详解特种 聚酰亚胺 PI

合集下载

聚酰亚胺PI

聚酰亚胺PI

聚酰亚胺的应用:
1、薄膜:是聚酰亚胺最早的商品之一,用于电机的槽绝缘及电缆绕包 材料。主要产品有杜邦Kapton,宇部兴产的Upilex系列和钟渊Apical。 透明的聚酰亚胺薄膜可作为柔软的太阳能电池底版。 2. 涂料:作为绝缘漆用于电磁线,或作为耐高温涂料使用 3. 先进复合材料:用于航天、航空器及火箭部件。是最耐高温的结构材 料之一。例如美国的超音速客机计划所设计的速度为2.4M,飞行时 表面温度为177℃,要求使用寿命为60000h,据报道已确定50%的 结构材料为以热塑型聚酰亚胺为基体树脂的碳纤维增强复合材料, 每架飞机的用量约为30t。
聚 酰 亚 胺 的 发 展 简 史
1. 1908年,PI聚合物开始出现报道,但本质未被认 识,因此不受重视。 2. 40年代中期出现一些专利。50年代末制得高分子 量的芳族聚酰亚胺,标志其真正作为一种高分子 材料来发展 3. 60—80年代,由美杜邦公司、Amoco公司、通用电 气公司及法罗纳-普朗克公司为代表先后开发出一 系列的模制材料和聚合体,如聚醚酰亚胺(PEI) , 并于1982 年正加成型聚酰亚胺、热塑性聚酰胺。 缩合型聚酰亚胺式以Ultem商品名在国际市场上 销售。 4. 1997年日本三井东压化学公司报道了全新的热塑 性聚酰亚胺(Aurum)注塑和挤出成型用的粒料。
6、聚酰亚胺具有很高的耐辐照性能,其薄膜在 5×109rad快电子辐照后强度保持率为90%。
7、 聚酰亚胺具有良好的介电性能,介电常数为 3.4左右,引入氟,或将空气纳米尺寸分散在聚 酰亚胺中,介电常数可以降到2.5左右。介电损 耗为10-3,介电强度为 100-300KV/mm,广成 热塑性聚酰亚胺为300KV/mm,体积电阻为 1017Ω/cm。这些性能在宽广的温度范围和频率 范围内仍能保持在较高的水平。 8、聚酰亚胺是自熄性聚合物,发烟率低。

pi是什么材料

pi是什么材料

pi是什么材料
Pi是什么材料。

Pi材料,即聚酰亚胺材料,是一种高性能工程塑料,具有优异的高温稳定性、化学稳定性、机械性能和电气性能。

它被广泛应用于航空航天、电子通讯、汽车制造、医疗器械等领域。

那么,Pi究竟是什么材料呢?
Pi材料的全称是聚酰亚胺,是一种高性能热塑性塑料。

它具有极好的高温稳定性,长期使用温度可达250℃以上,短期使用温度更可达350℃。

这使得Pi材料成为了高温环境下的理想选择,比如在航空航天领域中,Pi材料被广泛应用于制造发动机部件、导热材料、电子设备外壳等。

除了高温稳定性,Pi材料还具有优异的化学稳定性。

它能够抵抗酸、碱、溶剂等多种化学介质的侵蚀,因此在化工领域中也有着广泛的应用。

Pi材料的机械性能也非常出色,具有高强度、高模量、耐磨损等特点,因此在汽车制造、机械制造领域中得到了广泛应用。

此外,Pi材料还具有优异的电气性能,具有良好的绝缘性能和高频特性,因此在电子通讯领域中应用广泛,比如制造电子元件、印刷电路板等。

总的来说,Pi材料是一种多功能的高性能工程塑料,具有高温稳定性、化学稳定性、机械性能和电气性能,被广泛应用于航空航天、电子通讯、汽车制造、医疗器械等领域。

它的出现,为许多领域的技术发展提供了有力支持,也为人们的生活带来了诸多便利。

Pi材料的未来发展前景无疑是一片光明。

聚酰亚胺性能特点介绍

聚酰亚胺性能特点介绍

聚酰亚胺(PI)作为一种特种工程材料,广泛应用于航空、航天、电气电子、半导体工程、微电子及集成电路、纳米材料、液晶显示器、LED 封装、分离膜、激光、机车、汽车、精密机械和自动办公机械等领域。

