均值不等式教学设计
教学设计1:2.2.4 第1课时 均值不等式

2.2.4 第1课时 均值不等式教学目标1.探索并了解均值不等式的证明过程,理解均值不等式成立的条件,等号成立的条件及几何意义;2.会用均值不等式及其变形形式解决证明不等式、比较大小、求取值范围等问题;3.掌握运用均值不等式a +b2≥ab 求最值的常用方法及需注意的问题.教学知识梳理知识点一 均值不等式(1)如果a ,b 都是正数,那么a +b2≥ab ,当且仅当a =b 时,等号成立.此结论通常称为均值不等式,也称为基本不等式.(2)对任意两个正实数a ,b ,我们称a +b2为a ,b 的算术平均值,称ab 为a ,b 的几何平均值.因而,均值不等式可叙述为:两个正实数的算术平均值不小于它们的几何平均值. 思考1.如何证明均值不等式?提示:因为a >0,b >0,所以a +b 2-ab =a +b -2ab 2=(a -b )22≥0,即a +b2≥ab .当且仅当a =b ,即a =b 时,等号成立. 2.从几何角度如何解释均值不等式? 提示:以长为a +b 的线段为直径作圆,在直线AB 上取点C ,使AC =a ,CB =b .过点C 作垂直于直线AB 的弦DD ′,连接AD 、DB ,如图,连接BD ′,易证Rt △ACD ∽Rt △DCB ,那么CD 2=AC ·CB ,得CD =ab .这个圆的半径为a +b 2,显然,它大于或等于CD ,即a +b2≥ab .当且仅当点C 与圆心重合,即a =b 时,等号成立. 知识点二 均值不等式的应用设x ,y 都为正数,则有如下关系:(1)若x +y =s (和为定值),则当x =y 时,积xy 取得最大值s 24;(2)若xy =p (积为定值),则当x =y 时,和x +y 取得最小值2p . 思考3.如何证明“和定积最大,积定和最小”? 提示:(1)∵x ,y 都是正数,∴x +y2≥xy .又x +y =s ,∴xy ≤(x +y 2)2=s 24,当且仅当x =y 时,取等号.故若x +y =s ,当x =y 时,积xy 取得最大值s 24.(2)∵x ,y 都是正数,∴x +y2≥xy ,当且仅当x =y 时,等号成立.又xy =p ,∴x +y ≥2p .故若xy =p ,当x =y 时,和x +y 取得最小值2p . 教学案例类型一 均值不等式应用的条件[例1] 下列不等式的证明过程正确的是( )A .若a ,b ∈R ,则b a +ab≥2b a ·a b=2 B .若x ,y ∈R ,则⎪⎪⎪⎪x +4y =|x |+4|y |≥2|x |·4|y |C .若x 为负实数,则x +4x ≥-2x ·4x=-4 D .若x ≠0,则x 2+1x2≥2x 2·1x2=2 【解析】因a ,b ∈R ,故当a ,b 异号时,b a 与ab 均负,故直接用均值不等式是错误的,则A选项错误;若x ,y ∈R ,⎪⎪⎪⎪x +4y =|x |+4|y |≥2|x |·4|y |,没有条件xy >0,不成立,所以B 选项错误;C 选项中,在x <0时,4x <0,故不能直接用均值不等式,正确书写为:x +4x=-⎣⎡⎦⎤(-x )+⎝⎛⎭⎫-4x ≤-2(-x )·⎝⎛⎭⎫-4x =-4,故C 选项错误;故选D. 【答案】D 通法提炼在应用均值不等式时,一定要注意是否满足条件,即a >0,b >0,若条件不满足时,则应拼凑出条件,即问题一端出现“和式”,另一端出现“积式”,便于运用均值不等式. [变式训练1] 已知a ,b ∈R ,且ab >0,则下列结论恒成立的是( )A .a 2+b 2>2abB .a +b ≥2abC .1a +1b >2abD .b a +a b≥2【解析】利用均值不等式需注意各数必须是正数,不等式a 2+b 2≥2ab 的使用条件是a ,b ∈R .对于A ,当a =b 时,a 2+b 2=2ab ,所以A 错误;对于B ,C ,虽然ab >0,只能说明a ,b 同号,当a ,b 都小于0时,B ,C 错误; 对于D ,因为ab >0,所以b a >0,ab >0.所以b a +ab ≥2b a ·a b ,即b a +ab≥2成立. 【答案】D类型二 用均值不等式证明不等式 [例2] 已知a 、b 、c 是正实数,求证:bc a +ac b +abc ≥a +b +c .证明:∵a 、b 、c 是正实数, ∴bc a +acb ≥2bc a ·ac b =2c (当且仅当bc a =acb ,即a =b 时,取等号); ac b +ab c ≥2ac b ·ab c =2a (当且仅当ac b =abc ,即b =c 时,取等号); ab c +bc a≥2ab c ·bc a =2b (当且仅当bc a =abc ,即a =c 时,取等号); 上面3个不等式相加得2·bc a +2·ac b +2·abc ≥2a +2b +2c (当且仅当a =b =c 时,取等号).∴bc a +ac b +abc ≥a +b +c . 通法提炼1.使用均值不等式时,一定要注意是否满足条件,等号能否成立.2.对于证明多项和的不等式时,可以考虑分段应用均值不等式或其变形,然后整体相加(乘)得结论.[变式训练2] 已知a >0,b >0,c >0,求证:a 2b 2+b 2c 2+c 2a 2a +b +c≥abc .证明:因为a >0,b >0,c >0, 故a 2b 2+b 2c 2≥2a 2b 2·b 2c 2=2ab 2c , b 2c 2+c 2a 2≥2b 2c 2·c 2a 2=2abc 2, c 2a 2+a 2b 2≥2c 2a 2·a 2b 2=2a 2bc .将上述三式相加,得2(a 2b 2+b 2c 2+c 2a 2)≥2abc (a +b +c ), 又a +b +c >0,故a 2b 2+b 2c 2+c 2a 2a +b +c≥abc .[例3] 已知a >0,b >0,c >0,且a +b +c =1.求证:1a +1b +1c≥9.证明:方法一:∵a >0,b >0,c >0, ∴1a +1b +1c =a +b +c a +a +b +c b +a +b +c c =3+b a +c a +a b +c b +a c +b c=3+(b a +a b )+(c a +a c )+(c b +b c )≥3+2+2+2=9.即1a +1b +1c ≥9(当且仅当a =b =c 时取等号). 方法二:∵a >0,b >0,c >0, ∴1a +1b +1c =(a +b +c )(1a +1b +1c ) =1+b a +c a +a b +1+c b +a c +b c +1=3+(b a +a b )+(c a +a c )+(c b +b c )≥3+2+2+2=9.∴1a +1b +1c ≥9(当且仅当a =b =c 时取等号). 通法提炼含条件的不等式证明问题,要将条件与结论结合起来,寻找出变形的思路,构造出均值不等式,在条件“a +b +c =1”下,1的代换一般有两种情况,切忌两次使用均值不等式,用传递性证明,有时等号不能同时取到.[变式训练3] 已知a >0,b >0,c >0,且a +b +c =1,求证:⎝⎛⎭⎫1a -1⎝⎛⎭⎫1b -1⎝⎛⎭⎫1c -1≥8.证明:∵a ,b ,c 为正实数,且a +b +c =1, ∴1a -1=a +b +c a -1=b +c a ≥2bc a >0, 同理1b -1≥2ac b >0,1c -1≥2ab c >0,∴⎝⎛⎭⎫1a -1⎝⎛⎭⎫1b -1⎝⎛⎭⎫1c -1≥8ab ac bc abc =8 (当且仅当a =b =c 时取等号). 类型三 利用均值不等式求最值[例4] (1)已知0<x <13,则x (1-3x )的最大值为( )A .112B .1C .19D .12(2)已知x >0,y >0,且满足2x +8y=1,则x +y 的最小值为________.