专题 数轴上的动点七上
2023-2024年人教版七年级上册数学期末动点问题压轴题专题训练(含答案)

2023-2024年人教版七年级上册数学期末动点问题压轴题专题训练(1) ______, ______(1)若点P 到A 、B 两点的距离都相等,请直接写出点P 对应的数(2)数轴上是否存在点P ,使点P 到点A ,点B 的距离之和为10=a b =(1)___________,___________.(2)若在数轴上有两动点、分别从同时出发向右运动,点的速度为2个单位长度/秒,点的速度为1个单位长度秒,当点在点追上了点,求点对应的数为多少?=a c =P Q A B ,P Q P D Q D(1)写出数轴上点B 表示的数 ;(2)表示5与3之差的绝对值,实际上也可理解为(1)求出线段的长度;(1)点表示的数为________,点|53|-AB A(1)请直接写出a 、b 、c 的值. ______,设点P 运动时间为t 秒.(1)若M ,N ,P 三点同时出发,=a(1)数轴上点B 表示的数是 ;当点P 运动到(1)则______,______. A =a b =(1)A 点所表示的数是___________,C 点所表示的数是___________;(2)若动点P 从点C 出发,以每秒3个单位长度的速度沿数轴向左移动,同时另一动点Q 恰好从点A 出发,以每秒2个单位长度的速度沿数轴向右移动,设点P 和点Q 在数轴上的点M 相遇,求点M所表示的数是多少?(3)若动点P 从C 点出发,以每秒3个单位长度的速度沿数轴向左运动,另一动点Q 恰好从A 点出发,以每秒2个单位长度的速度沿数轴也向左运动,是否存在时间t ,使得P ,Q 到原点的距离相等,并求出此时点P 和点Q 所表示的数.13.如图,点在线段上,,,动点从点出发,沿线段以每秒个单位长度的速度向终点匀速运动;同时,动点从点出发,沿线段以每秒个单位长度的速度向终点匀速运动.当点到达终点时,点也随之停止运动.设点的运动时间为秒.(1)线段的长为______.(2)当点与点相遇时,求的值.(3)当点与点之间的距离为个单位长度时,求的值.(4)当时,直接写出的值.14.如图,在数轴上点A 、C 、B 表示的数分别是、1、12.动点P 从点A 出发,沿数轴以每秒3个单位长度的速度向终点B 匀速运动;同时,点Q 从点B 出发,沿数轴以每秒2个单位长度的速度向终点A 匀速运动,设点Q 的运动时间为t 秒.C AB 3AC =11BC =P A AB 3B Q B BA 2A P Q P t AB P Q t P Q 9t 2.5PC QB +=t 8-(1)的长为________;AB(2)当点P与点Q相遇时,求t的值;(1)点A表示的数为___________,点B表示的数为(1)OA=__________cm,OB=__________cm参考答案:。
专题03数轴上的动点问题压轴题真题分类(原卷版)—七年级数学上册重难点题型分类高分必刷题(人教版)

专题03数轴上的动点问题压轴题真题分类(原卷版)专题简介:本份资料包含《有理数》这一章中动点问题压轴题常考的主流题型,所选题目源自各名校月考试题、期中试题中的典型考题,按难度逐渐递增的情况分成三类题型:简易型求运动时间、定值问题、新定义类动点问题。
适合于培训机构的老师给优等生作动点问题专题培训时使用或者想冲击满分的尖子生考前刷题时使用。
【解题方法总结】第一步:用含t 的式子表示动点,往左运动:可以表示为“起点t ⋅-速度”,往右运动:“起点t ⋅+速度”;第二步:表示距离:数轴上A 、B 两点表示的数为分别为a 、b ,则A 与B 间的距离AB=|a -b|;第三步:列式化简或者列方程后再解方程。
