2021年高考物理一轮复习课时跟踪检测(十二) 圆周运动
高考物理一轮复习 分层限时跟踪练12 圆周运动

分层限时跟踪练12 圆周运动(限时40分钟)一、单项选择题1.如图4313所示,一偏心轮绕垂直纸面的轴O匀速转动,a和b是轮上质量相等的两个质点,则偏心轮转动过程中a、b两质点( )图4313A.角速度大小相同B.线速度大小相同C.向心加速度大小相同D.向心力大小相同【解析】同轴转动,角速度大小相等,选项A正确;角速度大小相等,但转动半径不同,根据v=ωr、a=ω2r和F=mω2r可知,线速度、向心加速度和向心力大小均不同.选项B、C、D错误.【答案】 A2.水平放置的三个用不同材料制成的轮A、B、C用不打滑皮带相连,如图4314所示(俯视图),三轮的半径比为R A∶R B∶R C=3∶2∶1,当主动轮C匀速转动时,在三轮的边缘上放置同一小物块P,P均恰能相对静止在各轮的边缘上.设小物块P所受的最大静摩擦力等于滑动摩擦力,小物块P与轮A、B、C接触面间的动摩擦因数分别为μA、μB、μC,三轮A、B、C转动的角速度分别为ωA、ωB、ωC,则( )图4314A.μA∶μB∶μC=6∶3∶2B.μA∶μB∶μC=2∶3∶6C.ωA∶ωB∶ωC=1∶2∶3D.ωA∶ωB∶ωC=6∶3∶2【解析】因三轮用不打滑皮带连接,三轮边缘处线速度大小相等,由题意知μmg=m v2R,所以μA∶μB∶μC=2∶3∶6,A错误,B正确;由v=ωR知ωA∶ωB∶ωC=2∶3∶6,C、D错误.【答案】 B3.如图4315所示,一根不可伸长的轻绳一端拴着一个小球,另一端固定在竖直杆上,当竖直杆以角速度ω转动时,小球跟着杆一起做匀速圆周运动,此时绳与竖直方向的夹角为θ,下列关于ω与θ关系的图象正确的是( )图4315A B C D【解析】分析小球受力,其所受合外力F=mg tan θ.由牛顿第二定律,F=mω2L sinθ,联立解得:ω2=gL cos θ,则ω与θ关系的图象正确的是D.【答案】 D4.(2015·福建高考)如图4316所示,在竖直平面内,滑道ABC关于B点对称,且A、B、C三点在同一水平线上.若小滑块第一次由A滑到C,所用的时间为t1,第二次由C滑到A,所用的时间为t2,小滑块两次的初速度大小相同且运动过程始终沿着滑道滑行,小滑块与滑道的动摩擦因数恒定,则( )图4316A.t1<t2B.t1=t2C.t1>t2D.无法比较t1、t2的大小【解析】在滑道AB段上取任意一点E,比较从A点到E点的速度v1和从C点到E点的速度v2易知,v1>v2.因E点处于“凸”形轨道上,速度越大,轨道对小滑块的支持力越小,因动摩擦因数恒定,则摩擦力越小,可知由A滑到C比由C滑到A在AB段上的摩擦力小,因摩擦造成的动能损失也小.同理,在滑道BC段的“凹”形轨道上,小滑块速度越小,其所受支持力越小,摩擦力也越小,因摩擦造成的动能损失也越小,从C处开始滑动时,小滑动损失的动能更大.故综上所述,从A滑到C比从C滑到A在轨道上因摩擦造成的动能损失要小,整个过程中从A滑到C平均速度要更大一些,故t1<t2.选项A正确.【答案】 A5.如图4317所示,小球紧贴在竖直放置的光滑圆形管道内壁做圆周运动,内侧壁半径为R,小球半径为r,则下列说法正确的是( )图4317A.小球通过最高点时的最小速度v min=g(R+r)B.小球通过最高点时的最小速度v min=gRC.小球在水平线ab以下的管道中运动时,内侧管壁对小球一定无作用力D.小球在水平线ab以上的管道中运动时,外侧管壁对小球一定有作用力【解析】小球沿管道上升到最高点的速度可以为零,故A、B均错误;小球在水平线ab以下的管道中运动时,由外侧管壁对小球的作用力F N与小球重力在背离圆心方向的分力F mg的合力提供向心力,即F N-F mg=ma,因此,外侧管壁一定对小球有作用力,而内侧管壁无作用力,C正确;小球在水平线ab以上的管道中运动时,小球受管壁的作用力情况与小球速度大小有关,D错误.【答案】 C二、多项选择题6.如图4318所示,物体P用两根长度相等、不可伸长的细线系于竖直杆上,它随杆转动,若转动角速度为ω,则( )图4318A.ω只有超过某一值时,绳子AP才有拉力B.绳子BP的拉力随ω的增大而不变C.绳子BP的张力一定大于绳子AP的张力D.当ω增大到一定程度时,绳子AP的张力大于绳子BP的张力【解析】ω较小时,AP松弛,绳子BP的拉力随ω的增大而增大,故A选项正确,B 选项错误.当ω达到某一值ω0时,AP刚好绷紧.物体P受力分析如图所示,其合力提供向心力,竖直方向合力为零.故F BP>F AP,C选项正确,D选项错误.【答案】 AC7.(2015·浙江高考)如图4319所示为赛车场的一个水平“U ”形弯道,转弯处为圆心在O 点的半圆,内外半径分别为r 和2r .一辆质量为m 的赛车通过AB 线经弯道到达A ′B ′线,有如图所示的①、②、③三条路线,其中路线③是以O ′为圆心的半圆,OO ′=r .赛车沿圆弧路线行驶时,路面对轮胎的最大径向静摩擦力为F max .选择路线,赛车以不打滑的最大速率通过弯道(所选路线内赛车速率不变,发动机功率足够大),则( )图4319A .选择路线①,赛车经过的路程最短B .选择路线②,赛车的速率最小C .选择路线③,赛车所用时间最短D .①、②、③三条路线的圆弧上,赛车的向心加速度大小相等【解析】 由几何关系可得,路线①、②、③赛车通过的路程分别为:(πr +2r )、(2πr +2r )和2πr ,可知路线①的路程最短,选项A 正确;圆周运动时的最大速率对应着最大静摩擦力提供向心力的情形,即μmg =m v 2R,可得最大速率v =μgR ,则知②和③的速率相等,且大于①的速率,选项B 错误;根据t =s v,可得①、②、③所用的时间分别为t 1=(π+2)r μgr ,t 2=2r (π+1)2μgr ,t 3=2r π2μgr,其中t 3最小,可知线路③所用时间最短,选项C 正确;在圆弧轨道上,由牛顿第二定律可得:μmg =ma 向,a 向=μg ,可知三条路线上的向心加速度大小均为μg ,选项D 正确.【答案】 ACD8.(2016·孝感检测)如图4320所示,水平的木板B 托着木块A 一起在竖直平面内做匀速圆周运动,从水平位置a 沿逆时针方向运动到最高点b 的过程中,下列说法正确的是( )图4320A .木块A 处于超重状态B .木块A 处于失重状态C .B 对A 的摩擦力越来越小D .B 对A 的摩擦力越来越大【解析】 A 、B 一起做匀速圆周运动,合力提供向心力,加速度即向心加速度.水平位置a 沿逆时针方向运动到最高点b 的过程中,加速度大小不变,方向指向圆心.在竖直方向有竖直向下的分加速度,因此A 、B 都处于失重状态,A 错误,B 正确;对A 分析,加速度指向圆心,那么此过程中水平方向加速度逐渐减小,而能够提供A 水平加速度的力只有B 对A 的摩擦力,因此B 对A 的摩擦力越来越小,C 正确,D 错误.【答案】 BC9.如图4321所示,半径为R 的光滑半圆管道(内径很小)竖直放置,质量为m 的小球(可视为质点)以某一速度进入管内,小球通过最高点P 时,对管壁的压力为0.5mg .小球落地点到P 点的水平距离可能为( )图4321 A.2R B.3R C .2R D .6R【解析】 小球从管口飞出做平抛运动,设落地时间为t ,则2R =12gt 2,解得t =2R g .当小球在P 点对管壁下部有压力时,mg -0.5mg =mv 21R,解得v 1=gR 2;当小球在P 点对管壁上部有压力时,mg +0.5mg =mv 22R ,解得v 2=3gR 2,因此水平位移x 1=v 1t =2R ,x 2=v 2t =6R ,A 、D 正确.【答案】 AD三、非选择题10.如图4322所示,水平放置的圆筒绕其中心对称轴OO ′匀速转动,转动的角速度ω=2.5π rad/s ,桶壁上P 处有一个小圆孔,桶壁很薄,桶的半径R =2 m ,圆孔正上方h =3.2 m 处有一个小球由静止开始下落,已知圆孔的半径略大于小球的半径,试通过计算判断小球是否会和圆筒碰撞(空气阻力不计,g 取10 m/s 2).图4322【解析】 设小球下落h 时所用的时间为t 1,经过圆筒所用的时间为t 2,则有h =12gt 21,解得t 1=0.8 s ;h +2R =12g (t 1+t 2)2,解得t 2=0.4 s. 圆筒的运动周期T =2πω=0.8 s ,因为t 1=T ,t 2=T /2,故可知不会碰撞. 【答案】 不会和圆筒碰撞11.物体做圆周运动时所需的向心力F 需由物体运动情况决定,合力提供的向心力F 供由物体受力情况决定.若某时刻F 需=F 供,则物体能做圆周运动;若F 需>F 供,物体将做离心运动;若F 需<F 供,物体将做近心运动.现有一根长L =1 m 的刚性轻绳,其一端固定于O 点,另一端系着质量m =0.5 kg 的小球(可视为质点),将小球提至O 点正上方的A 点处,此时绳刚好伸直且无张力,如图4323所示.不计空气阻力,g 取10 m/s 2,则:图4323(1)为保证小球能在竖直面内做完整的圆周运动,在A 点至少应施加给小球多大的水平速度?(2)在小球以速度v 1=4 m/s 水平抛出的瞬间,绳中的张力为多少?(3)在小球以速度v 2=1 m/s 水平抛出的瞬间,绳中若有张力,求其大小;若无张力,试求绳子再次伸直时所经历的时间.