【解析】(1)因为0<x <13,所以1-3x >0,所以x (1-3x )=13·3x (1-3x )≤13⎣⎡⎦⎤3x +(1-3x )22=112,当且仅当3x =1-3x ,即x =16时,等号成立,所以x =16时,x (1-3x )取得最大值112. (2)∵x +y =(x +y )·1=(x +y )·⎝⎛⎭⎫2x +8y =2+8+2y x +8x y ,x >0,y >0,∴2y x >0,8xy >0,x +y ≥10+216=18,当且仅当2y x =8x y 时等号成立,即y 2=4x 2,∴y =2x .又2x +8y =1,∴x =6,y =12,∴当x =6,y =12时,x +y 有最小值18.【答案】(1)A (2)18 通法提炼求和式的最小值时应使积为定值,求积式的最大值时应使和为定值适当变形,合理发现拆分项或配凑因式是常用的解题技巧,不要忽略等号成立的条件. [变式训练4] (1)已知x >-3,则x +1x +3的最小值为 .【解析】因为x >-3,所以x +3>0,则x +1x +3=x +3+1x +3-3≥2(x +3)·1x +3-3=-1,当且仅当x +3=1x +3,即x =-2时等号成立,所以x +1x +3有最小值,最小值为-1.【答案】-1(2)设a >0,b >0,且a +b =2,则1a +1b的最小值为 .【解析】因为a +b =2,所以12(a +b )=1,所以1a +1b =12⎝⎛⎭⎫1a +1b (a +b )=12⎝⎛⎭⎫2+b a +a b , 因为a >0,b >0,故b a >0,a b >0,所以1a +1b =12⎝⎛⎭⎫2+b a +a b ≥12⎝⎛⎭⎫2+2b a ·a b = 2⎝⎛⎭⎫当且仅当b a =a b ,即a =b =1时等号成立,所以1a +1b的最小值为2. 【答案】2 课堂达标1.不等式a 2+1≥2a 中等号成立的条件是( )A .a =±1B .a =1C .a =-1D .a =0【解析】a 2+1-2a =(a -1)2≥0,∴a =1时,等号成立. 【答案】B2.已知x <0,则x +1x-2有( )A .最大值0B .最小值0C .最大值-4D .最小值-4【解析】因为x <0,所以x +1x -2=-⎣⎡⎦⎤(-x )+1-x -2≤-2-2=-4,当且仅当-x =1-x ,即x =-1时取等号.故选C.【答案】C3.已知0<x <1,则当x =12时,x (3-3x )取最大值为34.解:3x (1-x )≤3(x +1-x 2)2=34,当且仅当x =1-x 即x =12时等号成立.4.已知a >0,b >0,c >0,求证:(1)b +c a +c +a b +a +b c ≥6;(2)b +c a ·c +a b ·a +b c≥8.证明:(1)b +c a +a +c b +a +b c =b a +c a +c b +a b +a c +b c =(b a +a b )+(c a +a c )+(c b +b c )≥2+2+2=6(当且仅当a =b =c 时取“=”).(2)b +c a ·c +a b ·a +b c ≥2bc a ·2ac b ·2abc=8abcabc=8(当且仅当a =b =c 时取“=”).。
§3.2 均值不等式 教案(一)

§3.2 均值不等式 教案(一)第1课时授课类型:新授课【教学目标】1.知识与技能:学会推导并掌握均值不等式,理解这个均值不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;2.过程与方法:通过实例探究抽象基本不等式;3.情态与价值:通过本节的学习,体会数学来源于生活,提高学习数学的兴趣【教学重点】应用数形结合的思想理解不等式,并从不同角度探索不等式2a b ab +≤的证明过程; 【教学难点】均值不等式2a b ab +≤等号成立条件 【教学过程】 1.课题导入均值不等式2a b ab +≤的几何背景: 如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。
你能在这个图案中找出一些相等关系或不等关系吗?教师引导学生从面积的关系去找相等关系或不等关系。
2.讲授新课1.探究图形中的不等关系将图中的“风车”抽象成如图,在正方形ABCD 中右个全等的直角三角形。
设直角三角形的两条直角边长为a,b 那么正方形的边长为22a b +。
这样,4个直角三角形的面积的和是2ab ,正方形的面积为22a b +。
由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式:222a b ab +≥。
当直角三角形变为等腰直角三角形,即a=b 时,正方形EFGH 缩为一个点,这时有222a b ab +=。
2.得到结论:一般的,如果)""(2R,,22号时取当且仅当那么==≥+∈b a ab b a b a3.思考证明:你能给出它的证明吗?证明:因为 222)(2b a ab b a -=-+当22,()0,,()0,a b a b a b a b ≠->=-=时当时所以,0)(2≥-b a ,即.2)(22ab b a ≥+4.1)从几何图形的面积关系认识基本不等式2a b ab +≤ 特别的,如果a>0,b>0,我们用分别代替a 、b ,可得2a b ab +≥,通常我们把上式写作:(a>0,b>0)2a b ab +≤2)从不等式的性质推导基本不等式2a b ab +≤ 用分析法证明:要证 2a b ab +≥ (1) 只要证 a+b ≥ (2) 要证(2),只要证 a+b- ≥0 (3) 要证(3),只要证 ( - )2 (4) 显然,(4)是成立的。
(教案)均值不等式

均值不等式及其应用【第1课时】【教学过程】一、新知初探1.算术平均值与几何平均值对于正数a ,b ,常把a +b2叫做a ,b 的算术平均值,把ab 叫做a ,b 的几何平均值. 2.均值不等式(1)当a >0,b >0a =b 时,等号成立; (2)均值不等式的常见变形 ①当a >0,b >0,则a +b ≥2ab ;②若a >0,b >0,则ab ≤⎝⎛⎭⎪⎫a +b 22. 二、初试身手1.不等式a 2+1≥2a 中等号成立的条件是( ) A .a =±1 B .a =1 C .a =-1 D .a =0答案:B解析:当a 2+1=2a ,即(a -1)2=0,即a =1时“=”成立. 2.已知a ,b ∈(0,1),且a ≠b ,下列各式中最大的是( ) A .a 2+b 2 B .2ab C .2ab D .a +b 答案:D解析:∵a ,b ∈(0,1),∴a 2<a ,b 2<b , ∴a 2+b 2<a +b ,又a 2+b 2>2ab (a ≠b ), ∴2ab <a 2+b 2<a +b .又∵a +b >2ab (a ≠b ),∴a +b 最大.3.已知ab =1,a >0,b >0,则a +b 的最小值为( ) A .1 B .2 C .4 D .8 答案:B解析:∵a >0,b >0,∴a +b ≥2ab =2,当且仅当a =b =1时取等号,故a +b 的最小值为2.4.当a ,b ∈R 时,下列不等关系成立的是________. ①a +b2≥ab ;②a -b ≥2ab ;③a 2+b 2≥2ab ;④a 2-b 2≥2ab . 答案:③解析:根据a 2+b 22≥ab ,a +b2≥ab 成立的条件判断,知①②④错,只有③正确. 三、合作探究类型1:对均值不等式的理解例1:给出下面三个推导过程:①∵a ,b 为正实数,∴b a +a b ≥2b a ·ab =2;②∵a ∈R ,a ≠0,∴4a +a ≥24a ·a =4;③∵x ,y ∈R ,xy <0,∴x y +y x =--x y +-yx ≤-2⎝ ⎛⎭⎪⎫-x y ⎝ ⎛⎭⎪⎫-y x =-2. 其中正确的推导为( ) A .①② B .①③ C .②③ D .①②③答案:B解析:①∵a ,b 为正实数,∴b a ,ab 为正实数,符合均值不等式的条件,故①的推导正确. ②∵a ∈R ,a ≠0,不符合均值不等式的条件, ∴4a +a ≥24a ·a =4是错误的.③由xy <0,得x y ,y x 均为负数,但在推导过程中将整体x y +y x 提出负号后,⎝ ⎛⎭⎪⎫-x y ,⎝ ⎛⎭⎪⎫-y x 均变为正数,符合均值不等式的条件,故③正确.