题型一简易型求运动时间1.如图数轴上有A 、B 两点,分别表示的数为-50和70,点A 以每秒3个单位长度的速度沿数轴向右匀速运动,同时点B 以每秒2个单位长度向左匀速运动.设运动时间为t 秒(t >0).(1)运动开始前,A 、B 两点的距离为;(2)它们按上述方式运动,t 秒后A 点表示的数为;B 点所表示的数为;(用含t 的式子表示)(3)它们按上述方式运动至两点相遇,则相遇点所表示的数为.2.(立信)点A 、B 在单位长度为1的数轴上,点A 表示的数是﹣2,点A 和点B 表示的数互为相反数,若点A 以每秒3个单位长度向右运动,点B 以每秒1个单位长度向右运动.(1)在数轴上标出原点O ,并求出点B 表示的数;(2)当点A 与点B 重合于点C 时,求运动时间?(3)若点A 运动到点M ,点B 运动到点N 时,线段MN =100时,求线段MN 盖住数轴上的整数点的个数是多少?3.(青竹湖)已知在数轴上有A,B两点,点A表示的数为8,点B在A点的左边,且AB=12.若有一动点P从数轴上点A出发,以每秒3个单位长度的速度沿数轴向左匀速运动,动点O从点B出发,以每秒2个单位长度的速度沿着数轴向右匀速运动,设运动时间为t秒.(1)当t=1秒时,写出数轴上点B、P、Q所表示的数分别为、、;(2)若点P,Q分别从A,B两点同时出发,当点P与点Q重合时,求t的值;(3)若M为线段AQ的中点,点N为线段BP的中点.当点M到原点的距离和点N到原点的距离相等时,求t的值.4.已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P从点A出t t 秒.发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为(0)(1)数轴上点B表示的数是______,点P表示的数是______(用含t的代数式表示);(2)动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发.求:当点P 运动多少秒时,点P与点Q间的距离为8个单位长度?(3)若点M为AP中点,点N为BP中点,在点P运动过程中,求出线段MN的长.5.(长雅)如图,在数轴上A点表示数a,B点表示示数b,点A与点B之间的距离表示为AB.若点A与点O之间的距离OA=2,点B与点O之间的距离OB=6.(1)a=,b=;(2)如图①,请在数轴上找一点C,使AC=2BC,则C点表示的数为;(3)如图①,若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒).①分别表示出甲、乙两小球到原点的距离(用t表示);②求甲、乙两小球到原点的距离相等时经历的时间.题型二定值问题6.(麓山)数轴上两点A、B,A在B左边,原点O是线段AB上的一点,已知AB=4,且OB=3OA.点A、B对应的数分别是a、b,点P为数轴上的一动点,其对应的数为x.(1)a=,b=,并在数轴上面标出A、B两点;(2)若PA=2PB,求x的值;(3)若点P以每秒2个单位长度的速度从原点O向右运动,同时点A以每秒1个单位长度的速度向左运动,点B以每秒3个单位长度的速度向右运动,设运动时间为t秒.请问在运动过程中,3PB﹣PA的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.7.已知a 、b 满足()25|1|0a b -++=.请回管问题:(1)请直接写出a 、b 的值,a =______,b =_______.(2)当x 的取值范围是_________时,||||x a x b -+-有最小值,这个最小值是_____.(3)数轴a 、b 上两个数所对应的分别为A 、B ,AB 的中点为点C ,点A 、B 、C 同时开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,点B 和点C 分别以每秒1个单位长度和3个单位长度的速度向右运动,当A 、B 两点重合时,运动停止.