【解析】 (1)小球做圆周运动的临界条件为重力刚好提供最高点时小球做圆周运动的向心力,即mg =m v 20L,解得v 0=gL =10 m/s. (2)因为v 1>v 0,故绳中有张力.根据牛顿第二定律有F T +mg =m v 21L, 代入数据得绳中张力F T =3 N.(3)因为v 2<v 0,故绳中无张力,小球将做平抛运动,其运动轨迹如图中实线所示,有L2=(y -L )2+x 2,x =v 2t ,y =12gt 2,代入数据联立解得t =0.6 s. 【答案】 (1)10 m/s (2)3 N (3)无张力,0.6 s12.如图4324所示,一不可伸长的轻绳上端悬挂于O 点,下端系一质量m =1.0 kg 的小球.现将小球拉到A 点(保持绳绷直)由静止释放,当它经过B 点时绳恰好被拉断,小球平抛后落在水平地面上的C 点.地面上的D 点与OB 在同一竖直线上,已知绳长L =1.0 m ,B 点离地高度H =1.0 m ,A 、B 两点的高度差h =0.5 m ,重力加速度g 取10 m/s 2,不计空气影响,求:图4324(1)地面上DC 两点间的距离s ;(2)轻绳所受的最大拉力大小.【解析】 (1)小球从A 到B 过程机械能守恒,有mgh =12mv 2B ①小球从B 到C 做平抛运动,在竖直方向上有H =12gt 2② 在水平方向上有s =v B t③由①②③式解得s =1.41 m . ④(2)小球下摆到达B 点时,绳的拉力和重力的合力提供向心力,有F -mg =m v 2B L⑤ 由①⑤式解得F =20 N根据牛顿第三定律F ′=-F轻绳所受的最大拉力为20 N.【答案】 (1)1.41 m (2)20 N。
【新高考】2021高考物理人教版一轮复习:课练 12 圆周运动的规律及其应用 (含解析)

课练12圆周运动的规律及其应用———[狂刷小题夯基础]———练基础小题1.A、B两艘快艇在湖面上做匀速圆周运动,在相同的时间内,它们通过的路程之比是6:5,运动方向改变的角度之比是5:4.则() A.它们的轨道半径之比是6:5B.它们的向心加速度大小之比是24:25C.它们的向心力大小之比是3:2D.它们的周期大小之比是4:52.极限滑板运动深受青少年喜爱,如图所示,某滑板运动员(可视为质点)由坡道进入竖直面内的圆弧性形滑道AB,从滑道的A点滑行到最低点B的过程中,由于摩擦力的存在,运动员的速率不变,则运动员沿AB下滑过程中()A.所受支持力始终恒定B.所受合外力大小不变C.所受摩擦力大小不变D.所受合外力始终为零3.我国高铁技术发展迅猛,目前处于世界领先水平.已知某路段为一半径为5 600 m的弯道,设计速度为216 km/h(此时车轮轮缘与轨道间无挤压).已知我国的高铁轨距约为1400 mm,且角度较小时可近似认为tan θ=sin θ,重力加速度g=10 m/s2,则此弯道内、外轨高度差应为()A.8 cm B.9 cm C.10 cm D.11 cm4.杂技演员表演“水流星”,在长为1.6 m的细绳的一端,系一个与水的总质量为M=0.5 kg的盛水容器,以绳的另一端为圆心,在竖直平面内做圆周运动,如图所示,若“水流星”通过最高点时的速率为 4 m/s,(g=10 m/s2)则下列说法正确的是()A .“水流星”通过最高点时,有水从容器中流出B .“水流星”通过最高点时,绳的张力及容器底部受到的压力均为零C .“水流星”通过最高点时,处于完全失重状态,不受力的作用D .“水流星”通过最高点时,绳子的拉力大小为5 N5.共享单车是一种新型、便捷的公共交通方式.如图是某共享单车采用的无链传动系统,杜绝了传统自行车“掉链子”问题.利用圆锥齿轮90°轴交,将动力传至后轴,驱动后轮转动.在圆锥齿轮90°轴交的示意图中,A 是圆锥齿轮转轴上的点,B 、C 分别是圆锥齿轮边缘上的点,A 、B 、C 三点到各自圆锥齿轮中心轴的距离分别记为r A 、r B 和r C (r A ≠r B ≠r C ).下列说法正确的是( )A .B 与C 点的角速度关系ωB =ωCB .C 与A 点的线速度关系v C =r B r Av A C .B 与A 点的角速度关系ωB =r A r BωA D .A 与C 点的向心加速度关系a A =r A r Ca C 6.(多选)2013年,我国航天员在“天宫一号”为青少年进行太空授课,运行中的“天宫一号”处于完全失重状态.在“天宫一号”中,长为L 的细线一端固定,另一端系一个小球,拉直细线,让小球在B 点以垂直于细线的速度v 0开始做圆周运动,如图所示.设“天宫一号”卫星轨道处的重力加速度为g ′,在小球运动的过程中,下列说法正确的是( )A .小球做匀速圆周运动B .细线拉力的大小不断变化C .只要v 0>0,小球就能通过A 点D .只有v 0≥5g ′L ,小球才能通过A 点练高考小题7.[2016·上海卷]风速仪结构如图(a)所示.光源发出的光经光纤传输,被探测器接收,当风轮旋转时,通过齿轮带动凸轮圆盘旋转,当圆盘上的凸轮经过透镜系统时光被遮挡.已知风轮叶片转动半径为r ,每转动n 圈带动凸轮圆盘转动一圈.若某段时间Δt 内探测器接收到的光强随时间变化关系如图(b)所示,则该时间段内风轮叶片( )A .转速逐渐减小,平均速率为4πnr ΔtB .转速逐渐减小,平均速率为8πnr ΔtC .转速逐渐增大,平均速率为4πnr ΔtD .转速逐渐增大,平均速率为8πnr Δt8.[2015·天津卷]未来的星际航行中,宇航员长期处于零重力状态,为缓解这种状态带来的不适,有人设想在未来的航天器上加装一段圆柱形“旋转舱”,如图所示.当旋转舱绕其轴线匀速旋转时,宇航员站在旋转舱内圆柱形侧壁上,可以受到与他站在地球表面时相同大小的支持力.为达到上述目的,下列说法正确的是( )A .旋转舱的半径越大,转动的角速度就应越大B .旋转舱的半径越大,转动的角速度就应越小C .宇航员质量越大,旋转舱的角速度就应越大D .宇航员质量越大,旋转舱的角速度就应越小9.[2019·江苏卷](多选)如图所示,摩天轮悬挂的座舱在竖直平面内做匀速圆周运动.座舱的质量为m ,运动半径为R ,角速度大小为ω,重力加速度为g ,则座舱( )A .运动周期为2πR ωB .线速度的大小为ωRC .受摩天轮作用力的大小始终为mgD .所受合力的大小始终为mω2R10.[2016·浙江卷](多选)如图所示为赛车场的一个水平“梨形”赛道,两个弯道分别为半径R =90 m 的大圆弧和r =40 m 的小圆弧,直道与弯道相切.大、小圆弧圆心O 、O ′距离L =100 m .赛车沿弯道路线行驶时,路面对轮胎的最大径向静摩擦力是赛车重力的2.25倍.假设赛车在直道上做匀变速直线运动,在弯道上做匀速圆周运动.要使赛车不打滑,绕赛道一圈时间最短(发动机功率足够大,重力加速度g =10 m/s 2,π=3.14),则赛车( )A .在绕过小圆弧弯道后加速B .在大圆弧弯道上的速率为45 m/sC .在直道上的加速度大小为5.63 m/s 2D .通过小圆弧弯道的时间为5.58 s11.[2015·浙江卷](多选)如图所示为赛车场的一个水平“U”形弯道,转弯处为圆心在O点的半圆,内外半径分别为r和2r.一辆质量为m的赛车通过AB线经弯道到达A′B′线,有如图所示的①、②、③三条路线,其中路线③是以O′为圆心的半圆,OO′=r.赛车沿圆弧路线行驶时,路面对轮胎的最大径向静摩擦力为F max.选择路线,赛车以不打滑的最大速率通过弯道(所选路线内赛车速率不变,发动机功率足够大),则()A.选择路线①,赛车经过的路程最短B.选择路线②,赛车的速率最小C.选择路线③,赛车所用时间最短D.①、②、③三条路线的圆弧上,赛车的向心加速度大小相等练模拟小题12.[2020·福建省三明一中摸底]半径为1 m的水平圆盘绕过圆心O的竖直轴匀速转动,A为圆盘边缘上一点,在O点的正上方将一个可视为质点的小球以4 m/s的速度水平抛出时,半径OA方向恰好与该初速度的方向相同,如图所示,若小球与圆盘只碰一次,且落在A点,则圆盘转动的角速度大小可能是()A.2π rad/s B.4π rad/sC.6π rad/s D.8π rad/s13.[2020·云南民族大学附中模拟]如图所示,一根细线下端拴一个金属小球P,细线的上端固定在金属块Q上,Q放在带小孔的水平桌面上.小球在某一水平面内做匀速圆周运动(圆锥摆).现使小球改到一个更高的水平面上做匀速圆周运动(图上未画出),金属块Q两次都保持在桌面上静止.则后一种情况与原来相比较,下列说法错误的是() A.Q受到桌面的支持力不变B.Q受到桌面的静摩擦力变大C.小球P运动的周期变大D.小球P运动的角速度变大14.[2020·广东省惠州调研](多选)如图所示,在匀速转动的水平圆盘上,沿半径方向放着用细绳相连的质量均为m的两个物体A和B,它们分居圆心两侧,与圆心距离分别为R A=r,R B=2r,与盘间的动摩擦因数μ相同,当圆盘转速缓慢加快到两物体刚好要发生滑动时,最大静摩擦力等于滑动摩擦力,则下列说法正确的是()A.此时绳子张力为3μmgB.此时A所受摩擦力方向沿半径指向圆内C.此时圆盘的角速度为2μg rD.此时烧断绳子,A仍相对盘静止,B将做离心运动15.