聚酰亚胺性能特点作为优秀的特种工程材料,聚酰亚胺的性能可以通吃所有材料品质中的高端性能。

1、适用温度范围广:高温部分:全芳香聚酰亚胺,分解温度500℃左右。

长期使用温度-200~300 ℃,无明显熔点。

低温部分:-269℃的液态氦中不会脆裂。

2、机械性能强:未填充的塑料的抗张强度都在100Mpa以上;均苯型聚酰亚胺的薄膜(Kapton)为170Mpa以上,而联苯型聚酰亚胺(UpilexS)达到400Mpa。

3、绝缘性能好:良好的介电性能,介电常数为3.4左右,引入氟,或将空气纳米尺寸分散在聚酰亚胺中,介电常数可以降到2.5左右。

4、耐辐射:聚酰亚胺具有很高的耐辐照性能,其薄膜在5×109rad 快电子辐照后强度保持率为90%。

5、自熄性:聚酰亚胺是自熄性聚合物,发烟率低。

聚酰亚胺在极高的真空下放气量很少。

6、稳定性:一些聚酰亚胺品种不溶于有机溶剂,对稀酸稳定,一般的品种不大耐水解。

7、无毒:聚酰亚胺无毒,并经得起数千次消毒。

可用来制造餐具和医用器具,有一些聚酰亚胺还具有很好的生物相容性,例如,在血液相容性实验为非溶血性,体外细胞毒性实验为无毒。

聚酰亚胺的合成聚酰亚胺是分子结构含有酰亚胺基链节的芳杂环高分子化合物,可分为均苯型PI,可溶性PI,聚酰胺-酰亚胺(PAI)和聚醚亚胺(PEI)四类。

合成方式可分为缩聚型和加聚型:、缩聚型聚酰亚胺:以DMF、DMAC、NMP等强极性溶剂,经低温缩聚,形成聚酰胺酸,再经成膜或者纺丝后,高温脱水,形成聚酰亚胺;或以乙酐或叔胺类催化剂,化学脱水,形成聚酰亚胺溶液和粉末。

芳香二酸和二酐,高沸点溶剂下脱水,加热缩聚,形成聚酰亚胺。

影响聚酰亚胺合成主要关键点:单体纯度,纯度越高,聚合反应发生越容易。

一文读懂聚酰亚胺(PI)–CMPE2022艾邦第五届5G加工暨精密陶瓷展览会

一文读懂聚酰亚胺(PI)–CMPE2022艾邦第五届5G加工暨精密陶瓷展览会

一文读懂聚酰亚胺(PI)–CMPE2022艾邦第五届5G加工暨精密陶瓷展览会艾邦高分子开通评论功能啦!对文章有疑问或建议都可以在页面底部发表您的意见哦,快来参与评论吧O(∩_∩)O一、聚酰亚胺概述聚酰亚胺是分子结构含有酰亚胺基链节的芳杂环高分子化合物,英文名Polyimide(简称PI) ,是目前工程塑料中耐热性最好的品种之一。

PI作为一种特种工程材料,已广泛应用在航空、航天、微电子、纳米、液晶、分离膜、激光等领域。

近来,各国都在将PI的研究、开发及利用列入21世纪最有希望的工程塑料之一。

聚酰亚胺,因其在性能和合成方面的突出特点,不论是作为结构材料或是作为功能性材料,其巨大的应用前景已经得到充分的认识,被称为是"解决问题的能手"(protion solver),并认为"没有聚酰亚胺就不会有今天的微电子技术"。

二、聚酰亚胺的发展史三、合成方法聚酰亚胺是分子结构含有酰亚胺基链节的芳杂环高分子化合物,英文名Polyimide(简称PI),可分为均苯型PI,可溶性PI,聚酰胺–酰亚胺(PAI)和聚醚亚胺(PEI)四类。