规律方法1.均值不等式ab ≤a +b2 (a >0,b >0)反映了两个正数的和与积之间的关系. 2.对均值不等式的准确掌握要抓住以下两个方面: (1)定理成立的条件是a ,b 都是正数.(2)“当且仅当”的含义:当a =b 时,ab ≤a +b 2的等号成立,即a =b ⇒a +b2=ab ;仅当a =b 时,a +b 2≥ab 的等号成立,即a +b2=ab ⇒a =b .跟踪训练1.下列不等式的推导过程正确的是________.①若x >1,则x +1x ≥2x ·1x =2;②若x <0,则x +4x =-⎣⎢⎡⎦⎥⎤-x +⎝ ⎛⎭⎪⎫-4x ≤-2-x ·⎝ ⎛⎭⎪⎫-4x =-4;③若a ,b ∈R ,则b a +a b ≥2b a ·ab =2. 答案:②解析:①中忽视了均值不等式等号成立的条件,当x =1x 时,即x =1时,x +1x ≥2等号成立,因为x >1,所以x +1x >2,③中忽视了利用均值不等式时每一项必须为正数这一条件.类型2:利用均值不等式比较大小例2:(1)已知a ,b ∈(0,+∞),则下列各式中不一定成立的是( )A .a +b ≥2abB .b a +ab ≥2C .a 2+b 2ab≥2ab D .2ab a +b ≥ab(2)已知a ,b ,c 是两两不等的实数,则p =a 2+b 2+c 2与q =ab +bc +ca 的大小关系是________.答案:(1)D(2)a 2+b 2+c 2>ab +bc +ac解析:(1)由a +b2≥ab 得a +b =2ab , ∴A 成立;∵b a +a b ≥2b a ·ab =2,∴B 成立;∵a 2+b 2ab ≥2ab ab =2ab ,∴C 成立;∵2ab a +b ≤2ab 2ab =ab ,∴D 不一定成立. (2)∵a ,b ,c 互不相等,∴a 2+b 2>2ab ,b 2+c 2>2bc ,a 2+c 2>2ac . ∴2(a 2+b 2+c 2)>2(ab +bc +ac ). 即a 2+b 2+c 2>ab +bc +ac . 规律方法1.在理解均值不等式时,要从形式到内含中理解,特别要关注条件.2.运用均值不等式比较大小时应注意成立的条件,即a +b ≥2ab 成立的条件是a >0,b >0,等号成立的条件是a =b ;a 2+b 2≥2ab 成立的条件是a ,b ∈R ,等号成立的条件是a =b .跟踪训练2.如果0<a <b <1,P =a +b 2,Q =ab ,M =a +b ,那么P ,Q ,M 的大小顺序是( ) A .P >Q >M B .M >P >Q C .Q >M >P D .M >Q >P答案:B解析:显然a +b 2>ab ,又因为a +b 2<a +b ⎝⎛⎭⎪⎫由a +b >a +b 24也就是a +b 4<1可得,所a +b >a +b2>ab .故M >P >Q .类型3:利用均值不等式证明不等式例3:已知a ,b ,c 是互不相等的正数,且a +b +c =1,求证:1a +1b +1c >9.思路点拨:看到1a +1b +1c >9,想到将“1”换成“a +b +c ”,裂项构造均值不等式的形式,用均值不等式证明.证明:∵a ,b ,c ∈R +,且a +b +c =1, ∴1a +1b +1c =a +b +c a +a +b +c b +a +b +c c=3+b a +c a +a b +c b +a c +b c=3+⎝ ⎛⎭⎪⎫b a +a b +⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫c b +b c≥3+2b a ·a b +2c a ·a c +2c b ·bc=3+2+2+2 =9.当且仅当a =b =c 时取等号, ∴1a +1b +1c >9. 母题探究本例条件不变,求证:⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1>8.证明:∵a ,b ,c ∈R +,且a +b +c =1,∴1a -1=b +c a >0,1b -1=a +c b >0,1c -1=a +b c >0, ∴⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1 =b +c a ·a +c b ·a +b c ≥2bc ·2ac ·2ab abc =8,当且仅当a =b =c 时取等号, ∴⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1>8. 规律方法1.条件不等式的证明,要将待证不等式与已知条件结合起来考虑,比如本题通过“1”的代换,将不等式的左边化成齐次式,一方面为使用均值不等式创造条件,另一方面可实现约分与不等式的右边建立联系.2.先局部运用均值不等式,再利用不等式的性质(注意限制条件),通过相加(乘)合成为待证的不等式,既是运用均值不等式时的一种重要技能,也是证明不等式时的一种常用方法.跟踪训练3.已知a ,b ,c ∈R ,求证:a 4+b 4+c 4≥a 2b 2+b 2c 2+c 2a 2. 证明:由均值不等式可得 a 4+b 4=(a 2)2+(b 2)2≥2a 2b 2, 同理,b 4+c 4≥2b 2c 2, c 4+a 4≥2a 2c 2,∴(a 4+b 4)+(b 4+c 4)+(c 4+a 4)≥2a 2b 2+2b 2c 2+2a 2c 2, 从而a 4+b 4+c 4≥a 2b 2+b 2c 2+c 2a 2.4.已知a >1,b >0,1a +3b =1,求证:a +2b ≥26+7.证明:由1a +3b =1,得b =3aa -1(a >1),则a +2b =a +6aa -1=a +6a -1+6a -1=a +6a -1+6=(a -1)+6a -1+7≥26+7, 当且仅当a -1=6a -1时,即a =1+6时,取等号. 四、课堂小结1.应用均值不等式时要时刻注意其成立的条件,只有当a >0,b >0时,才会有ab ≤a +b 2.对于“当且仅当……时,‘=’成立…”这句话要从两个方面理解:一方面,当a =b 时,a +b2ab ;另一方面:当a +b2=ab 时,也有a =b .2.应用均值不等式证明不等式的关键在于进行“拼”“凑”“拆”“合”“放缩”等变形,构造出符合均值不等式的条件结构. 五、当堂达标1.思考辨析(1)对任意a ,b ∈R ,a 2+b 2≥2ab ,a +b ≥2ab 均成立.( )(2)若a ≠0,则a +1a ≥2a ·1a =2.( )(3)若a >0,b >0,则ab ≤⎝ ⎛⎭⎪⎫a +b 22.( ) 提示:(1)任意a ,b ∈R ,有a 2+b 2≥2ab 成立,当a ,b 都为正数时,不等式a +b ≥2ab 成立.(2)只有当a >0时,根据均值不等式,才有不等式a +1a ≥2a ·1a =2成立.(3)因为ab ≤a +b 2,所以ab ≤⎝⎛⎭⎪⎫a +b 22. 答案:(1)×(2)×(3)√2.设a >b >0,则下列不等式中一定成立的是( )A .a -b <0B .0<ab <1C .ab <a +b2 D .ab >a +b 答案:C解析:∵a >b >0,由均值不等式知ab <a +b2一定成立.3.不等式9x -2+(x -2)≥6(其中x >2)中等号成立的条件是( )A .x =3B .x =-3C .x =5D .x =-5答案:C解析:由均值不等式知等号成立的条件为9x -2=x -2,即x =5(x =-1舍去). 4.设a >0,b >0,证明:b 2a +a 2b ≥a +b . 证明:∵a >0,b >0, ∴b 2a +a ≥2b ,a 2b +b ≥2a , ∴b 2a +a 2b ≥a +b .【第2课时】【教学过程】一、新知初探已知x ,y 都是正数.(1)若x +y =S (和为定值),则当x =y 时,积xy 取得最大值S 24. (2)若xy =p (积为定值),则当x =y 时,和x +y 取得最小值2p . 上述命题可归纳为口诀:积定和最小,和定积最大. 二、初试身手1.