不等式及其解集 教学设计
《不等式及其解集》教学设计

《不等式及其解集》教学设计《不等式及其解集》教学设计陕西省大荔县安仁初中张娟一、内容和内容解析(一)内容概念:不等式、不等式的解、不等式的解集、解不等式以及能在数轴上表示简单不等式的解集.(二)内容解析现实生活中存在大量的相等关系,也存在大量的不等关系.本节课从生活实际出发导入常见行程问题的不等关系,使学生充分认识到学习不等式的重要性和必然性,激发他们的求知欲望.再通过对实例的进一步深入分析与探索,引出不等式、不等式的解、不等式的解集以及解不等式几个概念.前面学过方程、方程的解、解方程的概念.通过类比教学、不等式、不等式的解、解不等式几个概念不难理解.但是对于初学者而言,不等式的解集的理解就有一定的难度.因此教材又进行数形结合,用数轴来表示不等式的解集,这样直观形象的表示不等式的解集,对理解不等式的解集有很大的帮助.基于以上分析,可以确定本节课的教学重点是:正确理解不等式、不等式的解与解集的意义,把不等式的解集正确地表示在数轴上.二、目标和目标解析(一)教学目标利用多媒体直观演示课前引入问题,激发学生的学习兴趣.五、教学过程设计(一)立足实际引出新知问题:一辆匀速行驶的汽车在11︰20距离A地50km,要在12︰00之前驶过A地,车速应满足什么条件?小组讨论,合作交流,然后小组反馈交流结果.最后,老师将小组反馈意见进行整理(学生没有讨论出来的思路老师进行补充)1.从时间方面考虑:<2.从路程方面考虑: >50(设计意图:培养学生合作、交流的意识习惯,使他们积极参与问题的讨论,并敢于发表自己的见解.老师对问题解决方法的梳理与补充,发散学生思维,培养学生分析问题、解决问题的能力.)(二)紧扣问题,概念辨析1.不等式设问1:什么是不等式?设问2:能否举例说明?由学生自学,老师可作适当补充.比如:<,>50,x>50÷都是不等式.练习:判断下列各式是不是不等式(1)2﹤5;(2)x+3≠0;(3)4x-2y≤0 ;(4)7n-5≥2;(5)3x+2>0 ; (6)5m+3=8 . 2.不等式的解设问1:什么是不等式的解?设问2:不等式的解是唯一的吗?由学生自学再讨论.老师点拨:由x>50÷得x >75说明x任意取一个大于75的数都是不等式<,>50的解.3.不等式的解集设问1:什么是不等式的解集?设问2:不等式的解集与不等式的解有什么区别与联系?由学生自学后再小组合作交流.老师点拨:不等式的解是不等式解集中的一个元素,而不等式的解集是不等式所有解组成的一个集合.4.解不等式设问1:什么是解不等式?由学生回答.老师强调:解不等式是一个过程.(设计意图:培养学生的自学能力,进一步培养学生合作交流的意识.遵循学生的认知规律,有意识、有计划、有条理地设计一些问题,可以让学生始终处于积极的思维状态,不知不觉中接受了新知识.老师再适当点拨,加深理解.)(三)数形结合,深化认识【用数轴表示解集】:大于向右画,小于向左画;有等号的画实心圆点,无等号的画空心圆圈.如下图 (由老师讲解,注意规范性,准确性.)老师适当补充:“≥” 与“≤”的意义,并强调用“≥”或“≤”连接的式子也是不等式.比如x ≤ 2 就是不等式.【画一画】利用数轴来表示下列不等式的解集.(1)x >-1 (2)x < (设计意图:通过数轴的直观让学生对不等式的解集进一步加深理解,渗透数形结合思想.)(四)归纳小结,反思提高教师与学生一起回顾本节课所学主要内容,并请学生回答如下问题1、什么是不等式?2、什么是不等式的解?3、什么是不等式的解集,它与不等式的解有什么区别与联系?4、用数轴表示不等式的解集要注意哪些方面?x ≤ 2 -1 0 1 2 3 x > 1 21(设计意图:归纳本节课的主要内容,交流心得,不断积累学习经验.)(五)布置作业,课外反馈教科书第115页练习1—3题;教科书第119页习题9.1第1题,第120页第2,3题.(设计意图:通过课后作业,教师及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整.)