回复“PI”查看更多聚醚亚胺文章按合成方式可分为缩聚型和加聚型:1、缩聚型聚酰亚胺:缩聚型聚酰亚胺已较少用作复合材料的基体树脂,主要用来制造聚酰亚胺薄膜和涂料。

2、加聚型聚酰亚胺:获得广泛应用的加聚型聚酰亚胺主要有聚双马来酰亚胺和降冰片烯基封端聚酰亚胺。

以双马来聚酰亚胺为例:四、聚酰亚胺的特性有哪些?作为军用国防材料,聚酰亚胺具有6大特点:1.耐高温:耐高温达400℃以上,长期使用温度范围-200~300℃,无明显熔点。

2.高绝缘性能:103赫下介电常数4.0,介电损耗仅0.004~0.007,属F至H级绝缘材料。

3.优良的机械性能:未填充的塑料的抗张强度都在100Mpa以上。

4. 自熄性:聚酰亚胺是自熄性聚合物,发烟率低。

5.无毒:聚酰亚胺无毒,并经得起数千次消毒。

聚酰亚胺pi 介电常数

聚酰亚胺pi 介电常数

聚酰亚胺pi 介电常数
聚酰亚胺(PI)是一种高性能工程塑料,具有优异的热稳定性、机械性能和化学稳定性。

PI材料被广泛应用于航空航天、电子、汽
车和医疗器械等领域。

其中,介电常数是评价材料电气性能的重要
参数之一。

聚酰亚胺的介电常数是指在外加电场作用下,材料对电场的响
应能力。

介电常数是材料中电荷在电场作用下的极化程度的度量,
是材料的电绝缘性能的重要指标之一。

对于聚酰亚胺来说,其介电
常数通常在3.4-3.8之间,这意味着它具有很好的绝缘性能,能够
有效地阻止电荷的流动。

聚酰亚胺的高介电常数使其在电子器件领域有着广泛的应用。

例如,在高频通信设备中,聚酰亚胺可用作介电材料,用于制造高
频电容器和微波电路。

其优异的介电性能使得电子器件能够更加稳
定地工作,提高了设备的性能和可靠性。

除了电子器件领域,聚酰亚胺的介电常数也使其在光学器件中
有着重要的应用。

例如,在激光器、光纤通信和光学传感器等领域,聚酰亚胺材料的高介电常数可以帮助光信号的传输和处理,提高光
学器件的性能。

总之,聚酰亚胺的介电常数是其在电子器件和光学器件中得以广泛应用的重要原因之一。

随着科技的不断发展,相信聚酰亚胺材料在各个领域的应用会更加广泛,为人类社会的进步和发展做出更大的贡献。

3一分钟读懂聚酰亚胺PI材料结构与性能

3一分钟读懂聚酰亚胺PI材料结构与性能

通常所说的聚酰亚胺材料是分子结构含有酰亚胺基链节的芳杂环高分子化合物,英文名Polyimide(简称PI),是目前工程塑料中耐热性最好的品种之一。

聚酰亚胺结构与性能的关系如下图所示:聚酰亚胺主要性质如下:1、全芳香聚酰亚胺按热重分析,其开始分解温度一般都在500℃左右。

由联苯二酐和对苯二胺合成的聚酰亚胺,热分解温度达到600℃,是迄今聚合物中热稳定性最高的品种之一。

2、聚酰亚胺可耐极低温,如在-269℃的液态氦中不会脆裂。

3、聚酰亚胺具有优良的机械性能,未填充的塑料的抗张强度都在100MPa以上,均苯型聚酰亚胺的薄膜(Kapton)为170MPa以上,而联苯型聚酰亚胺(Upilex S)达到400MPa。

作为工程塑料,弹性膜量通常为3-4GPa,纤维可达到200Gpa,据理论计算,均苯二酐和对苯二胺合成的纤维可达500GPa,仅次于碳纤维。

4、聚酰亚胺的热膨胀系数在2×10-5-3×10-5,广成热塑性聚酰亚胺3×10-5,联苯型可达10-6℃,个别品种可达10-7。

5、一些聚酰亚胺品种不溶于有机溶剂,对稀酸稳定,一般的品种不大耐水解,这个看似缺点的性能却使聚酰亚胺有别于其他高性能聚合物的一个很大的特点,即可以利用碱性水解回收原料二酐和二胺,例如对于Kapton薄膜,其回收率可达80%-90%。