①经过2秒后,求出点A 与点B 之间的距离AB .②经过t 秒后,请问:BC AB +的值是否随着时间t 的变化而变化?若变化,请说明理由;若不变,请求其值.8.如图,在数轴上,点O 为原点,点A 表示的数为a ,点B 表示的数为b ,且a b ,满足2860a b ++-=()(1)A B ,两点对应的数分别为a =,b =;(2)若将数轴折叠,使得A 点与B 点重合,则原点O 与数表示的点重合;(3)若点A B ,分别以4个单位/秒和2个单位/秒的速度相向而行,则几秒后A B ,两点相距2个单位长度?(4)若点A B ,以(3)中的速度同时向右运动,点P 从原点O 以7个单位/秒的速度向右运动,设运动时间为t 秒,请问:在运动过程中,2AP OB OP +-的值是否会发生变化?若变化,请用t 表示这个值;若不变,请求出这个定值.9.(长郡)如图,在数轴上点A表示数a,点B表示数b,点C表示数c,b是最小的正整数,且a,b,c 满足(c﹣5)2+|a+b|=0.回答问题:(1)点P为一动点,其对应的数为x,若PA=2PC,求x的值;(2)点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C 分别以每秒2个单位长度和每秒5个单位长度的速度向右运动,设运动时间为t1秒.请问在运动过程中,BC﹣AB的值是否随着时间t1的变化而改变?若变化,请说明理由;若不变,请求其值.(3)在(2)的条件下,若点C从第2秒开始掉头向左继续运动,速度不变;A、B保持原来运动方向,速度不变继续运动,设继续运动时间为t2秒.请问在运动过程中,是否存在某个时刻,A,B,C中某一点是另外两点的中点?如果有,请求出t2的值;如果没有,请说明理由.题型三新定义类动点问题10.(中雅)阅读下列材料:我们给出如下定义:数轴上给定不重合两点A,B,若数轴上存在一点M,使得点M到点A的距离等于点M到点B的距离,则称点M为点A与点B的“雅中点”.解答下列问题:(1)若点A表示的数为﹣5,点B表示的数为1,点M为点A与点B的“雅中点”,则点M表示的数为;(2)若A、B两点的“雅中点M”表示的数为2,且A、B两点的距离为9(A在B的左侧),则点A 表示的数为,点B表示的数为;(3)点A表示的数为﹣6,点C,D表示的数分别是﹣4,﹣2,点O为数轴原点,点B为线段CD上一点(点B可与C、D两点重合).①设点M表示的数为m,若点M可以为点A与点B的“雅中点”,则m可取得整数有;②若点A和点D同时以每秒2个单位长度的速度向数轴正半轴方向移动.设移动的时间为t(t>0)秒,求t的所有整数值,使得点O可以为点A与点B的“雅中点”.11.(广益点)已知数轴上两点A,B对应的数分别为﹣8和4,点P为数轴上一动点,若规定:点P 到A的距离是点P到B的距离的3倍时,我们就称点P是关于A→B的“广益点”.(1)若点P到点A的距离等于点P到点B的距离时,求点P表示的数是多少;(2)若点P以每秒1个单位的速度从原点O开始向右运动,当点P是关于A→B的“广益点”时,求点P的运动时间;(3)若点P在原点的左边(即点P对应的数为负数),且点P,A,B中,其中有一个点是关于其它任意两个点的“广益点”,请直接写出所有符合条件的点P表示的数.12.(长郡)已知:点A、B、P为数轴上三点,我们约定:点P到点A的距离是点P到点B的距离的k倍,则称P是[A,B]的“k倍点”,记作:P[A,B]=k.例如:若点P表示0,点A表示﹣2,点B表示1,则P 是[A,B]的“2倍点”,记作:P[A,B]=2.(1)如图,A、B、P、Q、M、N为数轴上各点,如图图示,回答下面问题:①P[A,B]=;②M[N,A]=;③若C[Q,B]=1,则C表示的数为.(2)若点A表示﹣1,点B表示5,点C是数轴上一点,且C[A,B]=3,求点C所表示的数.(3)数轴上,若点M表示﹣10,点N表示50,点K在点M和点N之间,且K[M,N]=5.