六、目标检测设计1.填空下列式子中属于不等式的有___________________________A. x +7> B . x ≥yC. + 2 = 0D. 5x + 7(设计意图:让学生正确区分不等式、等式与代数式,进一步巩固不等式的概念.)2.用不等式表示①a与5的和小于7②a的与b的3倍的和是非负数③正方形的边长为xcm,它的周长不超过160cm,求x满足的条件(设计意图:培养学生审题能力,既要正确抓住题目中的关键词,如“大于(小于)、非负数(正数或负数)、不超过(不低于)”等等,正确选择不等号,又要注意实际问题中的数量的实际意义.)3.填空下列说法正确的有_____________①x=5是不等式x -2 >0 的解②不等式x - 2>0 的解为x =5③不等式x - 2 >0 的解集为x =5④不等式x - 2 >0 的解集为x >2(设计意图:进一步让学生正确理解不等式的解与解集的区别与联系,并且理解数学中的从属关系与包涵关系.)4.把下列解集在数轴上表示出来:(1).x≥-2 (2).x<1(3)x≠0 (4).x<0(设计意图:进一步培养学生数形结合能力,理解空心圆圈与实心圆点的意义,并且能正确确定方向.)。
9.1.1不等式及其解集_(教案)

1.理论介绍:首先,我们要了解不等式的基本概念。不等式是表示两个表达式大小关系的数学语句。它是我们解决实际问题的重要工具。
2.案例分析:接下来,我们来看一个具体的案例。假设你有10元钱,而一支笔的价格是3元,我们如何表示“你足够买笔”这个情况?这就是不等式3x≤10的由来。
实践活动环节,学生分组讨论和实验操作的成果展示让我看到了他们的合作精神和动手能力。但是,我也观察到有些小组在讨论过程中,个别成员参与度不高,这可能是因为他们对问题的理解不够深入,或者是小组内部的沟通协作还需要加强。我计划在接下来的课程中,更加注重学生个体差异,鼓励每个学生都参与到讨论中来。
在学生小组讨论环节,我尝试作为一个引导者,而不是知识的传授者。我发现这种方式能够激发学生的思考,让他们在探索中发现问题、分析问题并解决问题。但是,我也意识到,这种方法对学生的自主学习能力要求较高,对于一些依赖性较强的学生来说,可能还需要更多的引导和鼓励。
最后,我感到课后需要给学生提供更多的练习机会,特别是针对那些在课堂上表现不够自信的学生。通过不断的练习和反馈,我相信他们能够克服难点,掌握不等式的核心知识。此外,我也会在课后收集学生的反馈,了解他们在学习过程中的真实感受,以便在后续的教学中进行调整和改进。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“不等式在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
八年级下册北师大版2.3不等式的解集教学设计

在教学过程中,教师要关注学生的个体差异,充分调动学生的积极性,引导学生主动参与课堂,培养学生的自主学习能力和思维能力。同时,注重情感态度与价值观的培养,使学生在学习数学的过程中,形成良好的学习态度和价值观。
二、学情分析
(四)课堂练习
在学生理解和掌握了不等式的解法之后,我会安排一些课堂练习。这些练习题将包括基础题、提高题和应用题,旨在巩固学生对不等式解集的理解和应用能力。我会让学生独立完成练习,并在必要时提供个别指导。
在练习过程中,我会特别注意学生的解题思路和方法,鼓励他们展示解题过程,并在完成后进行讲解和讨论。通过这样的方式,学生能够及时发现并改正错误,进一步加深对知识的理解。
5.能够运用不等式组解决更复杂的问题,理解不等式组解集的求解方法。
(二)过程与方法
1.通过实例引入,发现不等式的概念,培养学生观察问题和发现问题的能力。
2.通过自主探究、小组讨论,引导学生总结不等式的性质和解法,培养学生分析问题和解决问题的能力。
3.通过典型例题的分析和讲解,让学生掌握解题思路和方法,提高学生的逻辑思维能力和解题技巧。