改变结构也可以得到相当耐水解的品种,如经得起120℃,500小时水煮。

6、聚酰亚胺具有很高的耐辐照性能,其薄膜在5×109rad 快电子辐照后强度保持率为90%。

7、聚酰亚胺具有良好的介电性能,介电常数为3.4左右,引入氟,或将空气纳米尺寸分散在聚酰亚胺中,介电常数可以降到2.5左右。

介电损耗为10-3,介电强度为100-300KV/mm,广成热塑性聚酰亚胺为300KV/mm,体积电阻为1017Ω/cm。

这些性能在宽广的温度范围和频率范围内仍能保持在较高的水平。

8、聚酰亚胺是自熄性聚合物,发烟率低。

PI情况介绍

PI情况介绍

聚酰亚胺(PI)情况介绍一、概述聚酰亚胺作为一种特种工程材料,已广泛应用在航空、航天、微电子、纳米、液晶、分离膜、激光等领域。

近来,各国都在将聚酰亚胺的研究、开发及利用列入21世纪最有希望的工程塑料之一。

聚酰亚胺,因其在性能和合成方面的突出特点,不论是作为结构材料或是作为功能性材料,其巨大的应用前景已经得到充分的认识,被称为是"解决问题的能手"(protion solver),并认为"没有聚酰亚胺就不会有今天的微电子技术"。

二、聚酰亚胺的性能1、全芳香聚酰亚胺按热重分析,其开始分解温度一般都在500℃左右。

由联苯二酐和对苯二胺合成的聚酰亚胺,热分解温度达到600℃,是迄今聚合物中热稳定性最高的品种之一。

2、聚酰亚胺可耐极低温,如在-269℃的液态氦中不会脆裂。

3、聚酰亚胺具有优良的机械性能,未填充的塑料的抗张强度都在100Mpa以上,均苯型聚酰亚胺的薄膜(Kapton)为170Mpa以上,而联苯型聚酰亚胺(Upilex S)达到400Mpa。

作为工程塑料,弹性膜量通常为3-4Gpa,纤维可达到200Gpa,据理论计算,均苯二酐和对苯二胺合成的纤维可达500Gpa,仅次于碳纤维。

4、一些聚酰亚胺品种不溶于有机溶剂,对稀酸稳定,一般的品种不大耐水解,这个看似缺点的性能却使聚酰亚胺有别于其他高性能聚合物的一个很大的特点,即可以利用碱性水解回收原料二酐和二胺,例如对于Kapton薄膜,其回收率可达80%-90%。

改变结构也可以得到相当耐水解的品种,如经得起120℃,500小时水煮。

5、聚酰亚胺的热膨胀系数在2×10-5-3×10-5℃,广成热塑性聚酰亚胺3×10-5℃,联苯型可达10-6℃,个别品种可达10-7℃。

6、聚酰亚胺具有很高的耐辐照性能,其薄膜在5×109rad快电子辐照后强度保持率为90%。

7、聚酰亚胺具有良好的介电性能,介电常数为3.4左右,引入氟,或将空气纳米尺寸分散在聚酰亚胺中,介电常数可以降到2.5左右。

聚酰亚胺 PI MSDS

聚酰亚胺 PI MSDS

聚酰亚胺 PI MSDS聚酰亚胺 (PI) MSDS1. 概述聚酰亚胺(Polyimide,简称PI)是一种高分子聚合物,具有优异的耐热性、耐化学性、机械性能和电绝缘性能。