[2020·重庆一中模拟]如图,半径为R的半球形陶罐固定在可以绕竖直轴旋转的水平转台上,转台转轴与过容器球心O的竖直线重合,转台以一定角速度ω匀速旋转.有两个质量均为m的小物块落入陶罐内,经过一段时间后,两小物块都随陶罐一起绕过球心,O的竖直轴转动且相对罐壁静止,两物块和球心O的连线相互垂直,且A物块和球心O的连线与竖直方向的夹角θ=60°,已知重力加速度大小为g,若A物块受到的摩擦力恰好为零,则B物块受到的摩擦力大小为()A.3-12mgB.3-14mgC.3-36mgD.3-236mg16.[新情景题](多选)质量为m 的小球通过轻绳a 和b 与两相互垂直的轻质木架上的A 点和C 点相连,如图所示,当木架AB 绕木架BC 以角速度ω匀速转动时,小球在水平面内做匀速圆周运动,此时轻绳a 竖直伸直,轻绳b 水平伸直,轻绳a 的长度为L a ,轻绳b 的长度为L b ,小球运动到图示位置时,轻绳b 被烧断,同时木架停止转动,已知重力加速度大小为g ,则( )A .小球仍在水平面内做匀速圆周运动B .在轻绳b 被烧断瞬间,轻绳a 中张力突然增大C .若ω=5gL a L b,则木架停止转动后小球不可能做完整的圆周运动D .若ω=3gL a L b,则木架停止转动后小球可能做完整的圆周运动 ———[综合测评 提能力]———一、单项选择题(本题共8小题,每小题3分,共24分)1.如图,广州塔摩天轮位于塔顶450米高空处,摩天轮由16个“水晶”观光球舱组成,沿着倾斜的轨道做匀速圆周运动,则在观光球舱中的某游客( )A .动量不变B .线速度不变C .所受的合外力不变D .机械能不守恒2.如图甲所示,一轻杆一端固定在O 点,另一端固定一小球,在竖直平面内做半径为R 的圆周运动.小球运动到最高点时,杆与小球间的弹力大小为F ,小球在最高点的速度大小为v ,F —v 2图象如图乙所示.下列说法正确的是( )A .当地的重力加速度大小为R bB .小球的质量为aR bC .当v 2=c 时,杆对小球弹力方向向上D .若v 2=2b ,则杆对小球弹力大小为2a3.[2020·湖南六校联考]一根细线一端系一小球(可视为质点),另一端固定在光滑圆锥顶上,如图所示,设小球在水平面内做匀速圆周运动的角速度为ω,细线的张力为F T ,则F T 随ω2变化的图象是( )4. 如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离2.5 m 处有一小物体与圆盘始终保持相对静止.物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g 取10 m/s 2.则ω的最大值是( )A. 5 rad/sB. 3 rad/sC.1.0 rad/s D.0.5 rad/s5.[新情境题]如图所示,ABC为竖直平面内的金属半圆环,AC连线水平,AB 为固定在A、B两点间的直金属棒,在直金属棒上和圆环的BC部分分别套着两个相同的小环M、N,现让半圆环绕对称轴以角速度ω匀速转动,半圆环的半径为R,小环M、N的质量均为m,棒和半圆环均光滑,已知重力加速度的大小为g,小环可视为质点,忽略空气阻力,则M、N两环做圆周运动的线速度大小的比值为()A.gR2ω4-g2B.g2-R2ω4gC.gg2-R2ω4D.R2ω4-g2g6.[2020·安徽六安一中模拟]如图所示,两个可视为质点的相同的木块A和B放在水平转盘上,两者用长为L的细绳连接,木块与转盘间的最大静摩擦力均为各自重力的k倍,A放在距离转轴L处,整个装置能绕通过转盘中心的转轴O1O2转动.开始时,绳恰好伸直但无弹力,现让该装置从静止开始转动,使角速度缓慢增大,以下说法不正确的是()A.当ω> 2kg3L时,A、B相对于转盘会滑动B.当ω> kg2L时,绳子一定有弹力C.当ω在kg2L<ω<2kg3L范围内增大时,B所受摩擦力变大D.当ω在0<ω< 2kg3L范围内增大时,A所受摩擦力一直变大7.如图所示,在竖直平面内固定两同心圆轨道,内外轨道均光滑,ab 是一条过直径的水平线.一质量为m 的小球从轨道的最低点以初速度v 0开始运动,球的直径略小于两圆半径之差,球运动的轨道半径为R ,不计空气阻力.下列说法正确的是( )A .若小球能通过圆轨道的最高点,则初速度v 0一定大于5gRB .若v 0>5gR ,则小球可做完整的圆周运动且对内轨道无压力C .若v 0<2gR ,则内圆轨道对小球有作用力D .若2gR <v 0<5gR ,则内圆轨道对小球一直没有作用力8.如图所示,竖直平面内固定有一光滑的绝缘轨道ABCD ,其中倾角θ的斜面AB 与半径为R 的圆弧轨道平滑相切于B 点,θ=60°,CD 为竖直方向的直径,O 为圆心,质量为m 的小球(可视为质点)从斜面上的A 点由静止释放,小球能够运动到D 点.已知A 、B 两点高度差为h ,则下列判断正确的是( )A .h 一定大于5R 2B .增大h ,小球运动到D 点对轨道的压力F 随h 的变化是非线性的C .增大h ,小球运动到C 、D 两点的速度之差为一定值D .小球运动到C 、D 两点时对轨道的压力之差与h 无关二、多项选择题(本题共2小题,每小题4分,共8分)9.[2020·陕西渭南质检]如图所示,甲、乙圆盘的半径之比为1:2,两水平圆盘紧靠在一起,乙靠摩擦随甲不打滑转动,两圆盘上分别放置质量为m 1和m 2的小物体a 、b ,m 1=2m 2,两小物体与圆盘间的动摩擦因数相同.a 距甲盘圆心r ,b 距乙盘圆心2r ,此时它们正随盘做匀速圆周运动,下列判断正确的是( )A .a 和b 的线速度之比为1 4B.a和b的向心加速度之比为2 1C.随转速慢慢增加,a先开始滑动D.随转速慢慢增加,b先开始滑动10.[2020·陕西西安模拟]如图所示,一质量为m的小球置于半径为R的光滑竖直圆轨道最低点A处,B为轨道最高点,弹簧一端固定于圆心O点,另一端与小球拴接.已知弹簧的劲度系数k=mgR,原长L=2R,弹簧始终处于弹性限度内,若给小球一水平初速度v0,已知重力加速度为g,则()A.当v0较小时,小球可能会离开圆轨道B.若2gR<v0<5gR,则小球会在B、D间脱离圆轨道C.只要v0>4gR,小球就能做完整的圆周运动D.只要小球能做完整的圆周运动,则小球与轨道间最大压力与最小压力之差与v0无关三、非选择题(本题共3小题,共35分)11.(10分)如图所示,一小球从A点以某一水平向右的初速度出发,沿水平直线轨道运动到B点后,进入半径R=10 cm的光滑竖直圆形轨道,圆形轨道间不相互重叠,即小球离开圆形轨道后可继续向C 点运动,C点右侧有一壕沟,C、D两点间的竖直高度h=0.8 m,水平距离s=1.2 m,水平轨道AB长为L1=1 m,BC长为L2=3 m,小球与水平轨道间的动摩擦因数μ=0.2,重力加速度g取10 m/s2.(1)若小球恰能通过圆形轨道的最高点,求小球在A点的初速度.(2)若小球既能通过圆形轨道的最高点,又不掉进壕沟,求小球在A点的初速度的范围.12.(11分)[2020·日照联合检测]如图所示,M 是水平放置的半径足够大的圆盘,绕过其圆心的竖直轴OO ′匀速转动,规定经过圆心O 且水平向右为x 轴正方向.在O 点正上方距盘面高为h =5 m 处有一个可间断滴水的容器,从t =0时刻开始,容器沿水平轨道向x 轴正方向做初速度为零的匀加速直线运动.已知t =0时刻滴下第一滴水,以后每当前一滴水刚好落到盘面时再滴下一滴水.(取g =10 m/s 2)(1)每一滴水离开容器后经过多长时间滴落到盘面上?(2)要使每一滴水在盘面上的落点都位于同一直线上,圆盘的角速度ω应为多大?(3)当圆盘的角速度为1.5π时,第二滴水与第三滴水在盘面上落点间的距离为2 m ,求容器的加速度a .13.(14分)一转动装置如图所示,四根轻杆OA 、OC 、AB 和CB与两小球及一小环通过铰链连接,轻杆长均为l ,球和环的质量均为m ,O 端固定在竖直的轻质转轴上.套在转轴上的轻质弹簧连接在O 与小环之间,原长为L .装置静止时,弹簧长为32L .转动该装置并缓慢增大转速,小环缓慢上升.弹簧始终在弹性限度内,忽略一切摩擦和空气阻力,重力加速度为g .求:。
2021年高考物理一轮复习 第四章 第3讲 圆周运动及其应用课时提能演练(十二)(含解析)鲁科版必修

2021年高考物理一轮复习第四章第3讲圆周运动及其应用课时提能演练(十二)(含解析)鲁科版必修2一、选择题(本大题共10小题,每小题7分,共70分。
每小题只有一个选项正确)1.质量为m的木块从半径为R的半球形的碗口下滑到碗的最低点的过程中,如果由于摩擦力的作用使木块的速率不变,那么( )A.因为速率不变,所以木块的加速度为零B.木块下滑过程中所受的合外力越来越大C.木块下滑过程中所受的摩擦力大小不变D.木块下滑过程中的加速度大小不变,方向始终指向球心【解析】选D。
由于木块沿圆弧下滑速率不变,故木块做匀速圆周运动,存在向心加速度,选项A错误;由牛顿第二定律得:F合=man=m,而v的大小不变,故合外力的大小不变,选项B错误;由于木块在滑动过程中与接触面的正压力是变化的,故滑动摩擦力在变化,选项C错误;木块在下滑过程中,速度的大小不变,所以向心加速度的大小不变,方向始终指向圆心,选项D正确。
2.如图所示,一质点沿螺旋线自外向内运动,已知其走过的弧长s与运动时间t成正比,关于该质点的运动,下列说法正确的是( )A.小球运动的线速度越来越大B.小球运动的加速度越来越小C.小球运动的角速度越来越小D.小球所受的合外力越来越大【解析】选D。
