为什么?
堂 (1) x 2 是不等式 2x 6 的一个解; 检 (2) x 1的正整数解有无数个;
学 阅读课本 10-11 页,回答下列问题:
习 探究 1 不等式的解:
,叫做不等式的解。
研 探究 2 不等式的解集:
讨 一个含有未知数的不等式的所有解,组成这个不等式的
.
如 x 1 2 的解集为满足 x 3的所有实数.
不等式的解集是一个数的集合,是一个未知数的取值范围,特殊情况下也可能是具
体的某几个数.
那么导火线的长度应为多少厘米?
分析:人转移到安全区域需要的时间最少为 ________秒,导火线燃烧的时间为
_________秒,要使人转移到安全地带,必须有:人.转.移.到.安.全.区.域.需.要.的.时.间. <.导. 火.线.燃.烧.的.时.间..
解:设导火线的长度应为 x cm,根据题意,
得不等式:
延 伸 拓 展 总结 反思
[例题 4]在数轴上表示不等式的解集: (1) x-2≥-4; (2) 2x≤8(3) -2x-2>-10

2.3 不等式的解集 教案

2.3 不等式的解集 教案

一、情境导入东东和小明、小红三人在公园里玩跷跷板,东东体重最重,坐在跷跷板的一端,小明坐在另一端,这时东东的一端着地,当体重比东东轻4公斤的小红和小明坐在一端时,东东被翘起离地.同学们,你们能算出小红的体重大约是多少吗?二、合作探究探究点一:不等式的解和解集下列说法中,错误的是( )A .不等式x <3有两个正整数解B .-2是不等式2x -1<0的一个解C .不等式-3x >9的解集是x >-3D .不等式x <10的整数解有无数个解析:A.不等式x <3有两个正整数解1,2,故A 正确;B.-2是不等式2x -1<0的一个解,故B 正确;C.不等式-3x >9的解集是x <-3,故C 正确;D.不等式x <10的整数解有无数个,故D 正确;故选C.方法总结:判断某个数值是否是不等式的解,就是用这个数值代替不等式中的未知数,看不等式是否成立.若不等式成立,则该数是不等式的一个解;若不成立,该数值就不是不等式的解.探究点二:用数轴表示不等式的解集 【类型一】 在数轴上表示不等式的解集不等式3x +5≥2的解集在数轴上表示正确的是( )A. B. C.D.解析:解3x +5≥2,得x ≥-1,故选B.方法总结:注意在表示解集时大于等于,小于等于要用实心圆点表示;大于、小于要用空心圆点表示.【类型二】 根据数轴求不等式的解关于x 的不等式x -3<3+a2的解集在数轴上表示如图所示,则a 的值是( )A .-3B .-12C .3D .12解析:化简不等式,得x <9+a2.由数轴上不等式的解集,得9+a =12,解得a =3,故选C.方法总结:本题考查了在数轴上表示不等式的解集,利用不等式的解集得关于a 的方程是解题关键. 三、板书设计1.不等式的解和解集2.用数轴表示不等式的解集1.下列数值中,是不等式x -2>2的一个解的是( )9.在数轴上表示不等式x -1<0的解集,正确的是( )10.如图,在数轴上所表示的是哪一个不等式的解集( )A.12x >-1 B.x +32≥-3C .x +1≥-1D .-2x >411.将下列不等式的解集分别表示在数轴上: (1)x ≤2; (2)x >-2.12.用A 、B 两种型号的钢丝各两根分别作为长方形的长与宽,焊接成周长不小于2.4m 的长方形框架,已知每根A 型钢丝的长度比每根B 型钢丝长度的2倍少3cm. (1)设每根B 型钢丝长为x cm ,按题意列出不等式并求出它的解集;(2)如果每根B 型钢丝长度有以下四种选择:30cm,40cm,41cm,45cm ,那么哪些合适?13.请阅读求绝对值不等式|x |<3和|x |>3的解集的过程:因为|x |<3,从如图1所示的数轴上看:大于-3而小于3的数的绝对值是小于3的,所以|x|<3的解集是-3<x<3;因为|x|>3,从如图2所示的数轴上看:小于-3的数和大于3的数的绝对值是大于3的,所以|x|>3的解集是x<-3或x>3.解答下面的问题:(1)不等式|x|<a(a>0)的解集为________;不等式|x|>a(a>0)的解集为________;(2)解不等式|x-5|<3;(3)解不等式|x-3|>5.本节课学习不等式的解和解集,利用数轴表示不等式的解,让学生体会到数形结合的思想的应用,能够。