已知a >0,b >0,a +b =2,则y =1a +4b 的最小值是( )A .72B .4C .92D .5 答案:C解析:∵a +b =2,∴a +b2=1. ∴1a +4b =⎝ ⎛⎭⎪⎫1a +4b ⎝⎛⎭⎪⎫a +b 2 =52+⎝ ⎛⎭⎪⎫2a b +b 2a ≥52+22a b ·b 2a =92 ⎝ ⎛⎭⎪⎫当且仅当2a b =b 2a ,即b =2a 时,等号成立. 故y =1a +4b 的最小值为92.2.若x >0,则x +2x 的最小值是________. 答案:22解析:x +2x ≥2x ·2x =22,当且仅当x =2时,等号成立.3.设x ,y ∈N *满足x +y =20,则xy 的最大值为________. 答案:100解析:∵x ,y ∈N *, ∴20=x +y ≥2xy , ∴xy ≤100. 三、合作探究类型1:利用均值不等式求最值例1:(1)已知x <54,求y =4x -2+14x -5的最大值;(2)已知0<x <12,求y =12x (1-2x )的最大值.思路点拨:(1)看到求y =4x -2+14x -5的最值,想到如何才能出现乘积定值;(2)要求y =12x (1-2x )的最值,需要出现和为定值.解:(1)∵x <54,∴5-4x >0,∴y =4x -2+14x -5=-⎝ ⎛⎭⎪⎫5-4x +15-4x +3≤-2+3=1, 当且仅当5-4x =15-4x,即x =1时,上式等号成立,故当x =1时,y max =1.(2)∵0<x <12,∴1-2x >0,∴y =14×2x (1-2x )≤14×⎝⎛⎭⎪⎫2x +1-2x 22=14×14=116. ∴当且仅当2x =1-2x ⎝ ⎛⎭⎪⎫0<x <12,即x =14时,y max =116. 规律方法利用均值不等式求最值的关键是获得满足均值不等式成立条件,即“一正、二定、三相等”.解题时应对照已知和欲求的式子运用适当的“拆项、添项、配凑、变形”等方法创设应用均值不等式的条件.具体可归纳为三句话:若不正,用其相反数,改变不等号方向;若不定,应凑出定和或定积;若不等,一般用后面第三章函数的基本性质的知识解决.跟踪训练1.(1)已知x >0,求函数y =x 2+5x +4x的最小值;(2)已知0<x <13,求函数y =x (1-3x )的最大值.解:(1)∵y =x 2+5x +4x =x +4x +5≥24+5=9,当且仅当x =4x ,即x =2时等号成立.故y =x 2+5x +4x(x >0)的最小值为9.(2)法一:∵0<x <13,∴1-3x >0.∴y =x (1-3x )=13·3x (1-3x )≤13⎣⎢⎡⎦⎥⎤3x +1-3x 22=112. 当且仅当3x =1-3x ,即x =16时,等号成立.∴当x =16时,函数取得最大值112.法二:∵0<x <13,∴13-x >0.∴y =x (1-3x )=3·x ⎝ ⎛⎭⎪⎫13-x ≤3·⎝⎛⎭⎪⎪⎫x +13-x 22 =112,当且仅当x =13-x ,即x =16时,等号成立.∴当x =16时,函数取得最大值112. 类型2:利用均值不等式求条件最值例2:已知x >0,y >0,且满足8x +1y =1.求x +2y 的最小值. 解:∵x >0,y >0,8x +1y =1,∴x +2y =⎝ ⎛⎭⎪⎫8x +1y (x +2y )=10+x y +16y x≥10+2x y ·16yx =18,当且仅当⎩⎪⎨⎪⎧8x +1y =1,x y =16y x,即⎩⎨⎧x =12,y =3时,等号成立,故当x =12,y =3时,(x +2y )min =18.母题探究 若把“8x +1y =1”改为“x +2y =1”,其他条件不变,求8x +1y 的最小值. 解:∵x ,y ∈R +, ∴8x +1y =(x +2y )⎝ ⎛⎭⎪⎫8x +1y=8+16y x +x y +2=10+16y x +xy ≥10+216=18.当且仅当16y x =xy 时取等号,结合x +2y =1,得x =23,y =16,∴当x =23,y =16时,8x +1y 取到最小值18. 规律方法1.本题给出的方法,用到了均值不等式,并且对式子进行了变形,配凑出满足均值不等式的条件,这是经常使用的方法,要学会观察、学会变形.2.常见的变形技巧有:(1)配凑系数;(2)变符号;(3)拆补项.常见形式有y =ax +bx 型和y =ax (b -ax )型.跟踪训练2.已知a >0,b >0,a +2b =1,求1a +1b 的最小值. 解:法一:1a +1b =⎝ ⎛⎭⎪⎫1a +1b ·1=⎝ ⎛⎭⎪⎫1a +1b ·(a +2b ) =1+2b a +a b +2=3+2b a +ab ≥3+22b a ·a b=3+22,当且仅当⎩⎪⎨⎪⎧2b a =a b,a +2b =1,即⎩⎨⎧ a =2-1,b =1-22时等号成立. ∴1a +1b 的最小值为3+22. 法二:1a +1b =a +2b a +a +2b b =1+2b a +a b +2=3+2b a +a b ≥3+22,当且仅当⎩⎪⎨⎪⎧ 2b a =a b,a +2b =1,即⎩⎨⎧ a =2-1,b =1-22时等号成立, ∴1a +1b 的最小值为3+22.类型3:利用均值不等式解决实际问题例3:如图,动物园要围成相同面积的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.现有36m 长的钢筋网材料,每间虎笼的长、宽分别设计为多少时,可使每间虎笼面积最大?解:设每间虎笼长x m ,宽y m ,则由条件知,4x +6y =36,即2x +3y =18.设每间虎笼面积为S ,则S =xy .法一:由于2x +3y ≥22x ·3y =26xy , 所以26xy ≤18,得xy ≤272,即S max =272,当且仅当2x =3y 时,等号成立.由⎩⎨⎧ 2x +3y =18,2x =3y ,解得⎩⎨⎧x =4.5,y =3. 故每间虎笼长为4.5m ,宽为3m 时,可使每间虎笼面积最大.法二:由2x +3y =18,得x =9-32y .∵x >0,∴0<y <6,S =xy =y ⎝ ⎛⎭⎪⎫9-32y =32y (6-y ). ∵0<y <6,∴6-y >0.∴S ≤32⎣⎢⎡⎦⎥⎤6-y +y 22=272. 当且仅当6-y =y ,即y =3时,等号成立,此时x =4.5.故每间虎笼长为4.5m ,宽为3m 时,可使每间虎笼面积最大.规律方法在应用均值不等式解决实际问题时,应注意如下思路和方法:(1)先理解题意,设出变量,一般把要求最值的量定为函数;(2)建立相应的函数关系,把实际问题抽象成函数的最大值或最小值问题;(3)在定义域内,求出函数的最大值或最小值;(4)正确写出答案.跟踪训练3.某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层,每层2000平方米的楼房.经测算,如果将楼房建为x (x ≥10)层,则每平方米的平均建筑费用为560+48x (单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=购地总费用建筑总面积解:设将楼房建为x 层,则每平方米的平均购地费用为2 160×1042 000x =10 800x .∴每平方米的平均综合费用y =560+48x +10 800x =560+48⎝ ⎛⎭⎪⎫x +225x . 当x +225x 取最小值时,y 有最小值.∵x >0,∴x +225x ≥2x ·225x =30.当且仅当x =225x ,即x =15时,上式等号成立.∴当x =15时,y 有最小值2000元.因此该楼房建为15层时,每平方米的平均综合费用最少.四、课堂小结1.利用均值不等式求最值,要注意使用的条件“一正、二定、三相等”,三个条件缺一不可,解题时,有时为了达到使用均值不等式的三个条件,需要通过配凑、裂项、转化、分离常数等变形手段,创设一个适合应用均值不等式的情境.2.不等式的应用题大都与函数相关联,在求最值时,均值不等式是经常使用的工具,但若对自变量有限制,一定要注意等号能否取到.