针对这些情况,教师在教学过程中应关注以下几点:一是加强学生对不等式性质的理解,通过典型例题和练习,让学生熟练掌握不等式的符号变化;二是引导学生通过图形、数轴等方式直观感受不等式解集,提高学生对解集表示方法的掌握;三是结合实际问题,培养学生将问题转化为数学模型的能力,增强学生的应用意识。同时,关注学生个体差异,给予每个学生个性化的指导和鼓励,提升他们在数学学习中的自信心和兴趣。
\(3(x-2) > 2x+4\)
\(5 - \frac{2}{3}(x+1) < 3x\)
不等式及其解集教案

不等式及其解集教案一、教学目标1. 了解不等式的概念及其表达方式。
2. 学会解一元一次不等式。
3. 能够求解不等式的解集。
4. 能够应用不等式解决实际问题。
二、教学重点与难点1. 教学重点:不等式的概念及其表达方式。
一元一次不等式的解法。
不等式解集的求解方法。
2. 教学难点:不等式解集的求解方法。
三、教学方法1. 采用问题驱动的教学方法,引导学生通过思考和讨论来掌握不等式的概念和解法。
2. 使用实例和练习题,让学生通过实际操作和练习来加深对不等式的理解和应用能力。
3. 利用图形和图像辅助教学,帮助学生直观地理解不等式的解集。
四、教学准备1. 教学课件和教案。
2. 练习题和答案。
3. 图形和图像的展示工具。
五、教学过程1. 导入:通过引入实际问题,引发学生对不等式的兴趣和思考。
引导学生回顾已学的代数知识,为新知识的学习做好铺垫。
2. 讲解不等式的概念:解释不等式的定义和表达方式。
举例说明不等式的应用场景。
3. 讲解一元一次不等式的解法:引导学生通过移项、合并同类项等步骤解一元一次不等式。
给出解题的步骤和注意事项。
4. 练习题解答:让学生独立解答练习题,巩固所学的解法。
引导学生总结解题经验和技巧。
5. 讲解不等式解集的求解方法:介绍解集的概念和解集的表示方法。
引导学生通过图形和图像来求解不等式的解集。
6. 练习题解答:让学生独立解答练习题,巩固所学的解集求解方法。
引导学生总结解题经验和技巧。
7. 总结与复习:对本节课的内容进行总结和复习。
强调不等式的重要性和应用价值。
8. 布置作业:布置相关的练习题,让学生进一步巩固所学知识。
鼓励学生进行自主学习和思考。
教学反思:在教学过程中,要注意关注学生的学习情况,及时进行调整教学方法和节奏。
对于学生的疑问和困惑,要耐心解答和引导,帮助学生理解和掌握不等式的概念和解法。
要注重培养学生的解题能力和思维能力,提高他们解决实际问题的能力。
六、教学拓展1. 引入不等式的性质:讲解不等式的基本性质,如同向相加、同向相乘等。
不等式及其解集—教学设计【教学参考】

不等式及其解集—教学设计【教学参考】
9.1.1 不等式及其解集
【附件】当堂验收卷
9.1.1 不等式及其解集
【学习目标】1.了解不等式的概念;2.理解不等式的解集;
3.能正确表示不等式的解集。
【学习重点】不等式解集的表示
【学习难点】不等式解集的确定
【学习方法】
自学课文,独立思考,同桌交流,小组交流,师生互动。
【问题解决】
1.不等式的定义:
2.一元一次不等式的定义:
3.不等式的解:
4.不等式的解集:
5.解不等式:
6.下列各式中,哪些是不等式?
(1)a+b=b+a (2)-3>-5 (3)x≠l
(4)x十3>6 (5) 2m< n (6)2x-3
7. 用不等式表示:
(1)a与1的和是正数
(2)y的2倍与1的和大于3 (3)x的一半与x的2倍的和是非正数
(4)c与4的和的30%不大于-2 (5)x除以2的商加上2最多为5 (6)a与b的和的平方不可能大于3
8.完成课本P123练习第二题
9.完成课本P123练习第一题
10.下列说法中正确的是( )
A.x=3是不是不等式2x>1的解
B.x=3是不是不等式2x>1的唯一解;
C.x=3不是不等式2x>1的解;
D.x=3是不等式2x>1的解集。
11. 直接想出不等式的解集,并在数轴上表示出来:
(1)x+3>6 (2)2x<8
(3)x-2>0 (4)0.5x≤2
【课堂小结】本节课你的收获是什么?