由于质点走过的弧长s与运动时间t成正比,质点运动的线速度大小不变,选项A错误;由于螺旋线的曲率半径r越来越小,由向心加速度公式a=可知向心加速度越来越大,所受合外力越来越大,选项B错误、D正确;由角速度公式ω=可知角速度越来越大,选项C错误。
3.如图所示,光滑水平面上,小球m在拉力F作用下做匀速圆周运动。
若小球运动到P点时,拉力F发生变化,关于小球运动情况的说法正确的是( )A.若拉力突然消失,小球将沿轨迹Pa做离心运动B.若拉力突然变小,小球将沿轨迹Pa做离心运动C.若拉力突然变大,小球将沿轨迹Pb做离心运动D.若拉力突然变小,小球将沿轨迹Pc运动【解析】选A。
若拉力突然消失,则小球沿着P点处的切线做匀速直线运动,选项A正确;若拉力突然变小,则小球做离心运动,但由于力与速度有一定的夹角,故小球做曲线运动,选项B、D错误;若拉力突然变大,则小球做近心运动,不会沿轨迹Pb做离心运动,选项C错误。
2021届高考物理:圆周运动含答案

运动轨迹是圆且在水平面内。
2.匀速圆周运动的受力特点
(1)物体所受合外力大小不变、方向总是指向圆心。
(2)合外力充当向心力。
3.解答匀速圆周运动问题的一般步骤
(1)选择研究对象、找出匀速圆周运动的圆心和半径。
(2)分析物体受力情况、其合外力提供向心力。
(3)由Fn=m 或Fn=mrω2或Fn=mr 列方程求解。
2.受力特点及轨迹
①当Fn=mω2r时、物体做匀速圆周运动。
②当Fn=0时、物体沿切线方向飞出。
③当Fn<mω2r时、物体逐渐远离圆心、做离心运动。
④当Fn>mω2r时、物体逐渐靠近圆心、做近心运动。
1.思考辨析(正确的画“√”、错误的画“×”)
(1)匀速圆周运动是匀加速曲线运动。(×)
(2)做匀速圆周运动的物体的向心加速度与半径成反比。(×)
2.(多选)(20xx·河南示范性高中联考)如图所示、A、B两小球用一根轻绳连接、轻绳跨过圆锥筒顶点处的光滑小定滑轮、圆锥筒的侧面光滑。当圆锥筒绕竖直对称轴OO′匀速转动时、两球都位于筒侧面上、且与筒保持相对静止、小球A到顶点O的距离大于小球B到顶点O的距离、则下列判断正确的是( )
A.A球的质量大
3.(多选)(20xx·沙市中学模拟)如图所示、在光滑的以角速度ω旋转的水平细杆上穿有质量分别为m和M的两球、两球用轻细线(不会断)连接、若M>m、则( )
A.当两球离轴距离相等时、两球可能相对杆静止
B.当两球离轴距离之比等于质量之比时、两球一定相对杆滑动
C.若两球相对于杆滑动、一定是都向穿有质量为M的球的一端滑动
常见的三种传动方式及特点
类型
模型
模型解读
2021届高三物理一轮复习课时规范练12圆周运动Word版含解析

课时标准练12圆周运动课时标准练第22页根底稳固组1.(圆周运动的运动学分析)某变速箱中有甲、乙、丙三个齿轮,其简化示意图如下图,其半径分别为r1、r2、r3,假设甲轮的角速度为ω,那么丙轮边缘上某点的向心加速度为()A. B. C. D.答案A解析甲、乙、丙的线速度大小相等,根据a=知甲、丙的向心加速度之比为r3∶r1,甲的向心加速度a甲=r1ω2,那么a丙=。
故A正确,B、C、D错误。
2.(圆周运动的运动学分析)(2021·江苏无锡测试)甲、乙、丙三个物体,甲放在海南,乙放在无锡,丙放在天津。
当它们随地球一起转动时。
以下说法正确的选项是()A.三个物体的角速度相等B.甲的线速度最小C.三个物体的线速度都相等D.甲的角速度最大答案A解析甲、乙、丙三个物体,甲放在海南,乙放在无锡,丙放在天津,它们随地球一起转动时它们的周期一样,角速度一样,甲的半径最大,由线速度和角速度的关系v=ωr知甲的线速度最大,故A正确,B、C、D错误。
3.(圆周运动的动力学分析)如下图,长为L的轻杆,一端固定一个质量为m的小球,另一端固定在水平转轴O上,杆随转轴O在竖直平面内匀速转动,角速度为ω,某时刻杆对球的作用力恰好与杆垂直,那么此时杆与水平面的夹角是()A.sin θ=B.tan θ=C.sin θ=D.tan θ=答案A解析小球所受重力和杆的作用力的合力提供向心力,当杆对球的作用力恰好与杆垂直时,根据牛顿第二定律有mg sin θ=mLω2,解得sin θ=。
故A正确,B、C、D错误。
4.(多项选择)(圆周运动的动力学分析)如下图,一根细线下端拴一个金属小球P,细线的上端固定在金属块Q上,Q放在带小孔(小孔光滑)的水平桌面上,小球在某一水平面内做匀速圆周运动(圆锥摆)。
现使小球改到一个更高一些的水平面上做匀速圆周运动(图中P'位置),两次金属块Q都静止在桌面上的同一点,那么后一种情况与原来相比拟,下面判断正确的选项是()A.Q受到桌面的支持力变大B.Q受到桌面的静摩擦力变大C.小球P运动的角速度变大D.小球P运动的周期变大〚导学号06400123〛答案BC解析金属块Q在桌面上保持静止,根据平衡条件知,Q受到的桌面的支持力大小等于其重力,保持不变,选项A错误;设细线与竖直方向的夹角为θ,细线的拉力大小为F T,细线的长度为L,小球P做匀速圆周运动时,由重力和细线的拉力的合力提供向心力,如下图,那么有F T=,F n=mg tan θ=mω2L sin θ,可得角速度ω=,周期T==2π,使小球改到一个更高一些的水平面上做匀速圆周运动时,θ增大,cos θ减小,那么细线拉力F T增大,角速度ω增大,周期T减小,选项C正确,D错误;对Q,由平衡条件知,Q受到桌面的静摩擦力变大,选项B正确。
高考物理一轮复习专项训练及答案解析—圆周运动

高考物理一轮复习专项训练及答案解析—圆周运动1.空中飞椅深受年轻人的喜爱,飞椅的位置不同,感受也不同,关于飞椅的运动,下列说法正确的是()A.乘坐飞椅的所有爱好者一起做圆周运动,最外侧的飞椅角速度最大B.缆绳一样长,悬挂点在最外侧的飞椅与悬挂在内侧的飞椅向心加速度大小相等C.飞椅中的人随飞椅一起做圆周运动,受重力、飞椅的支持力与向心力D.不管飞椅在什么位置,缆绳长短如何,做圆周运动的飞椅角速度都相同2.(2021·全国甲卷·15)“旋转纽扣”是一种传统游戏.如图,先将纽扣绕几圈,使穿过纽扣的两股细绳拧在一起,然后用力反复拉绳的两端,纽扣正转和反转会交替出现.拉动多次后,纽扣绕其中心的转速可达50 r/s,此时纽扣上距离中心1 cm处的点向心加速度大小约为()A.10 m/s2B.100 m/s2C.1 000 m/s2D.10 000 m/s23.无级变速箱是自动挡车型变速箱的一种,比普通的自动变速箱换挡更平顺,没有冲击感.如图为其原理图,通过改变滚轮位置实现在变速范围内任意连续变换速度.A、B为滚轮轴上两点,变速过程中主动轮转速不变,各轮间不打滑,则()A.从动轮和主动轮转动方向始终相反B.滚轮在B处时,从动轮角速度小于主动轮角速度C.滚轮从A到B,从动轮线速度先增大后减小D.滚轮从A到B,从动轮转速先增大后减小4.(2023·广东惠州市调研)如图所示,一根细线下端拴一个金属小球Q,细线穿过小孔(小孔光滑)另一端连接在金属块P上,P始终静止在水平桌面上,若不计空气阻力,小球在某一水平面内做匀速圆周运动(圆锥摆).实际上,小球在运动过程中不可避免地受到空气阻力作用.因阻力作用,小球Q的运动轨迹发生缓慢的变化(可视为一系列半径不同的圆周运动).下列判断正确的是()A.小球Q的位置越来越高B.细线的拉力减小C.小球Q运动的角速度增大D.金属块P受到桌面的静摩擦力增大5.如图所示,一个半径为5 m的圆盘正绕其圆心匀速转动,当圆盘边缘上的一点A处在如图所示位置的时候,在其圆心正上方20 m的高度有一个小球(视为质点)正在向边缘的A点以一定的速度水平抛出,取g=10 m/s2,不计空气阻力,要使得小球正好落在A点,则()A.小球平抛的初速度一定是2.5 m/sB.小球平抛的初速度可能是2.5 m/sC.圆盘转动的角速度一定是π rad/sD.圆盘转动的加速度大小可能是π2 m/s26.(2023·内蒙古包头市模拟)如图所示,两等长轻绳一端打结,记为O点,并系在小球上.两轻绳的另一端分别系在同一水平杆上的A、B两点,两轻绳与固定的水平杆夹角均为53°.给小球垂直纸面的速度,使小球在垂直纸面的竖直面内做往复运动.某次小球运动到最低点时,轻绳OB从O点断开,小球恰好做匀速圆周运动.已知sin 53°=0.8,cos 53°=0.6,则轻绳OB断开前后瞬间,轻绳OA的张力之比为()A.1∶1 B.25∶32C.25∶24 D.3∶47.(2023·浙江省镇海中学模拟)如图为自行车气嘴灯及其结构图,弹簧一端固定在A端,另一端拴接重物,当车轮高速旋转时,LED灯就会发光.下列说法正确的是()A.安装时A端比B端更远离圆心B.高速旋转时,重物由于受到离心力的作用拉伸弹簧从而使触点接触C.增大重物质量可使LED灯在较低转速下也能发光D.匀速行驶时,若LED灯转到最低点时能发光,则在最高点时也一定能发光8.(2023·浙江山水联盟联考)如图所示,内壁光滑的空心圆柱体竖直固定在水平地面上,圆柱体的内径为R.沿着水平切向给贴在内壁左侧O点的小滑块一个初速度v0,小滑块将沿着柱体的内壁旋转向下运动,最终落在柱体的底面上.已知小滑块可看成质点,质量为m,重力加速度为g,O点距柱体的底面距离为h.