数学《不等式的解集》教案

数学《不等式的解集》教案

数学《不等式的解集》教案一、教学目标:1. 理解不等式及其解集的概念。

2. 掌握各类不等式解集的求法。

3. 领会不等式解集的变形和化简方法。

二、教学内容:1. 不等式及其解集的概念。

2. 一元一次不等式的解集。

3. 一元二次不等式的解集。

4. 绝对值不等式的解集。

5. 分式不等式的解集。

三、教学方法:1. 讲授法。

2. 实例演练法。

3. 规律归纳法。

4. 思维导向法。

四、教学过程:1. 引入:求解不等式是数学中的一个重要问题,该如何求解不等式呢?听说定积分可以解决这个问题。

那么我们首先要了解什么是不等式及其解集。

2. 学习目标:①理解不等式及其解集的概念。

②掌握各类不等式解集的求法。

③领会不等式解集的变形和化简方法。

3. 一元一次不等式的解集:例1. 求解不等式 x - 3 < 7。

解:移项得 x < 10。

所以解集为 (-∞, 10)。

例2. 求解不等式 2x +1 ≥ 5。

解:移项得2x ≥ 4,两边同时除以 2 得x ≥ 2。

所以解集为 [2, +∞)。

4. 一元二次不等式的解集:例3. 求解不等式 x^2 - 3x + 2 > 0。

解:设 f(x) = x^2 - 3x + 2,则 f(1) = 0,f(x) 在 x < 1 时取得负值,在 x > 1 时取得正值,所以解集为(-∞, 1) ∪ (2, +∞)。

例4. 求解不等式 2x^2 - x < 3。

解:设 g(x) = 2x^2 - x - 3,则 g(x) = 0 的两根分别为 x=-1.5 和 x=1,易得 g(x) 在(-∞,-1.5) ∪ (1, +∞) 取负值,在(-1.5,1) 取正值,所以解集为(-1.5,1)。

5. 绝对值不等式的解集:例5. 求解不等式 |x – 4| < 5。

解:若 x < 4,则 4 - x < 5,所以 -1 < x < 9;若x ≥ 4,则 x - 4 < 5,所以 4 < x < 9。

综上所述,解集为(-1, 9)。

新苏科版七年级数学下册《11章 一元一次不等式 11.2 不等式的解集》公开课教案_11

新苏科版七年级数学下册《11章 一元一次不等式  11.2 不等式的解集》公开课教案_11

11.2不等式的解集学习目标:1. 知道不等式的解,不等式的解集. 会判断一个数是不是某个不等式的解. 2. 会用数轴表示不等式的解集. 3. 会写出数轴表示的不等式的解集. 4. 会结合数轴写出某个不等式的整数解.学习重点:利用数轴表示不等式的解集学习难点:有特殊条件限制下的不等式的解教学过程:(一)情境引入 1.下列各数:2、3、4、5、6,其中哪些是方程x+3=6的解?为什么?2. 能使不等式成立的未知数的值叫做不等式的解.下列数2、3、4、5、6中,哪些是不等式x+3>6的解?为什么?还有没有其它的解?3.比较方程x+3=6的解与不等式x+3>6的解有哪些相同点和不同点?(二)新知学习1.不等式解集的含义:满足不等式的未知数的解的全体称为不等式的解集,必须是全部的解,缺少任何一个都不能称为解集.注意:不等式的解集是所有解的全体,缺少任何一个都不等称为解集.例如x+3>6的解集应该是x>3,尽管x>4的所有的数都满足x+3>6,但x>4不能称为x+3>6的解集,因为x>4只是x+3>6解集的一部分,缺少了3~4之间的数.2. 求不等式的解集的过程,叫做解不等式.3.想一想:x>3的数有多少个?如果用数轴上的点来表示,那么大于3的数在数轴上对应的点有何规律?4.将不等式的解集在数轴上表示出来:例1、两个不等式的解集分别是x<3,x≥-1,分别在数轴上将它们表示出来.解:x<3在数轴上表示为:x≥-1在数轴上表示为:注意:对于“x<a”或“x>a”的形式,用数轴表示时应在数轴上表示数a的点处画“小空心圆圈”,小于向左边画,大于向右边画;对于“x≤a”或“x≥a”的形式,用数轴表示时应在数轴上表示数a的点处画“小实心点”,小于或等于向左边画,大于或等于向右边画.例题2、写出图中所表示的不等式的解集:解:(1)图中所表示的不等式的解集为:x≤5;(2)图中所表示的不等式的解集为:x≥-6.例3、根据“当x为任何正数时,都能使不等式x+2>1成立”,能不能说“不等式x+2>1的解集为x>0”?解:不正确,如当x取-0.5、-0.8、-0.9时,不等式x+2>1也成立.因此等式x+2>1的解集不是x>0.注意:不等式的解集是不等式的解的全体,不能只取部分.例4、不等式x <2的正整数解是( )A.1B.0,1C.1,2D.0,1,2分析:x <2表示小于2的数,其中正整数有1.也可以先用数轴表示解集,然后在数轴上寻找正整数值,故选择A .(三)课堂练习1.已知a 是整数,请写出不等式3a ≤的6个解: ,其中, 正整数的解有 个,负整数解有 个,非负整数解有 个.2.在数轴上表示不等式x-3<0的解集,并写出这个不等式的正整数解.3.在数轴上表示不等式x +4≥0的解集,并写出这个不等式的非负整数解.(四)课堂总结1、什么是不等式的解集?2、如何用数轴来表示不等式的解集?【课后作业】 1、下列说法正确的有( )(1)5是y -1>6的解;(2)不等式m -1>2的解有无数个;(3)x >4是不等式x +3>6的解集;(4)不等式x +1<2有无数个整数解.A .1个B .2个C .3个D .4个2、下列不等式的解集中,不包括-3的是( )A.x≤-3B.x≥-3C.x≤-4D.x≥-43、不等式x ≥6的最小解是 ;4、在数轴上表示下列不等式的解集:(1)1x <;(2)3x ≤-;(3)1x >-;(4)2x ≥-.解:(1) (2)(3) (4)5、写出下列各数轴所表示的不等式的解集:(1) (2)6、 写出不等式x+3≥0的负整数解.7、写出不等式x-5<0的正整数解.1 0 1 0 1 0 1 0。