你对自己在本节课中的表现最满意的地方和不太满意的
地方分别是什么?。
七年级数学《不等式及其解集》教案

《不等式及其解集》案例一、教材背景分析《不等式及其解集》是人教实验版七年级下册所增设的一个全新的模块,学生在小学阶段虽接触过“>””<”符号,但他们大脑中并没有形成不等关系的数学模型。
新课标指出:“有效的数学学习活动不能单纯的依赖模仿与记忆,动手实践,自主探究、合作交流应是重要的学习方式”。
实现这一方式的关键是我们的课堂教学,以及课堂教学中师生的融洽与互动,针对新课程要求以及七年级学生的现实基础,本节课主要要让学生建立一种数学模型,并在数学活动中感受数学的魅力。
二、整合思路本着“快乐的学习数学,并在数学中享受到更大的快乐”这一快乐教学宗旨,结合外校赛教师生不熟,融和度低这一现实,本节课通过一系列活动来完成,让学生在一系列的活动中感受数学的现实性,让学生真正觉得学以致用,同时在活动中注意问题的生成与衔接,要让学生浑然天成、不知不觉,轻松愉快的完成本节课的数学要求和目标。
三、教学设计流程图(见附页)四、教学过程设计〈一〉、三维目标A、知识与技能1、了解不等式的概念2、理解不等式的解集3、能正确表示不等式的解集B、过程与方法经历把实际问题抽象为不等式的过程,能够列出不等关系式,初步体会不等式是现实世界中表示不等关系的一种有效的数学模型,培养学生的建模意识。
C、情感态度与价值观通过对不等式及其解集等有关概念的探索、培养学生的数学学习兴趣和建模意识,加强同学的合作与交流。
〈二〉、教学重点不等式解集的表示〈三〉、教学难点不等式的确定〈四〉、教具准备多媒体课件,三角尺布置作业1、必做题P123 9.1 1.22、选做题P128 9.1附教学流程图:【教研心语】校本教研犹如鲜花下一片绿叶,惟有他的陪衬,花朵才会更加娇艳。
——汪延俊。
不等式及其解集教学设计

不等式及其解集教学设计1. 不等式的基本概念1.1 什么是不等式?大家好!今天我们来聊聊不等式。
简单来说,不等式就是用来比较两个数学表达式的大小关系的。
比如,我们常看到的“<”表示小于,“>”表示大于,“≤”表示小于等于,“≥”表示大于等于。
就像是你和朋友比谁跑得快一样,不等式就是用来比较两个数学“选手”的。
1.2 不等式的例子想象一下你在超市买东西。
你买了一瓶饮料,价格标的是5元,店里还告诉你现在打折,价格小于等于4元。
这个“价格小于等于4元”就是不等式的实际应用。
这样我们就能知道现在是不是便宜货,心里也会有个数了。
2. 解不等式的步骤2.1 解不等式的基本步骤解决不等式其实跟解方程差不多,只不过不等式解的结果可能会有点“漂浮”,所以我们需要特别留意。
首先,你得把不等式的各项收集整齐,然后用类似解方程的方法来处理。
不过,不等式有个小秘密——在你乘除以负数的时候,记得要把“不等号”翻转过来哦,不然结果会出大事的。
2.2 举个例子假设我们有一个不等式:2x + 3 > 7。
我们要怎么解呢?首先把3从不等式里移走,得到2x > 4。
接着,把2除以不等式的两边,得出x > 2。
这样,我们就搞定啦!要记住,步骤虽然简单,但每一步都要小心,别犯小错误。
3. 不等式的应用3.1 实际生活中的应用不等式的应用无处不在。
比如说,你在计划一次旅行,你的预算是3000元。
你看中了一些酒店,价格在2000元到2500元之间。
这个“价格在2000到2500元之间”就是一个不等式的实际应用。
它告诉你,你的预算是足够的,放心去享受旅行吧!3.2 不等式在数学中的作用在数学里,不等式也很重要。
比如在优化问题中,我们需要找出满足特定条件的最佳解。
不等式帮助我们设定这些条件,让我们找到最优的解决方案。
可以说,不等式就像是数学里的指南针,让我们在复杂的数学世界里不迷路。
4. 总结不等式不仅是数学里的基础知识,还能在实际生活中帮助我们做决策。
七年级数学下册《不等式及其解集》教案设计【6篇】

七年级数学下册《不等式及其解集》教案设计【6篇】在我们上学期间,大家对知识点应该都不陌生吧?知识点在教育实践中,是指对某一个知识的泛称。
还在为没有系统的知识点而发愁吗?读书破万卷下笔如有神,下面本文范文为您精心整理了6篇《七年级数学下册《不等式及其解集》教案设计》,希望能对您的写作有一定的参考作用。
最新七年级数学下册教案人教版例文篇一教学目标1.理解和掌握倒数的意义。
2.能正确的求出一个数的倒数。
3.培养学生的观察能力和概括能力。
教学重点认识倒数并掌握求倒数的方法教学难点小数与整数求倒数的方法教学过程一、基本训练(一)口算=上面各式有什么特点?还有哪两个数的乘积是1?请你任意举出乘积是1的两个数。