本材料安全数据表(MSDS)提供了关于聚酰亚胺的安全信息和处理指南。

2. 成分/化学名聚酰亚胺(PI)的化学组成可能因生产工艺和具体品种而异。

一般而言,聚酰亚胺由二元酸和二元胺或其衍生物通过缩聚反应制得。

3. 物理/化学性质聚酰亚胺具有以下物理/化学性质:- 高热稳定性:聚酰亚胺能够在高温环境下保持稳定,其玻璃化转变温度(Tg)通常在200°C以上。

- 良好的化学稳定性:聚酰亚胺对大多数溶剂和化学品具有很好的抵抗力。

- 优秀的机械性能:聚酰亚胺具有较高的强度和模量,同时具有优异的柔韧性和耐磨性。

- 良好的电绝缘性能:聚酰亚胺具有极低的介电常数和介电损耗,适用于电子电气领域。

4. 健康风险聚酰亚胺本身通常不被认为是危险物质。

然而,在加工过程中,可能会产生有害物质,如单体、溶剂和副产物。

操作人员应采取适当的安全措施,以防止吸入、接触或摄入这些物质。

5. 安全措施在使用聚酰亚胺时,应遵循以下安全措施:- 避免吸入:操作时佩戴防尘口罩或空气呼吸器。

- 防止接触皮肤和眼睛:佩戴防护眼镜和手套。

- 避免摄入:工作期间勿进食、喝水或吸烟。

- 确保良好的通风:在封闭空间内操作时,确保空气流通。

6. 处理和存储聚酰亚胺粉末或颗粒应在干燥、通风的环境中储存,避免潮湿和高温。

在加工过程中,应确保充分通风,以防止吸入有害物质。

7. 应急处理如接触聚酰亚胺或其加工过程中产生的有害物质,请立即用大量清水冲洗受影响区域,并寻求医疗建议。

8. 法规遵从性本MSDS符合中华人民共和国相关法律法规要求。

9. 制造商信息制造商名称:[制造商名称]地址:[制造商地址]联系电话:[制造商联系电话]---以上为关于聚酰亚胺(PI)的MSDS文档,供您参考。

如需进一步修改或补充,请告知。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

聚酰亚胺(PI)概述聚酰亚胺:英文名Polyimide (简称PI)聚酰亚胺作为一种特种工程材料,已广泛应用在航空、航天、微电子、纳米、液晶、分离膜、激光等领域。

近来,各国都在将聚酰亚胺的研究、开发及利用列入21 世纪最有希望的工程塑料之一。

聚酰亚胺,因其在性能和合成方面的突出特点,不论是作为结构材料或是作为功能性材料,其巨大的应用前景已经得到充分的认识,被称为是"解决问题的能手"(protion solver),并认为"没有聚酰亚胺就不会有今天的微电子技术"。

分类聚酰亚胺可分成缩聚型和加聚型两种。

(1)缩聚型聚酰亚胺缩聚型芳香族聚酰亚胺是由芳香族二元胺和芳香族二酐、芳香族四羧酸或芳香族四羧酸二烷酯反应而制得的。

由于缩聚型聚酰亚胺的合成反应是在诸如二甲基甲酰胺、N -甲基吡咯烷酮等高沸点质子惰性的溶剂中进行的,而聚酰亚胺复合材料通常是采用预浸料成型工艺,这些高沸点质子惰性的溶剂在预浸料制备过程中很难挥发干净,同时在聚酰胺酸环化(亚胺化)期间亦有挥发物放出,这就容易在复合材料制品中产生孔隙,难以得到高质量、没有孔隙的复合材料。

因此缩聚型聚酰亚胺已较少用作复合材料的基体树脂,主要用来制造聚酰亚胺薄膜和涂料。

(2)加聚型聚酰亚胺由于缩聚型聚酰亚胺具有如上所述的缺点,为克服这些缺点,相继开发出了加聚型聚酰亚胺。

目前获得广泛应用的主要有聚双马来酰亚胺和降冰片烯基封端聚酰亚胺。

通常这些树脂都是端部带有不饱和基团的低相对分子质量聚酰亚胺,应用时再通过不饱和端基进行聚合。

①聚双马来酰亚胺聚双马来酰亚胺是由顺丁烯二酸酐和芳香族二胺缩聚而成的。

它与聚酰亚胺相比,性能不差上下,但合成工艺简单,后加工容易,成本低,可以方便地制成各种复合材料制品。

但固化物较脆。

②降冰片烯基封端聚酰亚胺树脂其中最重要的是由NASA Lewis 研究中心发展的一类PMR(for insitu polymerization of monomer reactants, 单体反应物就地聚合)型聚酰亚胺树脂。

R MR 型聚酰亚胺树脂是将芳香族四羧酸的二烷基酯、芳香族二元胺和5-降冰片烯-2,3-二羧酸的单烷基酯等单体溶解在一种尝基醇(例如甲醇或乙醇)中,为种溶液可直接用于浸渍纤维。