下列判断正确的是()A.v0越大,小滑块在圆柱体中运动时间越短B.小滑块运动中的加速度越来越大C.小滑块运动中对圆柱体内表面的压力越来越大D.小滑块落至底面时的速度大小为v02+2gh9.(2023·河北张家口市模拟)如图所示,O为半球形容器的球心,半球形容器绕通过O的竖直轴以角速度ω匀速转动,放在容器内的两个质量相等的小物块a和b相对容器静止,b与容器壁间恰好没有摩擦力的作用.已知a和O、b和O的连线与竖直方向的夹角分别为60°和30°,则下列说法正确的是()A.小物块a和b做圆周运动所需的向心力大小之比为3∶1B.小物块a和b对容器壁的压力大小之比为3∶1C.小物块a与容器壁之间无摩擦力D.容器壁对小物块a的摩擦力方向沿器壁切线向下10.(多选)(2023·山西吕梁市模拟)2022年2月12日,在速度滑冰男子500米决赛上,高亭宇以34秒32的成绩刷新奥运纪录.国家速度滑冰队在训练弯道技术时采用人体高速弹射装置,在实际应用中装置在前方通过绳子拉着运动员,使运动员做匀加速直线运动,到达设定速度时,运动员松开绳子,进行高速入弯训练,已知弯道半径为25 m,人体弹射装置可以使运动员在4.5 s内由静止达到入弯速度18 m/s,入弯时冰刀与冰面的接触情况如图所示,运动员质量为50 kg,重力加速度取g=10 m/s2,忽略弯道内外高度差及绳子与冰面的夹角、冰刀与冰面间的摩擦,下列说法正确的是()A .运动员匀加速运动的距离为81 mB .匀加速过程中,绳子的平均弹力大小为200 NC .运动员入弯时的向心力大小为648 ND .入弯时冰刀与水平冰面的夹角大于45°11.(2022·山东卷·8)无人配送小车某次性能测试路径如图所示,半径为3 m 的半圆弧BC 与长8 m 的直线路径AB 相切于B 点,与半径为4 m 的半圆弧CD 相切于C 点.小车以最大速度从A 点驶入路径,到适当位置调整速率运动到B 点,然后保持速率不变依次经过BC 和CD .为保证安全,小车速率最大为4 m/s ,在ABC 段的加速度最大为2 m/s 2,CD 段的加速度最大为1 m/s 2.小车视为质点,小车从A 到D 所需最短时间t 及在AB 段做匀速直线运动的最长距离l 为( )A .t =⎝⎛⎭⎫2+7π4 s ,l =8 m B .t =⎝⎛⎭⎫94+7π2 s ,l =5 mC .t =⎝⎛⎭⎫2+5126+76π6 s ,l =5.5 m D .t =⎣⎢⎡⎦⎥⎤2+512 6+(6+4)π2 s ,l =5.5 m 12.(2022·辽宁卷·13)2022年北京冬奥会短道速滑混合团体2 000米接力决赛中,我国短道速滑队夺得中国队在本届冬奥会的首金.(1)如果把运动员起跑后进入弯道前的过程看作初速度为零的匀加速直线运动,若运动员加速到速度v=9 m/s时,滑过的距离x=15 m,求加速度的大小;(2)如果把运动员在弯道滑行的过程看作轨道为半圆的匀速圆周运动,如图所示,若甲、乙两名运动员同时进入弯道,滑行半径分别为R甲=8 m、R乙=9 m,滑行速率分别为v甲=10 m/s、v乙=11 m/s,求甲、乙过弯道时的向心加速度大小之比,并通过计算判断哪位运动员先出弯道.答案及解析1.D 2.C 3.B 4.B 5.A6.B [轻绳OB 断开前,小球以A 、B 中点为圆心的圆弧做往复运动,设小球经过最低点的速度大小为v ,绳长为L ,小球质量为m ,轻绳的张力为F 1,由向心力公式有2F 1sin 53°-mg=m v 2L sin 53°,轻绳OB 断开后,小球在水平面内做匀速圆周运动,其圆心在A 点的正下方,设轻绳的张力为F 2,有F 2cos 53°=m v 2L cos 53°,F 2sin 53°=mg ,联立解得F 1F 2=2532,故B 正确.] 7.C [要使重物做离心运动,M 、N 接触,则A 端应靠近圆心,因此安装时B 端比A 端更远离圆心,A 错误;转速越大,所需向心力越大,弹簧拉伸越长,M 、N 能接触,灯会发光,不能说重物受到离心力的作用,B 错误;灯在最低点时有F 弹-mg =mrω2,解得ω=F 弹mr -g r ,又ω=2πn ,因此增大重物质量可使LED 灯在较低转速下也能发光,C 正确;匀速行驶时,灯在最低点时有F 1-mg =m v 2r ,灯在最高点时有F 2+mg =m v 2r,在最低点时弹簧对重物的弹力大于在最高点时对重物的弹力,因此匀速行驶时,若LED 灯转到最低点时能发光,则在最高点时不一定能发光,D 错误.]8.D [小滑块在竖直方向做自由落体运动,加速度恒定不变,根据h =12gt 2,可得t =2h g,可知小滑块在圆柱体中的运动时间与v 0无关,小滑块在水平方向的加速度大小也不变,则小滑块的加速度大小不变,故A 、B 错误;小滑块沿着圆柱体表面切向的速度大小不变,所需向心力不变,则小滑块运动中对圆柱体内表面的压力不变,故C 错误;小滑块落至底面时竖直方向的速度v y =2gh ,小滑块落至底面时的速度大小v =v 02+v y 2=v 02+2gh ,故D 正确.]9.A [a 、b 角速度相等,向心力大小可表示为F =mω2R sin α,所以a 、b 所需向心力大小之比为sin 60°∶sin 30°=3∶1,A 正确;对b 分析可得mg tan 30°=mω2R sin 30°,结合对b 分析结果,对a 分析有mω2R sin 60°<mg tan 60°,即支持力在指向转轴方向的分力大于所需要的向心力,因此摩擦力有背离转轴方向的分力,即容器壁对a 的摩擦力沿切线方向向上,C 、D错误;对b 有F N b cos 30°=mg ,对a 有F N a cos 60°+F f sin 60°=mg ,所以F N a F N b ≠cos 30°cos 60°=31,B 错误.]10.BC [运动员匀加速运动的距离为x =v 2t =182×4.5 m =40.5 m ,A 错误;在匀加速过程中,加速度a =v t =184.5m/s 2=4 m/s 2,由牛顿第二定律,绳子的平均弹力大小为F =ma =50×4 N =200 N ,B 正确;运动员入弯时所需的向心力大小为F n =m v 2r =50×18225N =648 N ,C 正确;设入弯时冰刀与水平冰面的夹角为θ,则tan θ=mg F n =gr v 2=250324<1,得θ<45°,D 错误.] 11.B [在BC 段的最大加速度为a 1=2 m/s 2,则根据a 1=v 1m 2r 1,可得在BC 段的最大速度为v 1m = 6 m/s ,在CD 段的最大加速度为a 2=1 m/s 2,则根据a 2=v 2m 2r 2,可得在BC 段的最大速度为v 2m =2 m/s<v 1m ,可知在BCD 段运动时的速度为v =2 m/s ,在BCD 段运动的时间为t 3=πr 1+πr 2v =7π2s ,若小车从A 到D 所需时间最短,则AB 段小车应先以v m 匀速,再以a 1减速至v ,AB 段从最大速度v m 减速到v 的时间t 1=v m -v a 1=4-22 s =1 s ,位移x 2=v m 2-v 22a 1=3 m ,在AB 段匀速的最长距离为l =8 m -3 m =5 m ,则匀速运动的时间t 2=l v m =54s ,则从A 到D 最短时间为t =t 1+t 2+t 3=(94+7π2) s ,故选B.] 12.(1)2.7 m/s 2 (2)225242甲 解析 (1)根据速度位移公式有v 2=2ax ,代入数据可得a =2.7 m/s 2(2)根据向心加速度的表达式a =v 2R可得甲、乙的向心加速度之比为a 甲a 乙=v 甲2v 乙2·R 乙R 甲=225242,甲、乙两物体做匀速圆周运动,则运动的时间为t =πR v ,代入数据可得甲、乙运动的时间为t 甲=4π5 s ,t 乙=9π11s .因t 甲<t 乙,所以甲先出弯道.。
2021年高考物理一轮复习课时分层集训12圆周运动新人教版