五、当堂达标1.思考辨析(1)两个正数的积为定值,一定存在两数相等时,它们的和有最小值.( )(2)若a >0,b >0且a +b =4,则ab ≤4.( )(3)当x >1时,函数y =x +1x -1≥2x x -1,所以函数y 的最小值是2x x -1.( ) 提示:(1)由a +b ≥2ab 可知正确.(2)由ab ≤⎝ ⎛⎭⎪⎫a +b 22=4可知正确.(3)xx -1不是常数,故错误.答案:(1)√(2)√(3)×2.若实数a ,b 满足a +b =2,则ab 的最大值为() A .1B .22C .2D .4答案:A解析:由均值不等式得,ab ≤⎝ ⎛⎭⎪⎫a +b 22=1. 3.已知0<x <1,则x (3-3x )取最大值时x 的值为() A .12 B .34C .23D .25答案:A解析:∵0<x <1,∴1-x >0,则x (3-3x )=3[x (1-x )]≤3×⎝ ⎛⎭⎪⎫x +1-x 22=34,当且仅当x =1-x ,即x =12时取等号. 4.已知x >0,求y =2xx 2+1的最大值.解:y =2x x 2+1=2x +1x.∵x >0,∴x +1x ≥2x ·1x =2,∴y ≤22=1,当且仅当x =1x ,即x =1时等号成立.。
均值不等式教案

§ 3.2 均值不等式本节内容是选自人教版高中数学B版必修五第三章第二节——均值不等式。
它在不等式这一章中占有非常重要的地位,在不等式的证明中尤其突出。
一、教学目标知识与技能:均值不等式的基本表达式;均值不等式所表达的几何意义;能够应用均值不等式进行简单的证明过程与方法:掌握数形结合的数学思想方法情感态度价值观:数学来源于生活,善于从生活中去探索数学的奥秘二、重难点重点:均值不等式的证明与应用;“=”成立的条件难点:均值不等式的几何意义;在怎样的情况下应用均值不等式三、教学方法讲授法四、教学过程(一)情境引入某一届国际数学家大会的会标,我们将其中的几何图形抽象出来得到这样一个图形:已知的是直角三角形的两直角边分别为a,b,那我们能否从其中找出一些不等关系?解答:图中四个直角三角形的面积总和为:142ab大的正方形的面积为:22a b + 我们可以很直观地得出:22a b +>2ab问:同学们再想一想,这个“>”可以换成“≥”吗?当直角三角形变为等腰直角三角形的时候,也即是a b =时,这时,正方形EFGH 变为一点,可以得到222a b ab +=。
(二)得出结论并证明(基础) 一般地,,a b R ∈,则222a b ab +≥. 证明:2222()a b ab a b +-=-当a b ≠时,()20a b ->;当a b =时,2()0a b -=. 综上所述,可得222a b ab +≥. (三)均值不等式的变式(重点)若0,0,a b >>则2a bab +≥(当a b =时,“=”取到) 需明确的两个概念:2a b+表示a 与b 的算术平均数 ;ab a 与b 的几何平均数 。
证明(几何意义):如图:AC 是圆O 的直径,点D 是AC 上任一点,AD a =,CD b =,过点D 做BD AC ⊥交圆周于B ,连接OB .则22AC a bOB +== 又Rt ADB Rt BDC ∆∆,则AD AB DBBD BC DC== 所以2BD AD DC ab =•=,也即BD ab = 又OB BD ≥,所以2a bab +≥所以其几何意义为:半径不小于半弦 (四)巩固应用(1)已知a b 、都是正数,求证:2a bb a+≥. 证明:0,0,a b >>0,0ab b a∴>> ,由均值不等式可得22a b a bb a b a+≥⋅=, 当且仅当a bb a=且0,0a b >>同时成立, 即a b =时,等号成立. (2)已知a b 、都是正数,求证:()()()2233338a b a b a b a b +++≥ 证明: 2a b ab +≥22222a b a b +≥33332a b a b +≥()()()2233a b a b a b ∴+++2233332228ab a b a b a b ≥⋅=(五)课堂小结本节课,我们学习了重要不等式222a b ab +≥;两正数a b 、的算术平均数(2b a +),几何平均数(ab )及它们的关系(2ba +≥ab ).它们成立的条件不同,前者只要求a b 、都是实数,而后者要求a b 、都是正数.它们既是不等式变形的基本工具,又是求函数最值的重要工具(下一节我们将学习它们的应用).我们还可以用它们下面的等价变形来解决问题:ab ≤222b a +,ab≤(2b a +)2. (六)板书设计 一、引入四个直角三角形的面积总和为:142ab ⨯大的正方形的面积为:22a b + 于是可得到22a b +>2ab当a=b 时,也就是直角三角形变为等腰直角三角形,中间的正方形EFGH 变为一个点时,222.a b ab +=二、均值定理1:一般地,,a b R ∈,则222.a b ab +≥ 证明:2222()a b ab a b +-=-当20;a b ≠>时,(a-b)当a b =时,2()0.a b -= 综上所述,可得222.a b ab +≥ 均值定理2:若0,0,a b >>则2a bab +≥(当a b =时,“=”取到) 证明(几何意义):如图:AC 是圆O 的直径,点D 是AC 上任一点,AD=a ,CD=b ,过点D 做BD ⊥AC 交圆周于B ,连结OB.则 OB=22AC a b+=又Rt ADB Rt BDC ,则AD AB DBBD BC DC==所以2BD AD DC ab =⋅=,也即BD ab = 又OB BD ≥,所以2a bab +≥所以其几何意义为:半径不小于半弦 三、应用已知a b 、都是正数,求证: (1) 2.a b ba+≥证明:00,0,0a b a b b a>>∴>>、 ,由均值不等式可得2a b b a +≥=,当且仅当00a b a b b a =>>与、同时成立,即a b =时,等号成立. (2)()()()2233338a b a b a b a b +++≥a b +≥22a b +≥33a b +≥()()()2233a b a b a b ∴+++338a b ≥=()11212nnn x x x x x x n+++≥,对每个0i x ≥.证明:用数学归纳法. (1) 当2n =时,就是均值不等式,显然成立; (2) 设n k =成立,证2n k =成立;()()()1111121121222222k kk k k kk k kk x x x x x x x x x x x k k ++••••++++•≥+≥(3) 设n 成立,证1n -成立;即已知()11212nn n x x x x x x n+++≥,对每个0i x ≥,特别地取111n n x x x n -++=-代入上式有左=()1111111111111n n n n x x x x x x x x n n nn n ----⎛⎫++++++++⎪++-⎝⎭-==- 右=()1111111nn nn x x x x n n--++⎛⎫•• ⎪-⎝⎭ 由于左≥右,所以()()()1111111111111111111111111111n nnn n nnn n n n n n n n x x x x x x x x n n x x x x x x x x n n ------------++++⎛⎫⎛⎫≥••⇔≥•• ⎪⎪--⎝⎭⎝⎭++++⎛⎫⇔≥••⇔≥•• ⎪--⎝⎭。
均值不等式教学设计教程文件

均值不等式教学设计教程文件教学设计:均值不等式一、教学目标:1.理解均值不等式的概念。
2.掌握均值不等式的证明方法。
3.运用均值不等式解决实际问题。
二、教学内容:1.均值不等式的概念介绍。
2.均值不等式的证明方法。
3.均值不等式在实际问题中的应用。
三、教学过程:1.导入新知识(5分钟)教师通过一个简单的例子引出均值不等式的概念,如:对于两个正数a和b,它们的算术平均数大于等于几何平均数。
2.理解均值不等式的概念(15分钟)教师通过具体的数值例子,让学生利用计算器计算两个数的算术平均数和几何平均数,并进行对比分析,引出均值不等式的定义。