人教版初中数学七年级下册9.1.1《不等式及其解集》教案设计

人教版初中数学七年级下册9.1.1《不等式及其解集》教案设计

9.1.1《不等式及其解集》教学设计【内容】人教版七年级数学下第九章第一节【知识与技能】1.能够从现实问题中抽象出不等式,理解不等式的意义,会根据给定条件列不等式.2.正确理解“非负数”、“不小于”、“不大于”等数学术语.3.理解不等式的解、解集的意义,能举出一个不等式的几个解并且会检验一个数是否是某个不等式的解.4.能用数轴表示不等式的解集.【过程与方法】经历由具体实例建立不等式模型的过程,进一步发展学生的符号感和数学化的能力,体会在解决问题的过程中与他人合作的重要性.【情感、态度与价值观】使学生能独立克服困难,运用知识解决问题,树立学好数学的自信心;在独立思考的基础上,积极参与讨论,在合作交流中有一定收获.教学重点理解不等式、不等式的解和解集,能正确列出不等式.教学难点准确应用不等号,理解不等式的解和解集的意义.学情与教材分析一、学情分析学生在小学对不等量关系、数量大小的比较等知识已经有所了解,但对含有未知数的不等式还是第一次接触,本节就是对“不等式”这一概念进一步明确,使它成为一种有效的数学工具.学生在列不等式时,对数量关系中的“不大于”、“不小于”、“负数”、“非负数”等数学术语的含义不能准确理解,在把用文字语言表述的不等关系转化为用符号表示的不等式时有一定困难,对不等式的解、不等式的解集两个概念容易混淆.二、教材分析不等式是解决实际问题的一种数学模型,它不仅是初中阶段学习的重点内容,而且也是后面学习函数等知识的基础.它是在学习了一元一次方程、二元一次方程组之后的后续内容,贯穿于数学学习的始终,起着承上启下的作用.本节是本章的第一课时,主要学习四个概念:不等式、不等式的解、解集。

同时渗透建模、类比、分类等思想方法.教学方法:引导发现法教学准备:教具:圆规、三角尺、多媒体及课件。

学具:圆规、三角尺。

教学过程:一创设情景引入新知(一)动画演示情景激趣:两个体重相同的孩子正在跷跷板上做游戏,现在换了一个大人上去,跷跷板发生了倾斜,游戏无法继续进行下去了,这是什么原因呢?设计意图:通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,分析能力,激发他们的学习兴趣问题1:出示图片(多媒体演示): 若设大象的体重为x吨,你能用式子表示图片中两个小朋友的对话吗?问题2:一辆匀速行驶的汽车在11:20时距离A地50千米。

人教版小学数学六年级下册不等式及其解集教案

人教版小学数学六年级下册不等式及其解集教案

课题:第九章不等式与不等式组9.1 不等式9.1.1 不等式及其解集教学目标(一)知识与技能1.了解不等式的概念;2.理解不等式的解集;3.能正确表示不等式的解集。