2021年高考物理一轮复习课时分层集训12圆周运动新人教版(限时:40分钟)[基础对点练]圆周运动中的运动学分析1.(2020·湖北省重点中学联考)如图4317所示,由于地球的自转,地球表面上P、Q两物体均绕地球自转轴做匀速圆周运动,关于P、Q两物体的运动,下列说法正确的是( )图4317A.P、Q两点的角速度大小相等B.P、Q两点的线速度大小相等C.P点的线速度比Q点的线速度大D.P、Q两物体均受重力和支持力两个力作用A[P、Q两点差不多上绕地轴做匀速圆周运动,角速度相等,即ωP=ωQ,选项A对;依照圆周运动线速度v=ωR,P、Q两点到地轴的距离不等,即P、Q两点圆周运动线速度大小不等,选项B错;Q点到地轴的距离远,圆周运动半径大,线速度大,选项C错;P、Q两物体均受到万有引力和支持力作用,二者的合力是圆周运动的向心力,我们把与支持力等大反向的平稳力即万有引力的一个分力称为重力,选项D错.]2.如图4318所示,B和C是一组塔轮,即B和C半径不同,但固定在同一转动轴上,其半径之比为R B∶R C=3∶2,A轮的半径大小与C轮相同,它与B轮紧靠在一起,当A轮绕过其中心的竖直轴转动时,由于摩擦作用,B轮也随之无滑动地转动起来.a、b、c分别为三轮边缘的三个点,则a、b、c三点在转动过程中的( )【导学号:】图4318A.线速度大小之比为3∶2∶2B.角速度之比为3∶3∶2C.转速之比为2∶3∶2D .向心加速度大小之比为9∶6∶4D [A 、B 轮摩擦传动,故v a =v b ,ωa R A =ωb R B ,ωa ∶ωb =3∶2;B 、C 同轴,故ωb=ωc ,v b R B =v cR C ,v b ∶v c =3∶2,因此v a ∶v b ∶v c =3∶3∶2,ωa ∶ωb ∶ωc =3∶2∶2,故A 、B 错误.转速之比等于角速度之比,故C 错误. 由a =ωv 得:a a ∶a b ∶a c =9∶6∶4,D 正确.]3.如图4319为某一皮带传动装置.主动轮的半径为r 1,从动轮的半径为r 2.已知主动轮做顺时针转动,转速为n 1,转动过程中皮带不打滑.下列说法正确的是( )图4319A .从动轮做顺时针转动B .从动轮做逆时针转动C .从动轮边缘线速度大小为r 22r 1n 1 D .从动轮的转速为r 2r 1n 1B [主动轮沿顺时针方向转动时,传送带沿M →N 方向运动,故从动轮沿逆时针方向转动,且两轮边缘线速度大小相等,故A 、C 错误,B 正确;由ω=2πn 、v =ωr可知,2πn 1r 1=2πn 2r 2,解得n 2=r 1r 2n 1,D 错误.]“玉兔号”月球车依靠太阳能电池板提供能量,如图ABCD 是一块矩形电池板,能绕CD 转动,E 为矩形的几何中心(未标出),则电池板旋转过程中( )A .B 、E 两点的转速相同 B .A 、B 两点的角速度不同C .A 、B 两点的线速度不同D .A 、E 两点的向心加速度相同A [依照题意,绕CD 匀速转动的过程中,电池板上各点的角速度相同,则转速相等,故A 正确,B 错误;依照线速度与角速度关系式v =ωr ,转动半径越小的,线速度也越小,由几何关系可知,A 、B 两点的线速度相等,故C 错误;A 、E 两点因角速度相同,半径不同,由向心加速度的公式a =ω2r 可知,它们的向心加速度不同,故D 错误.故选A .] 圆周运动中的动力学分析4.如图4320所示,小物体P 放在水平圆盘上随圆盘一起转动,下列关于小物体所受摩擦力F f 的叙述正确的是( )图4320A .F f 的方向总是指向圆心B .圆盘匀速转动时F f =0C .在物体与轴O 的距离一定的条件下,F f 跟圆盘转动的角速度成正比D .在转速一定的条件下,F f 跟物体到轴O 的距离成正比D [物体随圆盘转动过程中,假如圆盘匀速转动,则摩擦力指向圆心,假如变速转动,则摩擦力的一个分力充当向心力,另一个分力产生切向加速度,摩擦力不指向圆心,A 、B 错误;依照公式F n =F f =mω2r 可得在物体与轴O 的距离一定的条件下,F f 跟圆盘转动的角速度的平方成正比,C 错误;因为ω=2πn ,因此F f =m (2πn )2r ,则F f 跟物体到轴O 的距离成正比,D 正确.]5.如图4321所示,是马戏团中上演的飞车节目,在竖直平面内有半径为R 的圆轨道.表演者骑着摩托车在圆轨道内做圆周运动.已知人和摩托车的总质量为m ,人以v 1=2gR 的速度通过轨道最高点B ,并以v 2=3v 1的速度通过最低点A .则在A 、B 两点轨道对摩托车的压力大小相差( )【导学号:】图4321A .3mgB .4mgC .5mgD .6mgD [由题意可知,在B 点,有F B +mg =m v 21R ,解之得F B =mg ,在A 点,有F A -mg =m v 22R ,解之得F A =7mg ,因此A 、B 两点轨道对车的压力大小相差6mg .故选项D 正确.]6.如图4322所示,长为L 的轻杆,一端固定一个质量为m 的小球,另一端固定在水平转轴O 上,杆随转轴O 在竖直平面内匀速转动,角速度为ω,某时刻杆对球的作用力恰好与杆垂直,则现在杆与水平面的夹角是( )图4322A .sin θ=ω2Lg B .tan θ=ω2Lg C .sin θ=gω2LD .tan θ=gω2LA [小球所受重力和杆的作用力的合力提供向心力,依照牛顿第二定律有:mg sin θ=mLω2,解得sin θ=ω2Lg ,选项A 正确,B 、C 、D 错误.]7.如图4323所示,有一质量为m 的小球在光滑的半球形碗内做匀速圆周运动,轨道平面在水平面内,已知小球与半球形碗的球心O 的连线跟竖直方向的夹角为θ,半球形碗的半径为R .求小球做圆周运动的速度大小及碗壁对小球的弹力大小.【导学号:】图4323[解析] 由题图可知,小球做匀速圆周运动的圆心为O ′,运动半径为r =R sin θ,小球受重力G 及碗对小球弹力F N 的作用,向心 力为弹力的水平分力,受力分析如图所示.由牛顿第二定律得F N sin θ=m v 2R sin θ①竖直方向上小球的加速度为零,因此竖直方向上所受的合力为零,即F N cos θ=mg解得F N =mgcos θ②联立①②两式,可解得物体做匀速圆周运动的速度为v =Rg sin θtan θ.[答案] Rg sin θtan θ mgcos θ如图所示,轻绳的一端固定在O 点,另一端系一质量为m 的小球(可视为质点).当小球在竖直平面内沿逆时针方向做圆周运动时,通过传感器测得轻绳拉力T 、轻绳与竖直线OP 所成的角θ满足关系式T =a +b cos θ,式中a 、b 为常数.若不计空气阻力,则当地的重力加速度为( )A .b 2mB .2b mC .3b mD .b 3mD [设小球在最低点,即θ=0时的速度为v 1,拉力为T 1,在最高点,即θ=180°时的速度为v 2,拉力为T 2,在最低点有T 1-mg =m v 21R ,在最高点有T 2+mg =m v 22R ,依照动能定理有2mgR =12mv 21-12mv 22,可得T 1-T 2=6mg ,对比T =a +b cosθ,有T 1=a +b ,T 2=a -b ,故T 1-T 2=2b ,即6mg =2b ,故当地重力加速度g =b3m ,选项D 正确.]圆周运动与平抛运动的组合问题8.(2021·全国Ⅱ卷)如图4324所示,半圆形光滑轨道固定在水平地面上,半圆的直径与地面垂直.一小物块以速度v 从轨道下端滑入轨道,并从轨道上端水平飞出,小物块落地点到轨道下端的距离与轨道半径有关,此距离最大时对应的轨道半径为(重力加速度大小为g )( )图4324A .v 216g B .v 28g C .v 24gD .v 22gB [设小物块的质量为m ,滑到轨道上端时的速度为v 1.小物块上滑过程中,机械能守恒,有12mv 2=12mv 21+2mgR ①小物块从轨道上端水平飞出,做平抛运动,设水平位移为x ,下落时刻为t ,有2R =12gt 2②x =v 1t ③联立①②③式整理得x 2=⎝ ⎛⎭⎪⎫v 22g 2-⎝ ⎛⎭⎪⎫4R -v 22g 2可得x 有最大值v 22g ,对应的轨道半径R =v 28g .故选B .]9.如图4325所示,用长为L 的轻绳把一个小铁球悬挂在离水平地面高为2L 的O 点,小铁球以O 为圆心在竖直平面内做圆周运动且恰能到达最高点B 处.不计空气阻力,重力加速度为g .若运动到最高点轻绳断开,则小铁球落到地面时的速度大小为( )【导学号:】图4325A .3gLB .6gLC .7gLD .3gLC [小铁球恰能到达最高点,即在最高点只有重力提供向心力,设小铁球在最高点的速度为v 0,由向心力公式和牛顿第二定律可得mg =mv 20L ;从B 点到落地,设小铁球落地的速度大小为v ,由动能定理可得3mgL =12mv 2-12mv 20,联立可得v =7gL ,故选项C 正确,A 、B 、D 错误.]10.(多选)如图4326所示,半径为R 的水平圆盘中心轴正上方a 处水平抛出一小球,圆盘以角速度ω做匀速转动,当圆盘半径Ob 恰好转到与初速度方向相同且平行的位置时,将小球抛出,要使球与圆盘只碰一次,且落点为b ,重力加速度为g ,小球抛出点a 距圆盘的高度h 和小球的初速度v 0可能应满足( )图4326A .h =g π2ω2v 0=Rω2πB .h =8π2g ω2v 0=Rω4π C .h =2g π2ω2v 0=Rω6πD .h =32π2g ω2v 0=Rω8πBD [因圆盘转动具有周期性,则当小球落到b 点时,圆盘转过的角度θ=2πk (k=1,2,3,…),由ω=θt ,可得圆盘的角速度ω=2πkt (k =1,2,3,…),因小球做平抛运动,则小球下落高度h =12gt 2=2π2gk 2ω2(k =1,2,3,…),初速度v 0=R t =Rω2πk (k =1,2,3,…),将k 的取值代入可知,当k 取2和4时B 、D 项正确.][考点综合练]11.(多选)(2020·南通模拟)如图4327所示,一个固定在竖直平面内的光滑半圆形管道,管道里有一个直径略小于管道内径的小球,小球在管道内做圆周运动,从B 点脱离后做平抛运动,通过0.3 s 后又恰好与倾角为45°的斜面垂直相碰.已知半圆形管道的半径为R =1 m ,小球可看做质点且其质量为m =1 kg ,g 取10 m/s 2.则( )【导学号:】图4327A .小球在斜面上的相碰点C 与B 点的水平距离是0.9 mB .小球在斜面上的相碰点C 与B 点的水平距离是1.9 m C .小球通过管道的B 点时,受到管道的作用力N B 的大小是1 ND .