-算术平均数:(a+b)/2-几何平均数:√(a×b)-例子:a=2,b=3,算术平均数=(2+3)/2=2.5,几何平均数=√(2×3)≈2.453.掌握均值不等式的证明方法(30分钟)3.1教师给出均值不等式的证明方法,并通过具体的例子进行步骤讲解。
3.2学生独立思考和解决一道简单的均值不等式证明题,教师进行答疑和指导。
3.3学生分组进行均值不等式证明题的小组合作学习,学生之间相互讨论和互相提问,共同探讨证明方法。
4.运用均值不等式解决实际问题(35分钟)4.1教师给出一些实际问题,如:已知a和b是正数,求证(a+b)/2≥√(a×b),并由学生尝试解答。
4.2学生分组进行实际问题的小组合作学习,学生之间相互讨论和互相提问,共同探讨解决方法。
4.3学生展示自己的解题方法和思路,讨论不同解决方法的优劣。
5.拓展与巩固(15分钟)5.1教师布置一些思考题和拓展题,要求学生运用均值不等式解决,提高学生的综合运用能力。
5.2学生进行思考和解答,并与同伴进行交流和讨论。
四、教学评价:1.学生能够简单地描述均值不等式的概念。
2.学生能够掌握均值不等式的证明方法,并能够运用到实际问题中。
3.学生能够灵活应用均值不等式解决实际问题,并能够思考和解决拓展问题。
教学设计2:7.2 均值不等式

7.2 均值不等式1.均值不等式ab ≤a +b2(1)均值不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时等号成立.(3)其中a +b2称为正数a ,b 的算术平均数,ab 称为正数a ,b 的几何平均数.2.利用均值不等式求最大、最小值问题 (1)如果x ,y ∈(0,+∞),且xy =P (定值).那么当x =y 时,x +y 有最小值2P .(简记:“积定和最小”) (2)如果x ,y ∈(0,+∞),且x +y =S (定值). 那么当x =y 时,xy 有最大值S 24.(简记:“和定积最大”)3.常用不等式(1)a 2+b 2≥2ab (a ,b ∈R ). (2)ab ≤(a +b 2)2(a ,b ∈R ).(3)(a +b 2)2≤a 2+b 22(a ,b ∈R ).(4)b a +ab≥2(a ,b 同号).1.(人教A 版教材习题改编)设0<x <1,则x (3-3x )取得最大值时,x 的值为( ) A.13 B.12 C.34 D.23【解析】 ∵0<x <1,∴x (3-3x )≤3·(x +(1-x )2)2=34,当且仅当x =1-x ,即x =12时等号成立.【答案】 B2.设0<a <b ,则下列不等式中正确的是( ) A .a <b <ab <a +b 2 B .a <ab <a +b2<b C .a <ab <b <a +b 2 D.ab <a <a +b2<b【解析】 ∵0<a <b ,∴a <a +b2<b ,A 、C 错误;ab -a =a (b -a )>0,即ab>a ,故选B.【答案】 B3.(2012·福建高考)下列不等式一定成立的是( )A .lg(x 2+14)>lg x (x >0)B .sin x +1sin x ≥2(x ≠k π,k ∈Z )C .x 2+1≥2|x |(x ∈R ) D.1x 2+1>1(x ∈R )【解析】 应用均值不等式:x ,y ∈R +,x +y 2≥xy (当且仅当x =y 时取等号)逐个分析,注意均值不等式的应用条件及取等号的条件.当x >0时,x 2+14≥2·x ·12=x ,所以lg(x 2+14)≥lg x (x >0),故选项A 不正确;运用均值不等式时需保证一正二定三相等,而当x ≠k π,k ∈Z 时,sin x 的正负不定,故选项B 不正确;由均值不等式可知,选项C 正确;当x =0时,有1x 2+1=1,故选项D 不正确.【答案】 C4.已知x ,y ∈R +,且满足x 3+y4=1,则xy 的最大值为________.【解析】 ∵x >0,y >0且1=x 3+y4≥2xy 12,∴xy ≤3.当且仅当x 3=y4时取等号. 【答案】 35.(2013·西城质检)某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品应为________件.【解析】 设每件产品的平均费用为y 元,由题意得y =800x +x8≥2800x ·x8=20.当且仅当800x =x8(x >0),当且仅当x =80时,“=”成立.【答案】 80(1)已知0<x <25,则y =2x -5x 2的最大值为________.(2)(2012·浙江高考)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是( ) A.245 B.285C .5D .6 【审题视点】 (1)凑和为定值,添配系数;(2)将条件变形35x +15y =1,然后注意“1”的代换.【尝试解答】 (1)y =2x -5x 2=x (2-5x )=15·5x ·(2-5x ),∵0<x <25,∴5x <2,2-5x >0,∴5x (2-5x )≤(5x +2-5x 2)2=1,则y ≤15.当且仅当5x =2-5x ,即x =15时等号成立.∴y =2x -5x 2的最大值y max =15.(2)由x >0,y >0,且x +3y =5xy ,得35x +15y =1.∴3x +4y =(3x +4y )(35x +15y )=135+3x 5y +12y 5x ≥135+23x 5y ·12y5x=5, 当且仅当x =2y =1时,等号成立.∴3x +4y 的最小值为5.【答案】 (1)15(2)C ,1.第(1)题凑配系数,使和为定值.第(2)小题求解的关键是条件的恰当变形与“1”的代换;本题的常见错误是条件与结论分别利用均值不等式,导致错选A ,根本原因忽视等号成立条件.2.利用均值不等式求函数最值时,注意“一正、二定、三相等,和定积最大,积定和最小”.常用的方法为拆、凑、代换、平方.(1)已知x >0,y >0,且x +y =1,且3x +4y的最小值是________.(2)(2013·金华调研)设x ,y 为实数,若x 2+y 2+xy =1,则x +y 的最大值是________. 【解析】 (1)∵x >0,y >0,x +y =1, ∴3x +4y =(x +y )(3x +4y )=3y x +4xy+7≥23y x ·4xy+7=7+43,当且仅当3y x =4xy 且x +y =1,即x =-3+23,y =4-23时等号成立,∴3x +4y的最小值是7+4 3. (2)由x 2+y 2+xy =1,得1=(x +y )2-xy ,∴(x +y )2=1+xy ≤1+(x +y )24, 解得-233≤x +y ≤233,∴x +y 的最大值为233.【答案】 (1)7+43 (2)233已知a >0,b >0,a +b =1,求证: (1)1a +1b +1ab ≥8;(2)(1+1a )(1+1b)≥9. 【审题视点】 (1)第(1)小题把1a +1b 变形为1ab ,或把1ab 变形为1a +1b .(2)第(2)小题把不等式左边展开,利用第(1)小题的结论. 【尝试解答】 (1)1a +1b +1ab =2(1a +1b),∵a +b =1,a >0,b >0,∴1a +1b =a +b a +a +b b =2+a b +ba ≥2+2=4,∴1a +1b +1ab ≥8(当且仅当a =b =12时等号成立). (2)法一 ∵a >0,b >0,a +b =1, ∴1+1a =1+a +b a =2+b a ,同理1+1b =2+a b ,∴(1+1a )(1+1b )=(2+b a )(2+a b )=5+2(b a +ab )≥5+4=9.∴(1+1a )(1+1b )≥9(当且仅当a =b =12时等号成立).法二 (1+1a )(1+1b )=1+1a +1b +1ab,由(1)知,1a +1b +1ab ≥8,故(1+1a )(1+1b )=1+1a +1b +1ab≥9.,1.