(板书:乘积是1,两个数)二、引入新课刚才我们所举出的乘积是1的两个数之间有一种特殊的关系。
(板书:倒数)三、新课教学(一)乘积是1的两个数存在着怎样的倒数关系呢?请看:,那么我们就说是的倒数,反过来(引导学生说) 是的倒数,也就是说和互为倒数。
和存在怎样的倒数关系呢?2和呢?(二)深化理解教师提问1.什么是互为倒数?2.怎样理解这句话?(举例说明)( 的倒数是,的倒数是,……不能说是倒数,要说它是谁的倒数。
)3.0有倒数吗?为什么?1有倒数吗?为什么?(0虽然可以看作几分之0,如,,……但是把分子、分母调换位置,分母为0,不成立,所以0没有倒数,另外0和任何数相乘却为0.1可以写作,1与相乘还是1,符合倒数的意义,所以1的倒数是1)。
(三)求一个数的倒数1.例:写出、的倒数学生试做讨论后,教师将过程板书如下:所以的倒数是,的倒数是.(能不能写成,为什么?)总结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
2.深化你会求小数的倒数吗?(学生试做)三、训练、深化(一)下面哪两个数互为倒数(演示课件:倒数的认识1)(二)求出下面各数的倒数(演示课件:倒数的认识2)(三)判断1.真分数的倒数都是假分数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《9.1.1不等式及其解集》教学设计
课程名称《9.1.1不等式及其解集》
授课人教学对象七年级科目数学课时安排1课时
一、教材分析
1教材的地位和作用
本章是新人教版七年级下册第九章的教学内容,此部分内容是在学生继一元一次方程和二元一次方程组的学习之后,又一次数学建模思想的教学,是进一步探究现实生活中的数量关系、培养学生分析问题和解决问题能力的重要内容,也是今后学习一元二次方程、函数、以及进一步学习不等式知识的基础。
通过实际问题中一元一次不等式的应用,进一步增强学生学数学、用数学的意识,体会学数学的价值和意义;相等与不等是研究数量关系的两个重要方面,用不等式表示不等的关系,是代数基础知识的一个重要组成部份,它在解决各类实际问题中有着广泛的应用
1.2本节课的教材内容
本节课的内容主要介绍不等式及不等式的解的概念及解集的表示方法,是研究不等式的导入课,通过实例引入,使学生充分认识到学习不等式的重要性和必然性,激发他们的求知欲望;经历、感受概念形成的过程,使学生正确抓住不等式的本质特征,为进一步学习不等式的性质、解法及简单应用起到铺垫作用.
1.3 学情分析
(1) 学生对实际生活中的不等量关系、数量大小的比较等知识,在小学阶段已有所了解。
(2) 学生已初步具备了“从实际问题中抽象出数学模型,并回到实际问题解释和检验”的数学建模能。
(3) 学生已初步具备探究和比较的能力
二、教学目标及难重点(知识与技能,方法和过程,情感态度与价值观)
教学目标:
2.1知识与技能:了解不等式概念,并理解不等式的解、解集,能够正确表示不等式的解集;经历把实际问题抽象为不等式的过程,能够列出不等关系式。
使学生进一步理解归纳和类比的数学方法,以及从具体到抽象获取知识的思维方式;初步体会不等式是刻画现实世界中不等关系的一种有效数学模型。
2.2数学思考:感受生活中的数学问题,发展学生的观察、归纳、猜测、验证能力,领悟数学与现实世界的必然联系。
2.3解决问题:通过经历不等式的得出过程,积累数学活动经验。
通过分组活动探索不等式的解与解集,体会在解决问题过程中与他人合作的重要性。
2.4情感态度与价值观:认识通过观察、实验、类比可以获得数学结论,体验数学活动充满着探索性和创造性。
在独立思考的基础上,积极参与对数学问题的讨论,敢于发表自己的观点,学会分享别人的想法和结果,并重新审视自己的想法,能从交流中获益。
教学重点:不等式相关概念的理解和不等式的解集的表示。
教学难点:正确理解不等式解集的意义。
三.教学策略选择与设计
教法:根据本节课教学内容和七年级学生的年龄、心理特点及目标教学的要求,本节课采用引导探究法;让学生以观察实例为基础,用归纳的方法形成概念,把教学过程转化为学生观察、发现、探究的过程,再现知识的“发生”和“发现”及“形成”的过程,揭示事物发展从“特殊”到“一般”再到“特殊”的辩证规律;既提高了学生的学习兴趣,增强了信心,又有利于接受知识;也有益于形成对问题进行探索、研究和解决的能力。
学法:根据本节课的特点,采用自主探究、合作交流的探究式学习方。
四、教学环境及设备、资源准备
教学环境:多媒体教室
学生准备:三角尺、直尺
教师准备:多媒体课件
教学资源:电脑、投影仪等
七、课后反思学习目标分析表
流程图。