小球通过管道的B 点时,受到管道的作用力N B 的大小是2 NAC [依照平抛运动规律,小球在C 点的竖直分速度v y =gt =3 m/s ,水平分速度v x =v y tan 45°=3 m/s ,则B 点与C 点的水平距离为x =v x t =0.9 m ,选项A 正确,B 错误;设在B 点管道对小球的作用力方向向下,依照牛顿第二定律,有N B +mg =m v 2BR ,v B =v x =3 m/s ,解得N B =-1 N ,负号表示管道对小球的作用力方向向上,选项C 正确,D 错误.]12.(多选)如图4328甲所示,轻杆一端固定在O 点,另一端固定一小球,现让小球在竖直平面内做半径为R 的圆周运动.小球运动到最高点时,杆与小球间弹力大小为F ,小球在最高点的速度大小为v ,其F v 2图象如图乙所示.则( )甲 乙图4328A .小球的质量为aRbB .当地的重力加速度大小为RbC .v 2=c 时,小球对杆的弹力方向向上 D .v 2=2b 时,小球受到的弹力与重力大小相等ACD [对小球在最高点进行受力分析,速度为零时,F -mg =0,结合图象可知a -mg =0;当F =0时,由牛顿第二定律可得mg =mv 2R ,结合图象可知mg =mbR ,联立解得g =b R ,m =aRb ,选项A 正确,B 错误.由图象可知b <c ,当v 2=c 时,依照牛顿第二定律有F +mg =mcR ,则杆对小球有向下的拉力,由牛顿第三定律可知,选项C 正确;当v 2=2b 时,由牛顿第二定律可得mg +F ′=m ·2bR ,可得F ′=mg ,选项D 正确.]13.小明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m 的小球,甩动手腕,使球在竖直平面内做圆周运动.当球某次运动到最低点时,绳突然断掉,球飞行水平距离d 后落地,如图4329所示.已知握绳的手离地面高度为d ,手与球之间的绳长为34d ,重力加速度为g ,忽略手的运动半径和空气阻力.图4329(1)求绳断时球的速度大小v 1和球落地时的速度大小v 2; (2)求绳能承担的最大拉力;(3)改变绳长,使球重复上述运动,若绳仍在球运动到最低点时断掉,要使球抛出的水平距离最大,绳长应是多少?最大水平距离为多少?【导学号:】[解析] (1)设绳断后球飞行时刻为t ,由平抛运动规律得 竖直方向14d =12gt 2 水平方向d =v 1t 解得v 1=2gd由动能定理得:mg ⎝ ⎛⎭⎪⎫1-34d =12mv 22-12mv 21解得v 2=52gd .(2)设绳能承担的最大拉力大小为F T ,这也是球受到绳的最大拉力大小.球做圆周运动的半径为R =34d对小球在最低点由牛顿第二定律得F T -mg =mv 21R解得F T =113mg .(3)设绳长为l ,绳断时球的速度大小为v 3,绳承担的最大拉力不变.由牛顿第二定律得F T -mg =mv 23l解得v 3=83gl绳断后球做平抛运动,竖直位移为d -l ,水平位移为x ,时刻为t 1,则 竖直方向d -l =12gt 21 水平方向x =v 3t 1解得x =4l d -l3当l =d2时,x 有极大值,x max =233d . [答案](1)2gd 52gd (2)113mg (3)d 2 233d(2021·黑龙江省实验中学模拟)如图所示,BC 为半径r =0.4 2 m 竖直放置的用光滑圆管制成的圆弧形轨道,O 为轨道的圆心,在圆管的末端C 连接倾斜角为45°、动摩擦因数μ=0.6的足够长粗糙斜面,一质量为m =0.5 kg 的小球从O 点正上方某处A 点以速度v 0水平抛出,恰好能垂直OB 从B 点进入圆管,小球从进入圆管开始受到始终竖直向上的力F =5 N 的作用,当小球运动到圆管的末端C 时作用力F 赶忙消逝,小球能平滑地冲上粗糙斜面,不计空气阻力.(g 取10 m/s 2)求:(1)小球从O 点的正上方某处A 点水平抛出的初速度v 0和OA 的距离; (2)小球在圆管中运动时对圆管的压力; (3)小球在CD 斜面上运动的最大位移.[解析] (1)小球从A 运动到B 为平抛运动,有r sin 45°=v 0t ,在B 点,有tan 45°=gtv 0,解以上两式得v 0=2 m/s ,t =0.2 s ,则AB 竖直方向的距离为h =12gt 2=0.2 m ,OB 竖直方向距离为h ′=r sin 45°=0.4 m ,则OA =h +h ′=0.2 m +0.4 m =0.6m .(2)在B 点据平抛运动的速度规律有v B =v 0sin 45°=2 2 m/s ,小球在圆管中的受力为三个力:由于重力(mg =5 N)与外加的力F 平稳,故小球所受的合力仅为圆管的外侧对它的压力,得小球在圆管中做匀速圆周运动,由匀速圆周11 / 11 运动的规律得,圆管对小球的作用力为F N =mv 2B r =5 2 N ,依照牛顿第三定律得,小球对圆管的压力为5 2 N .(3)在CD 斜面上运动到最高点的过程,依照牛顿第二定律得mg sin 45°+μmg cos 45°=ma ,解得a =g sin 45°+μg cos 45°=8 2 m/s 2,依照速度-位移关系公式,有x =v 2B 2a =24 m .[答案](1)2 m/s 0.6 m (2)5 2 N (3)24 m。
2021届新高考物理能力培养专训——《圆周运动及应用》复习检测(Word版附答案)

圆周运动及其应用时间:60分钟满分:100分一、选择题(本题共11小题,每小题7分,共77分。
其中1~9题为单选,10~11题为多选)1.如图所示,质量相等的A、B两物体紧贴在匀速转动的圆筒的竖直内壁上,随圆筒一起做匀速圆周运动,则下列关系中正确的是()A.线速度v A=v BB.角速度ωA=ωBC.受到的合力F A合=F B合D.受到的摩擦力F f A>F f B2.在修筑铁路时,弯道处的外轨会略高于内轨。
如图所示,当火车以规定的行驶速度转弯时,内、外轨均不会受到轮缘的挤压,设此时的速度大小为v,重力加速度为g,两轨所在面的倾角为θ,则()A.该弯道的半径r=v2 g sinθB.当火车质量改变时,规定的行驶速度大小随之变化C.当火车速率大于v时,外轨将受到轮缘的挤压D.当火车以规定速度行驶时,火车只受重力和支持力3.如图所示,粗糙水平圆盘上,质量相等的A、B两物块叠放在一起,随圆盘一起做匀速圆周运动,则下列说法不正确的是()A.B的向心力是A的向心力的2倍B.盘对B的摩擦力是B对A的摩擦力的2倍C.A、B都有沿半径向外滑动的趋势D.若B先滑动,则B对A的动摩擦因数μA大于盘对B的动摩擦因数μB4.如图所示,两个相同材料制成的水平摩擦轮A和B,两轮半径R A=2R B,A 为主动轮。
当A轮匀速转动时,在A轮边缘处放置的小木块恰能在A轮的边缘上与A轮相对静止,若将小木块放在B轮上让其相对B轮静止,木块与B轮转轴间的最大距离为()A.R B8 B.R B2C.R BD.R B 45.如图,有一倾斜的匀质圆盘(半径足够大),盘面与水平面的夹角为θ,绕过圆心并垂直于盘面的转轴以角速度ω匀速转动,有一物体(可视为质点)与盘面间的动摩擦因数为μ(设最大静摩擦力等于滑动摩擦力),重力加速度为g。
要使物体能与圆盘始终保持相对静止,则物体与转轴间最大的距离为()A.μg cosθω2 B.g sinθω2C.μcosθ-sinθω2g D.μcosθ+sinθω2g6.一根细线一端系一小球(可视为质点),另一端固定在光滑圆锥顶上,如图所示,设小球在水平面内做匀速圆周运动的角速度为ω,细线的张力为F T,则F T随ω2变化的图象是()7.如图所示,竖直平面内有一光滑圆环,圆心为O,OA连线水平,AB为固定在A、B两点间的光滑直杆,在直杆和圆环上分别套着一个相同的小球M、N。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时跟踪检测(十二)圆周运动[A级——基础小题练熟练快]1.(2019·浙江十校联盟3月适应性考试)如图所示是一种古老的舂米机。
舂米时,稻谷放在石臼A中,横梁可以绕O转动,在横梁前端B处固定一舂米锤,脚踏在横梁另一端C点往下压时,舂米锤便向上抬起。
然后提起脚,舂米锤就向下运动,击打A中的稻谷,使稻谷的壳脱落,稻谷变为大米。
已知OC>OB,则在横梁绕O转动过程中()A.B、C的向心加速度相等B.B、C的角速度关系满足ωB<ωCC.B、C的线速度关系满足v B<v CD.舂米锤击打稻谷时对稻谷的作用力大于稻谷对舂米锤的作用力解析:选C由题图可知,B与C属于共轴转动,则它们的角速度是相等的,即ωC=ωB,向心加速度a=ω2r,因OC>OB,可知C的向心加速度较大,选项A、B错误;由于OC>OB,由v=ωr可知C点的线速度大,选项C正确;舂米锤对稻谷的作用力和稻谷对舂米锤的作用力是一对作用力与反作用力,二者大小相等,选项D错误。
2.如图为学员驾驶汽车在水平面上绕O点做匀速圆周运动的俯视示意图。
已知质量为60 kg的学员在A点位置,质量为70 kg的教练员在B点位置,A点的转弯半径为5.0 m,B点的转弯半径为4.0 m。