“1”的代换是解决问题的关键,代换变形后能使用均值不等式是代换的前提,不能盲目变形.2.利用均值不等式证明不等式,关键是所证不等式必须是有“和”式或“积”式,通过将“和”式转化为“积”式或将“积”式转化为“和”式,达到放缩的效果,必要时,也需要运用“拆、拼、凑”的技巧,同时应注意多次运用均值不等式时等号能否取到.已知a >0,b >0,c >0,求证:bc a +ca b +abc≥a +b +c .【证明】 ∵a >0,b >0,c >0,∴bc a +cab ≥2bc a ·cab=2c ; bc a +ab c≥2bc a ·ab c =2b ;ca b +ab c≥2ca b ·abc=2a . 以上三式相加得:2(bc a +ca b +ab c )≥2(a +b +c ),即bc a +ca b +abc≥a +b +c .某单位建造一间地面积为12 m 2的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x 不得超过5 m .房屋正面的造价为400元/m 2,房屋侧面的造价为150元/m 2,屋顶和地面的造价费用合计为5 800元,如果墙高为3 m ,且不计房屋背面的费用.当侧面的长度为多少时,总造价最低?【思路点拨】 用长度x 表示出造价,利用均值不等式求最值即可.还应注意定义域0<x ≤5;函数取最小值时的x 是否在定义域内,若不在定义域内,不能用均值不等式求最值,可以考虑单调性.【尝试解答】 由题意可得,造价y =3(2x ×150+12x ×400)+5 800=900(x +16x )+5 800(0<x ≤5),则y =900(x +16x )+5 800≥900×2x ×16x+5 800=13 000(元), 当且仅当x =16x ,即x =4时取等号.故当侧面的长度为4米时,总造价最低.,解实际应用题要注意以下几点:(1)设变量时一般要把求最大值或最小值的变量定义为函数;(2)根据实际问题抽象出函数的解析式后,只需利用均值不等式求得函数的最值; (3)在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.某厂家拟在2013年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x 万件与年促销费用m 万元(m ≥0)满足x =3-k m +1(k 为常数),如果不搞促销活动,则该产品的年销售量只能是1万件.已知2012年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金,不包括促销费用).(1)将2013年该产品的利润y 万元表示为年促销费用m 万元的函数; (2)该厂家2013年的促销费用投入多少万元时,厂家的利润最大?【解】 (1)由题意知,当m =0时,x =1(万件),∴1=3-k ,即k =2.∴x =3-2m +1.又∵每件产品的销售价格为1.5×8+16xx (万元).∴2012年的利润y =x (1.5×816x x +)-(8+16x +m )=4+8x -m =4+8(3-2m +1)-m =29-[(m +1)+161m +](m ≥0).(2)∵m ≥0时,(m +1)+161m +≥216=8. ∴y ≤29-8=21,当且仅当16m +1=m +1,即当m =3(万元)时,y max =21(万元). 所以该厂家2013年的促销费用投入为3万元时,厂家的利润最大,最大为21万元.两个变形1.a 2+b 22≥(a +b 2)2≥ab (a ,b ∈R ,当且仅当a =b 时取等号).2.a 2+b 22≥a +b 2≥ab ≥21a +1b (a >0,b >0,当且仅当a =b 时等号成立). 两点注意1.利用均值不等式求最值,切莫忽视不等式成立的三个条件:“一正——各项均为正数;二定——积或和为定值;三相等——等号能够取得”.2.连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致.两个技巧1.公式的逆用、变形使用.2.在运用重要不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足重要不等式中“正”“定”“等”的条件.从近两年的高考试题来看,利用均值不等式求最值,是高考命题的热点,题型多样,难度为中低档.题目突出“小而巧”,主要考查基本运算与转化化归思想.而且命题情境不断创新,注重与函数、充分必要条件、实际应用等交汇.创新探究之八 几何背景下的均值不等式求最值问题(2012·湖南高考)已知两条直线l 1:y =m 和l 2:y =82m +1(m >0),l 1与函数y =|log 2x |的图象从左至右相交于点A ,B ,l 2与函数y =|log 2x |的图象从左至右相交于点C ,D .记线段AC 和BD 在x 轴上的投影长度分别为a ,b .当m 变化时,ba的最小值为( )A .162B .82C .834D .434【解析】 由m =|log 2x |,得x A =(12)m ,x B =2m.同理,x C =(12)82m +1,x D =282m +1.∴a =|x A -x C |=⎪⎪⎪⎪(12)m -(12)82m +1,b =|x B -x D |=|2m -282m +1|.∴b a =⎪⎪⎪⎪⎪⎪2m-282m +12-m -2-82m +1=282m +1·2m=282m +1+m . ∵82m +1+m =12(2m +1)+82m +1-12≥212(2m +1)×82m +1-12=72, 当2m +12=82m +1,即m =32时取等号.∵m >0,∴m =32符合题意.∴b a 的最小值为272=8 2.【答案】 B创新点拨:(1)以直线与曲线y =|log 2x |的交点为载体考查均值不等式求最值. (2)突出数学运算能力与转化化归思想方法的考查.应对措施:(1)深刻理解题目自身的含义,准确表达a 、b ,可画出草图,借助几何直观求解.(2)熟记指数、对数的运算法则,指数函数的性质;理解均值不等式求最值的条件,善于凑配、添加项、满足“正、定、等”条件.1.(2012·陕西高考)小王从甲地到乙地往返的时速分别为a 和b (a <b ),其全程的平均时速为v ,则( )A .a <v <abB .v =ab C.ab <v <a +b 2 D .v =a +b2【解析】 设甲、乙两地之间的距离为s .∵a <b ,∴v =2ss a +s b=2sab (a +b )s =2ab a +b <2ab 2ab =ab .又v -a =2aba +b -a =ab -a 2a +b >a 2-a 2a +b =0,∴v >a .【答案】 A2.(2013·济南质检)已知a >0,b >0,若不等式m 3a +b -3a -1b ≤0恒成立,则m 的最大值为( )A .4B .16C .9D .3【解析】 因为a >0,b >0,由m 3a +b -3a -1b ≤0得m ≤(3a +1b )(3a +b )=10+3b a +3ab 恒成立.因为3b a +3ab≥23b a ·3a b =6,当且仅当a =b 时等号成立.所以10+3b a +3a b≥16,所以m ≤16, 即m 的最大值为16,故选B.【答案】 B。
02 教学设计_ 均值不等式及其应用(第1课时)1

证明:因为ab > 0,所以 , .根据均值不等式,得
,即 。
当且仅当 ,即a2= b2时,等号成立.因为ab >0,所以等号成立的条件是a = b。
【设计意图】让学生习得均值不等式在证明题中的应用。
三、归纳总结:
1.算术平均值和几何平均值
2.均值不等式(又称基本不等式)以及均值不等式的几何意义
3.用均值不等式解题的格式要求
四、课后作业
1.完成教材P76上“探索与研究”,每位同学将总结出来的规律整理好,下节课交流。
2.教材P76,练习A 1、2;练习B 2、3。
【设计意图】
学好本节内容的预备知识。
(二)学生活动1:
完成教材P72“尝试与发现” ,解决下列问题:
1.算术平均数的几何意义?几何平均值的几何意义?