聚酰亚胺的性能1、全芳香聚酰亚胺按热重分析,其开始分解温度一般都在500℃左右。

由联苯四甲酸二酐和对苯二胺合成的聚酰亚胺,热分解温度达到600℃,是迄今聚合物中热稳定性最高的品种之一。

2、聚酰亚胺可耐极低温,如在-269℃的液态氦中不会脆裂。

3、聚酰亚胺具有优良的机械性能,未填充的塑料的抗张强度都在100Mpa 以上,均苯型聚酰亚胺的薄膜(Kapton)为170Mpa 以上,而联苯型聚酰亚胺(Upilex S)达到400Mpa。

作为工程塑料,弹性膜量通常为3-4Gpa,纤维可达到200Gpa,据理论计算,均苯四甲酸二酐和对苯二胺合成的纤维可达500Gpa,仅次于碳纤维。

4、一些聚酰亚胺品种不溶于有机溶剂,对稀酸稳定,一般的品种不大耐水解,这个看似缺点的性能却使聚酰亚胺有别于其他高性能聚合物的一个很大的特点,即可以利用碱性水解回收原料二酐和二胺,例如对于Kapton 薄膜,其回收率可达80%-90%。

改变结构也可以得到相当耐水解的品种,如经得起120℃,500 小时水煮。

5、聚酰亚胺的热膨胀系数在2×10-5-3×10-5℃,广成热塑性聚酰亚胺3×10-5℃,联苯型可达10-6℃,个别品种可达10-7℃。

6、聚酰亚胺具有很高的耐辐照性能,其薄膜在5×109rad 快电子辐照后强度保持率为90%。

7、聚酰亚胺具有良好的介电性能,介电常数为3.4 左右,引入氟,或将空气纳米尺寸分散在聚酰亚胺中,介电常数可以降到2.5 左右。

介电损耗为10-3,介电强度为100-300KV/mm,广成热塑性聚酰亚胺为300KV/mm,体积电阻为1017Ω/cm。

这些性能在宽广的温度范围和频率范围内仍能保持在较高的水平。

8、聚酰亚胺是自熄性聚合物,发烟率低。

9、聚酰亚胺在极高的真空下放气量很少。

10、聚酰亚胺无毒,可用来制造餐具和医用器具,并经得起数千次消毒。

有一些聚酰亚胺还具有很好的生物相容性,例如,在血液相容性实验为非溶血性,体外细胞毒性实验为无毒。

合成途径聚酰亚胺品种繁多、形式多样,在合成上具有多种途径,因此可以根据各种应用目的进行选择,这种合成上的易变通性也是其他高分子所难以具备的。

1、聚酰亚胺主要由二元酐和二元胺合成,这两种单体与众多其他杂环聚合物,如聚苯并咪唑、聚苯并哑唑、聚苯并噻唑、聚喹哑啉和聚喹啉等单体比较,原料来源广,合成也较容易。

二酐、二胺品种繁多,不同的组合就可以获得不同性能的聚酰亚胺。

2、聚酰亚胺可以由二酐和二胺在极性溶剂,如DMF,DMAC,NMP 或THE/甲醇混合溶剂中先进行低温缩聚,获得可溶的聚酰胺酸,成膜或纺丝后加热至300℃左右脱水成环转变为聚酰亚胺;也可以向聚酰胺酸中加入乙酐和叔胺类催化剂,进行化学脱水环化,得到聚酰亚胺溶液和粉末。

二胺和二酐还可以在高沸点溶剂,如酚类溶剂中加热缩聚,一步获得聚酰亚胺。

此外,还可以由四元酸的二元酯和二元胺反应获得聚酰亚胺;也可以由聚酰胺酸先转变为聚异酰亚胺,然后再转化为聚酰亚胺。

这些方法都为加工带来方便,前者称为PMR 法,可以获得低粘度、高固量溶液,在加工时有一个具有低熔体粘度的窗口,特别适用于复合材料的制造;后者则增加了溶解性,在转化的过程中不放出低分子化合物。