(二)过程与方法经历把实际问题抽象为不等式的过程,能列出不等关系式;初步体会不等式(组)是刻画现实世界中不等关系的一种有效的数学模型,培养学生的建模意识。

(三)情感态度价值观培养学生的知识迁移能力和建模意识,加深同学之间的合作与交流。

教学难点不等式解集的表示教学难点不等式解集的确定教具准备Powerpoint课件课型教学手段教学方法新授课多媒体授课练习——归纳法教学过程(师生活动)设计理念提出问题多媒体演示:1、两个体重相同的孩子正在跷跷板上做游戏.现在换了一个小胖子上去,跷跷板发生了倾斜,游戏无法继续进行下去了.这是什么原因呢?2、一辆匀速行驶的汽车在11:20时距离A地50千米。

要在12:00以前驶过A地,车速应该满足什么条件?若设车速为每小时x千米,你能用一个式子表示吗?(学生经过讨论从时间、路程两个角度分别列出不等式)通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,激发他们的学习兴趣.(一)不等式、一元一次不等式的概念1、在学生充分发表自己意见的基础上,师生共同归纳得出:用“<”或“>”表示大小关系的式子叫做不等式;用“≠”表示不等关系的式子也是不等式。

(学生联想等式,读背记忆概念)注意:a.不等号开口所对的数较大;b.不等式中可以含有未知数,也可以不含未知数。

引导学生仔细观察并归纳出不等式的意义。

探究新知2、下列式子中哪些是不等式?(1)a+b=b+a (2)-3>-5 (3)x≠l(4)x十3>6 (5) 2m< n (6)2x-3上述不等式中,有些不含未知数,有些含有未知数.我们把那些类似于一元一次方程,含有一个未知数且未知数的次数是1的不等式,叫做一元一次不等式。