2.它们的大小关系如何呢?
【设计意图】
从具体事例理解和掌握算术平均值和几何平均值的几何意义以及大小关系。
(三)均值不等式:
1.语言表述:两个正数的算术平均值大于或等于它们的几何平均值。
所有周长一定的矩形中,正方形的面积最大。
3.【拓展】:请回答教材P73页的“想一想”。
【设计意图】
让学生从多角度来理解和掌握均值不等式。
(五)学生活动2:
师生一起研究教材P73 —“探索与研究”中的问题,可以和你的同桌交流,给出相应的结论。
【设计意图】
让学生看到均值不等式的“美”,感受到数学的几何之美。
2.数学表达:如果a,b都是正数,那么 ,当且仅当a = b时,等号成立。
证明:教材P73页。
式
1.基本不等式中的 还可以是零,其实质是:两个正实数的算术平均值不小于它们的几何平均值。
均值不等式

《均值不等式》教学设计大连开发区第十高级中学邓亚光一、教学背景(一)教学内容分析“均值不等式”是人教版普通高中课程标准实验教科书《数学》必修5第三章第四节的内容.均值不等式是不等关系中的重要定理,在不等式证明及求函数最值等问题中有着广泛应用。
同时也是学习后继知识的必要准备。
(二)教学对象分析本课的教学内容是用“从等式出发衍生到不等式”的思想来得出均值不等式.然而,这一不等式的理解给学生带来的难度却不小,因为要真正理解这种方法必须这一关系有比较清晰的认识.基于以上原因,备课时认为学生学习本节课有两大难点:一是如何获得“均值不等式”的思路;二是对均值不等式几何解释的理解。
(三)教学环境分析本课的教学内容较抽象,在教学时若采用常规教学手段,则难以突破本课难点,因此选择多媒体教室的信息技术辅助教学手段,通过电脑的动态演示,让学生形象而深刻体会本课“由特殊到一般,以动带静”的思想和方法.二、教学目标(一)知识与技能:理解均值不等式,并能应用其解决一些简单问题。
(二)过程与方法目标:通过师生合作交流,培养学生探究能力以及分析问题、解决问题的能力。
(三)情感、态度与价值观通过问题情境的设置,培养学生善于思考、勇于探究的学习品质。
三、教学重点、难点重点:理解均值不等式。
难点:均值不等式的应用。
本节课通过学生讨论交流、合作探究等方式,并充分利用信息技术,直观体现了“特殊到一般”、“以动带静”的形成过程,从而有效的突出了重点,突破了难点.四、教学过程(一)教学流程图理论结论excel 表格展示动画展示图片提高拓展提高拓展尝试探索尝试探索情景导入情景导入教学环节P P T 链接试题信息技术整合点构建新知构建新知几何画板表格探讨升华探讨升华生活中的数学形象结论{小组合作动态分析动画验证{升华结论利用网络资源课堂大讨论{投影仪展示成果学有所用学有所用(二)教学环节设计1.情境导入 (1)故事引入用一个两臂长短有差异的天平称一物品,有人说只要左右各秤一次,将两次所称重量相加后除以2就得物品的重量. 你觉得这种称法得出的结果比实际重量轻了,重了还是和实重相等?【设计意图:利用图片辅助提升学生的学习兴趣,使学生认识到数学和现实生活是紧密联系在一起的;体验数学是来源于生活、应用于生活的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
探究能力.在教学中指导学生展开联想,大胆探索,以训练和培养学生的思维能力.
五、教学重点及难点
重点:用均值不等式求解最值问题的思路和基本方法。
难点:均值不等式的使用条件,合理地应用均值不等式. 六、教学过程 教师活动
学生活动
设计意图
一、情景激疑
如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客. 你能在这个图案中找出一些相等关系或不等关系吗?
将图中的“风车”抽象成如图,
教师发下讲义让学生思考.并提出问题:在正方形ABCD 中有4个全等的直角三角形. 设直角三角形的两条直角边长为a ,b 那么正方形的边长为____________.这样,4个直角三角形的面积的和是___________,正方形的面积为_________.由于4个直角三角形的面积______正方形的面积,我们就得到了一个不等式:222a b ab +≥.
当直角三角形变为等腰直角三角形,即a=b 时,正方形EFGH 缩为一个点,这时有_______________
1、通过引导,让学
生主动地解决定理的证明,并形成猜想证明的严谨思维。
2、通过提问进一步加深对基本不等式的理解,明确不等式成立的条件
二、引入概念
结论:一般的,如果,R a b ∈,我们有222a b ab +≥,
当且仅当a b =时,等号成立. 特别的,如果0a >,0b >,我们用a 、b 分别代替a 、b ,可得2a b ab +≥, 通常我们把上式写作:(a>0,b>0)2a b
ab +≤
语言叙述:两个正实数的算术平均值不小于它的几何平均值.
教师设问:如何证明呢? 学生分组讨论,合作交流,小
组汇报,其它小组给展示的小组查缺补漏以便使所有的学生都
能形成一个完备的知识体系 小组讨论,提出多种解决方法.让学生拓宽思路,培养团结协作的习惯.
三、深化理解
在图中,AB 是圆的直径,点C 是AB 上的一点,AC=a ,BC=b. 过点C 作垂直于AB 的弦DE ,连接AD 、BD.
教师提问:
问题一:图中CO ,CD 的长度是多少;
问题二:CO 与CD 的大小关系如何?
问题三、等号何时成立(让学生分组讨论,然后提问)
通过展示均值不等式的几何直观解释,培养学生的数形的意识,并使抽象的问题更加直观、形象,使学生的理解一进步加深
六、变形应用
问题一:求函数
的最小值. 变式1: 求函数
的最大值. 变式2: 求函数的最小值.
变式3:求函数)0(22
>+=x x
y x 的最小值.
问题二:求函数的最
大值. 变式4:求函数的最大值.
变式5:求函数
的最大值.问
题三:已知
,求函数
的最小值.
逐步引导学生进行变式,
变式是一种探索问题的方法.
在问题三中引导学生一题多解. 学生正确理解均值定理应用的条件
“正、定、等”,掌握均值定理的正用及拓展应用.通过变式使学生对试题进行深层的探索,激发兴趣,培养能力.
进一步体会均值不等式应用的“定”的条件,逐步学会均值定理的逆用和变用.
同一道数学题,从不同的角度思考可得到多种解题思路,广泛寻求多种解法,有助于拓宽解题思路,发展观察、想象、探索、思维等能力.
七、课堂总结
1、 理解均值不等式引出及证明过程
2、 均值不等式的使用条件
3、 会识别并应用均值不等式
4、 培养一题多解,一题多变的能力 让同学总结,其他同学补充.
学生总结能让学生对所研究问题有个总体的认识.
八、布置作业
练习册1、2、3、
巩固知识。