3、只要二酐(或四酸)和二胺的纯度合格,不论采用何种缩聚方法,都很容易获得足够高的分子量,加入单元酐或单元胺还可以很容易的对分子量进行调控。

4、以二酐(或四酸)和二胺缩聚,只要达到一等摩尔比,在真空中热处理,可以将固态的低分子量预聚物的分子量大幅度的提高,从而给加工和成粉带来方便。

5、很容易在链端或链上引入反应基团形成活性低聚物,从而得到热固性聚酰亚胺。

6、利用聚酰亚胺中的羧基,进行酯化或成盐,引入光敏基团或长链烷基得到双亲聚合物,可以得到光刻胶或用于LB 膜的制备。

7、一般的合成聚酰亚胺的过程不产生无机盐,对于绝缘材料的制备特别有利。

8、作为单体的二酐和二胺在高真空下容易升华,因此容易利用气相沉积法在工件,特别是表面凹凸不平的器件上形成聚酰亚胺薄膜。

聚酰亚胺的应用由于上述聚酰亚胺在性能和合成化学上的特点,在众多的聚合物中,很难找到如聚酰亚胺这样具有如此广泛的应用方面,而且在每一个方面都显示了极为突出的性能。

1、薄膜:是聚酰亚胺最早的商品之一,用于电机的槽绝缘及电缆绕包材料。

主要产品有杜邦Kapton,宇部兴产的Upilex 系列和钟渊Apical。

透明的聚酰亚胺薄膜可作为柔软的太阳能电池底版。

2. 涂料:作为绝缘漆用于电磁线,或作为耐高温涂料使用。

3. 先进复合材料:用于航天、航空器及火箭部件。

是最耐高温的结构材料之一。

例如美国的超音速客机计划所设计的速度为2.4M,飞行时表面温度为177℃,要求使用寿命为60000h,据报道已确定50%的结构材料为以热塑型聚酰亚胺为基体树脂的碳纤维增强复合材料,每架飞机的用量约为30t。

4. 纤维:弹性模量仅次于碳纤维,作为高温介质及放射性物质的过滤材料和防弹、防火织物。

5. 泡沫塑料:用作耐高温隔热材料。

6. 工程塑料:有热固性也有热塑型,热塑型可以模压成型也可以用注射成型或传递模塑。

主要用于自润滑、密封、绝缘及结构材料。

广成聚酰亚胺材料已开始应用在压缩机旋片、活塞环及特种泵密封等机械部件上。

7. 胶粘剂:用作高温结构胶。

广成聚酰亚胺胶粘剂作为电子元件高绝缘灌封料已生产。

8. 分离膜:用于各种气体对,如氢/氮、氮/氧、二氧化碳/氮或甲烷等的分离,从空气烃类原料气及醇类中脱除水分。

也可作为渗透蒸发膜及超滤膜。

由于聚酰亚胺耐热和耐有机溶剂性能,在对有机气体和液体的分离上具有特别重要的意义。

9. 光刻胶:有负性胶和正性胶,分辨率可达亚微米级。

与颜料或染料配合可用于彩色滤光膜,可大大简化加工工序。

10. 在微电子器件中的应用:用作介电层进行层间绝缘,作为缓冲层可以减少应力、提高成品率。

作为保护层可以减少环境对器件的影响,还可以对a-粒子起屏蔽作用,减少或消除器件的软误差(soft error)。

11. 液晶显示用的取向排列剂:聚酰亚胺在TN-LCD、SHN-LCD、TFT-CD 及未来的铁电液晶显示器的取向剂材料方面都占有十分重要的地位。

12. 电-光材料:用作无源或有源波导材料光学开关材料等,含氟的聚酰亚胺在通讯波长范围内为透明,以聚酰亚胺作为发色团的基体可提高材料的稳定性。

综上所述,不难看出聚酰亚胺之所以可以从60 年代、70 年代出现的众多的芳杂环聚合物脱颖而出,最终成为一类重要的高分子材料的原因。

聚酰亚胺是分子结构含有酰亚胺基链节的芳杂环高分子化合物,英文名Polyimide(简称PI),可分为均苯型PI,可溶性PI,聚酰胺-酰亚胺(PAI)和聚醚亚胺(PEI)四类。

PI 是目前工程塑料中耐热性最好的品种之一,有的品种可长期承受290℃高温短时间承受490℃的高温,另外力学性能、耐疲劳性能、难燃性、尺寸稳定性、电性能都好,成型收缩率小,耐油、一般酸和有机溶剂,不耐碱,有优良的耐摩擦,磨耗性能Pi 电子电器方面均有应用,电子工业上做印刷线路板、绝缘材料、耐热性电缆、接线柱、插座等领域。

相关文档
最新文档