学员和教练员(均可视为质点)()A.运动周期之比为5∶4B.运动线速度大小之比为1∶1C.向心加速度大小之比为4∶5D.受到的合力大小之比为15∶14解析:选D汽车上A、B两点随汽车做匀速圆周运动的角速度和周期均相等,由v=ωr可知,学员和教练员做圆周运动的线速度大小之比为5∶4,故A、B均错误;根据a=rω2,学员和教练员做圆周运动的半径之比为5∶4,则学员和教练员做圆周运动的向心加速度大小之比为5∶4,故C错误;根据F=ma,学员和教练员做圆周运动的向心加速度大小之比为5∶4,质量之比为6∶7,则学员和教练员受到的合力大小之比为15∶14,故D正确。
3.(多选)(2019·齐鲁名校联考)游乐园里有一种叫“飞椅”的游乐项目,简化后如图所示。
已知飞椅用钢绳系着,钢绳上端的悬点固定在顶部水平转盘的圆周上。
转盘绕穿过其中心的竖直轴匀速转动。
稳定后,每根钢绳(含游客)与转轴在同一竖直平面内。
图中P 、Q 两位游客悬于同一个圆周上,P 所在钢绳的长度大于Q 所在钢绳的长度,钢绳与竖直方向的夹角分别为θ1、θ2。
不计钢绳和飞椅的重力。
下列判断正确的是( )A .P 、Q 两位游客的线速度大小相同B .无论两位游客的质量分别有多大,θ1一定大于θ2C .如果两位游客的质量相同,则有θ1等于θ2D .如果两位游客的质量相同,则Q 的向心力一定小于P 的向心力解析:选BD 设钢绳延长线与转轴的交点到游客所在水平面的距离为h (这是一个巧妙的参量,将会使推导大为简化——由圆锥摆而受到的启发),钢绳延长线与竖直方向的夹角为θ,由mg tan θ=mω2h tan θ,所以h =g ω2,与游客的质量无关,即h P =h Q (这是一个非常重要的结论)。
而h =L cos θ+r tan θ,其中r 为转盘半径,L 为钢绳的长度,分析可知,L 越大则θ越大,θ1一定大于θ2,选项B 正确,C 错误。
圆周运动的半径为R =r +L sin θ,可得R P >R Q ,根据v =ωR ,则v P >v Q ,选项A 错误。
由向心力公式F n =mω2R 可知,如果两位游客的质量相同,则Q 的向心力一定小于P 的向心力,选项D 正确。
4.(多选)如图所示,半径为R 的内壁光滑的圆管固定在竖直平面内,直径略小于圆管内径的两质量均为m =0.1 kg 的小球在圆管内转动,当小球A 以v A =2gR 的速度通过最高点时,小球B 刚好以v B =3v A的速度通过最低点,忽略一切摩擦和空气阻力,重力加速度g =10 m/s 2。
则下列说法正确的是( )A .小球A 在最高点时,对管内壁的压力大小为1 NB .小球A 在最高点时,对管外壁的压力大小为1 NC .小球B 在最低点时,对管外壁的压力大小为7 ND .小球B 在最低点时,对管外壁的压力大小为6 N解析:选BC 小球A 在最高点对圆管作用力为零时,由mg =m v 02R,解得v 0=gR 。
由于小球A 在最高点的速度v A >gR ,故小球A 与圆管的外壁有力的作用,则由小球A 所受的合力提供所需向心力得F A +mg =m v A 2R ,又v A =2gR ,联立并代入数据解得F A =1 N ,由牛顿第三定律可知,此时小球A 对管外壁的压力大小为1 N ,A 错误,B 正确。
小球B 在最低点时,受圆管外壁向上的作用力,则由小球B 所受的合力提供所需的向心力得F B -mg =m v B 2R,又v B =3v A ,联立并代入数据解得F B =7 N ,由牛顿第三定律可知,此时小球B 对管外壁的压力大小为7 N ,C 正确,D 错误。
5.(2019·南通第一次模拟)如图所示,长为L 的细绳,一端拴一质量为m 的小球,另一端悬挂在距光滑水平面H 高处(L >H )。
现使小球在水平桌面上以角速度为ω做匀速圆周运动,则小球对桌面的压力为( )A .mgB .mg -mω2HC .mg ⎝⎛⎭⎫1-H LD .mgH L解析:选B 对小球受力分析,如图:根据牛顿第二定律,水平方向:T sin θ=mω2·L sin θ,竖直方向:T cos θ+N =mg ,联立得:N=mg -mω2·L cos θ=mg -mω2H ,根据牛顿第三定律:N ′=N =mg-mω2H ,故B 正确,A 、C 、D 错误。
6.(2019·临沂模拟)如图所示,手持一根长为l 的轻绳的一端在水平桌面上做半径为r 、角速度为ω的匀速圆周运动,绳始终保持与该圆周相切,绳的另一端系一质量为m 的小木块,木块也在桌面上做匀速圆周运动,不计空气阻力,则( )A .木块受重力、桌面的支持力和绳子的拉力作用B .绳的拉力大小为mω2l 2+r 2C .手对木块不做功D .手拉木块做功的功率等于mω3r (l 2+r 2)l解析:选D 木块受重力、桌面的支持力和绳子的拉力、桌面摩擦力作用,故A 错误;手握着细绳做的是匀速圆周运动,所以细绳的另外一端木块做的也是匀速圆周运动,设大圆半径为R ,由图分析可知R =r 2+l 2,设绳中张力为F T ,则F T cos φ=mRω2,cos φ=l R ,故F T =mω2R 2l ,所以B 错误;绳子拉力对木块做功,则手的拉力对木块做功,故C 错误;手拉木块做功的功率P =F T v sin φ=mω2R 2l ·ωr =mω3r (r 2+l 2)l,故D 正确。
7.(2019·湖南怀化联考)质量为m 的小球由轻绳a 和b 分别系于一轻质细杆的B 点和A 点,如图所示,绳a 与水平方向成θ角,绳b 在水平方向且长为l ,当轻杆绕轴AB 以角速度ω匀速转动时,小球在水平面内做匀速圆周运动,则下列说法正确的是( )A .a 绳的张力可能为零B .a 绳的张力随角速度的增大而增大C .当角速度ω> g cot θl时,b 绳将出现弹力 D .若b 绳突然被剪断,则a 绳的弹力一定发生变化解析:选C 由于小球m 的重力不为零,a 绳的张力不可能为零,b 绳的张力可能为零,选项A 错误;由于a 绳的张力在竖直方向的分力等于重力,所以a 绳的张力随角速度的增大不变,b 绳的张力随角速度的增大而增大,选项B 错误;若b 绳中的张力为零,设a 绳中的张力为F ,对小球m ,F sin θ=mg ,F cos θ=mω2l ,联立解得:ω=g cot θl ,即当角速度ω> g cot θl ,b 绳将出现弹力,选项C 正确;当ω= g cot θl时,b 绳突然被剪断,a 绳的弹力不发生变化,选项D 错误。
8.(2019·鞍山调研)用光滑圆管制成如图所示的轨道,竖直立于水平地面上,其中ABC 为圆轨道的一部分,CD 为倾斜直轨道,二者相切于C 点。
已知圆轨道的半径R =1 m ,倾斜轨道CD 与水平地面的夹角为θ=37°。
现将一小球以一定的初速度从A 点射入圆管,小球直径略小于圆管的直径,取重力加速度g =10 m/s 2,sin 37°=0.6,cos 37°=0.8。
求小球通过倾斜轨道CD 的最长时间(结果保留一位有效数字)。
解析:小球通过倾斜轨道时间若最长,则小球到达圆轨道的最高点的速度为0,从最高点到C 点:对小球由动能定理可得:mgh =12m v C 2 由几何关系得:h =R -R cos θ小球在CD 段做匀加速直线运动,由位移公式得:L =v C t +12at 2 CD 的长度为:L =R (1+cos θ)sin θ对小球利用牛顿第二定律可得:mg sin θ=ma代入数据联立解得:t=0.7 s。
答案:0.7 s[B级——增分题目练通抓牢]9.(2020·长春质检)如图所示,一个菱形框架绕过其对角线的竖直轴匀速转动,在两条边上各套有一个质量均为m的小球A、B,转动过程中两小球相对框架静止,且到竖直轴的距离相等,则下列说法正确的是()A.框架对球A的弹力方向一定垂直框架向下B.框架对球B的弹力方向可能垂直框架向下C.球A与框架间可能没有摩擦力D.球A、球B所受的合力大小相等解析:选D球在水平面内做匀速圆周运动,合外力指向圆心,对A进行受力分析可知,A受重力,静摩擦力方向沿框架向上,框架对A的弹力方向可能垂直框架向下,也可能垂直框架向上,故A错误。
对B受力分析可知,要使合力水平向右,框架对B的弹力方向一定垂直框架向上,故B错误。
若A与框架间没有摩擦力,则A只受重力和框架对A的弹力,两个力的合力方向不可能水平向左,故C错误。
A、B两球匀速转动的角速度相等,半径也相等,根据F=mω2r,可知两球的合力大小相等,故D正确。
10.(2019·宿迁2月调研)如图所示,半径为R的半球形容器固定在水平转台上,转台绕过容器球心O的竖直轴线以角速度ω匀速转动。
质量不同的小物块A、B随容器转动且相对器壁静止,A、B和球心O点连线与竖直方向的夹角分别为α和β,α>β。
则()A.A的质量一定小于B的质量B.A、B受到的摩擦力可能同时为零C.若A不受摩擦力,则B受沿容器壁向上的摩擦力D.若ω增大,A、B受到的摩擦力可能都增大解析:选D当B受到的摩擦力恰为零时,受力分析如图;根据牛顿第二定律得:mg tan β=mωB2R sin β,解得:ωB=g,同理可R cos β,物块转动角速度与物块的质量无关,所以无法判得:ωA=gR cos α断质量的大小;由于α>β,所以ωA>ωB,即A、B受到的摩擦力不可能同时为零;若A 不受摩擦力,此时转台的角速度为ωA >ωB ,则B 物块有向上的运动趋势,所以此时B 受沿容器壁向下的摩擦力;如果转台角速度ω>ωA ,A 和B 受沿容器壁向下的摩擦力,如果角速度增大,A 、B 受到的摩擦力都增大,故只有D 正确。