(学生联想一元一次方程,读背记忆概念)3、小组交流:说说生活中的不等关系.分组活动.先独立思考,然后小组内互相交流并做记录,最后各组选派代表发言。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等式的解集教案 LELE was finally revised on the morning of December 16, 2020
不等式的解集
教学目标
1.使学生正确理解不等式的解,不等式的解集,解不等式等概念,掌握在数轴上表示不等式的解的集合的方法;
2.培养学生观察、分析、比较的能力,并初步掌握对比的思想方法;
3.在本节课的教学过程中,渗透数形结合的思想,并使学生初步学会运用数形结合的观点去分析问题、解决问题.
教学重点和难点
重点:不等式的解集的概念及在数轴上表示不等式的解集的方法.
难点:不等式的解集的概念.
课堂教学过程设计
一、从学生原有的认知结构提出问题
1.什么叫不等式什么叫方程什么叫方程的解(请学生举例说明)
2.用不等式表示:
(1)x的3倍大于1; (2)y与5的差大于零;
3.当x取下列数值时,不等式x+3<6是否成立?
-4,,4,-,3,0,.
(2、3两题用投影仪打在屏幕上)
二、讲授新课
1.引导学生运用对比的方法,得出不等式的解的概念
2.不等式的解集及解不等式
首先,向学生提出如下问题:
不等式x+3<6,除了上面提到的,-4,-,0,是它的解外,还有没有其它的解若有,解的个数是多少它们的分布是有什么规律
(启发学生利用试验的方法,结合数轴直观研究.具体作法是,在数轴上将是x+3<6的解的数值-4,-,0,用实心圆点画出,将不是x+3<6的解的数值,4,3用空心圆圈画出,好像是“挖去了”一样.如下图所示)
然后,启发学生,通过观察这些点在数轴上的分布情况,可看出寻求不等式x+3<6的解的关键值是“3”,用小于3的任何数替代x,不等式x+3<6均成立;用大于或等于3的任何数替代x,不等式x+3<6均不成立.即能使不等式x+3<6成立的未知数x的值是小于3的所有数,用不等式表示为x<3.把能够使不等式x+3<6成立的所有x值的集合叫做不等式x+3<6的解的集合.简称不等式x+3<6的解集,记作x<3.
最后,请学生总结出不等式的解集及解不等式的概念.(若学生总结有困难,教师可作适当的启发、补充)
一般地说,一个含有未知数的不等式的所有解,组成这个不等式的解的集合.简称为这个不等式的解集.
不等式一般有无限多个解.
求不等式的解集的过程,叫做解不等式.
3.启发学生如何在数轴上表示不等式的解集
我们知道解不等式不能只求个别解,而应求它的解集.一般而言,不等式的解集不是由一个数或几个数组成的,而是由无限多个数组成的,如x<3.那么如何在数轴上直观地表示不等式x +3<6的解集x<3呢(先让学生想一想,然后请一名学生到黑板上试着用数轴表示一下,其余同学在下面自行完成,教师巡视,并针对黑板上板演的结果做讲解)
在数轴上表示3的点的左边部分,表示解集x<3.如下图所示.
由于x=3不是不等式x+3<6的解,所以其中表示3的点用空心圆圈标出来.(表示挖去x= 3这个点)
记号“≥”读作大于或等于,既不小于;记号“≤”读作小于或等于,即不大于.
例如不等式x+5≥3的解集是x≥-2(想一想,为什么?并请一名学生回答)在数轴上表示如下图.
即用数轴上表示-2的点和它的右边部分表示出来.由于解中包含X=-2,故其中表示-2的点用实心圆点表示.
此处,教师应强调,这里特别要注意区别是用空心圆圈“°”还是用实心圆点“·”,是左边部分,还是右边部分.
三、应用举例,变式练习
例1 在数轴上表示下列不等式的解集:
(4)1≤x≤4; (5)-2<x≤3; (6)-2≤x<3.
解:(1),(2),(3)略.
(4)在数轴上表示1≤x≤4,如下图
(5)在数轴上表示-2<x≤3,如下图
(6)在数轴上表示-2≤x<3,如下图
(此题在讲解时,教师要着重强调:注意所给题目中的解集是否包含分界点,是左边部分还是右边部分.本题应分别让6名学生板演,其余学生自行完成,教师巡视,遇到问题,及时纠正)例2 用不等式表示下列数量关系,再用数轴表示出来:
(1)x小于-1; (2)x不小于-1;
(3)a是正数; (4)b是非负数.
解:(1)x小于-1表示为x<-1;(用数轴表示略)
(2)x不小于-1表示为x≥-1;(用数轴表示略)
(3)a是正数表示为a>0;(用数轴表示略)
(4)b是非负数表示为b≥0.(用数轴表示略)
(以上各小题分别请四名学生回答,教师板书,最后,请学生在笔记本上画数轴表示)
例 3 用不等式的解集表示出下列各数轴所表示的数的范围.(投影,请学生口答,教师板演)
解:(1)x<2;(2)x≥-;(3)-2≤x<1.
(本题从另一侧面来揭示不等式的解集与数轴上表示数的范围的一种对应关系,从而进一步
加深学生对不等式解集的理解,以使学生进一步领会到数形结合的方法具有形象,直观,易于说明问题的优点)
练习(1)用简明语言叙述下列不等式表示什么数:①x>0;②x<0;③x>-1;④x≤-1.
(2)在数轴上表示下列不等式的解集:
①x>3;②x≥-1;③x≤-;
*(4)观察不等式x-4<0的解集是什么用不等式和数轴分别表示出来.它的正数解是什么自然数解是什么(*表示选作题)
四、师生共同小结
针对本节课所学内容,请学生回答以下问题:
1.如何区别不等式的解,不等式的解集及解不等式这几个概念?
2.找出一元一次方程与不等式在“解”,“求解”等概念上的异同点.
3.记号“≥”、“≤”各表示什么含义?
4.在数轴上表示不等式解集时应注意什么?
结合学生的回答,教师再强调指出,不等式的解、不等式的解集及解不等式这三者的定义是区别它们的唯一标准;在数轴上表示不等式解集时,需特别注意解的范围的分界点,以便在数轴上正确使用空心圆圈“°”和实心圆点“·”.
五、作业
1.不等式x+3≤6的解集是什么?
2.在数轴上表示下列不等式的解集:
(1)x≤1; (2)x≥0; (3)-1<x≤5;
3.求不等式x+2<5的正整数解.
课堂教学设计说明
由于本节课的知识点比较多,因此,在设计教学过程时,紧紧抓住不等式的解集这一重点知识.通过对方程的解的意义的回忆,对比学习不等式的解及解集.同时,为了进一步加深学生对不等式的解集的理解,教学中注意运用以下几种教学方法:(1)启发学生用试验的方法,结合数轴直观形象来研究不等式的解和解集;(2)比较方程与不等式的解的异同点;(3)通过例题与练习,加深理解.
在数轴上表示数是数形结合的具体体现.而在数轴上表示不等式的解集则又进了一步.因此,在设计教学过程时,就充分考虑到应使学生通过本节课的学习,进一步领会数形结合的思想方法具有形象、直观、易于说明问题的优点,并初步学会用数形结合的观点去处理问题、解决问题.。

相关文档
最新文档