从某时刻开始,M、N同时出发向右匀速运动,且M的速度为5单位/秒,点N速度为2单位/秒,设运动时间为t(t>0),当t为何值时,M是K、N两点的“3倍点”.13.已知在数轴上有A,B两点,点B表示的数为最大的负整数,点A在点B的右边,AB=24.若有一动点P从数轴上点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,动点Q从点B出发,以每秒3个单位长度的速度沿着数轴向右匀速运动,设运动时间为t秒.(1)当t=1时,写出数轴上点B,P所表示的数;(2)若点P,Q分别从A,B两点同时出发,问当t为何值点P与点Q相距3个单位长度?(3)若点O到点M,N其中一个点的距离是到另一个点距离的2倍,则称点O是[M,N]的“好点”,设点C是点A,B的中点,点P,Q分别从A,B两点同时出发,点P向左运动到C点时返回到A点时停止,动点Q一直向右运动到A点后停止运动,求当t为何值时,点C为[P,Q]的“好点”?。
七年级上册数轴动点问题

七年级上册数轴动点问题一、数轴动点问题基础知识1. 数轴的三要素原点、正方向和单位长度。
在数轴上,右边的数总比左边的数大。
2. 动点在数轴上的表示设动点表示的数为公式,如果动点从某一固定点公式出发,以速度公式向右运动,经过公式秒后,动点表示的数为公式;如果向左运动,则为公式。
二、典型例题及解析例1:已知数轴上点公式表示的数为公式,点公式表示的数为公式,点公式在数轴上,且公式,求点公式表示的数。
解析:设点公式表示的数为公式。
根据两点间距离公式,公式,公式。
因为公式,所以公式。
当公式时,方程无解。
当公式时,即公式。
移项可得公式。
公式,解得公式。
所以点公式表示的数为公式。
例2:数轴上点公式对应的数为公式,点公式对应的数为公式,点公式以公式个单位/秒的速度从点公式向右运动,同时点公式以公式个单位/秒的速度从点公式向左运动,设运动时间为公式秒。
(1)当公式时,求公式的长度。
(2)求当公式为何值时,公式。
解析:(1)当公式时:点公式从公式出发,速度为公式个单位/秒,向右运动公式秒后,点公式表示的数为公式。
点公式从公式出发,速度为公式个单位/秒,向左运动公式秒后,点公式表示的数为公式。
根据两点间距离公式,公式。
(2)公式,则公式。
经过公式秒后,点公式表示的数为公式,点公式表示的数为公式。
公式。
当公式时,即公式。
当公式时,公式,解得公式。
当公式时,公式,解得公式。
例3:数轴上有公式、公式两点,公式点对应的数为公式,公式点对应的数为公式,点公式从公式点出发,以每秒公式个单位长度的速度沿数轴向右运动,点公式从公式点出发,以每秒公式个单位长度的速度沿数轴向左运动,设点公式、公式同时出发,运动时间为公式秒。
(1)求当公式时,点公式、公式在数轴上对应的数分别是多少?(2)经过多少秒后,点公式、公式之间的距离为公式个单位长度?解析:(1)当公式时:点公式从公式出发,速度为公式个单位/秒,向右运动公式秒后,点公式对应的数为公式。
完整版)七年级上期末动点问题专题(附答案)

完整版)七年级上期末动点问题专题(附答案)1.已知数轴上点A对应的数为a,点B对应的数为b,且满足|2b-6|+(a+1)^2=0,定义AB的长度为|a-b|。
1) 求线段AB的长度。
解:由定义可得,AB的长度为|a-b|。
2) 设点P在数轴上的坐标为x,且满足PA-PB=2,求x的值。
解:由题意得,PA-PB=|a-x|-|b-x|=2,分成两种情况讨论:当a>b时,有a-x-b+x=2,即a-b=2,解得x=a-1.当a<b时,有b-x-a+x=2,即b-a=2,解得x=b-1.综上所述,x的取值为a-1或b-1.3) 设M、N分别为PA、PB的中点,当P移动时,指出当下列结论分别成立时,x的取值范围,并说明理由:①PM÷PN的值不变,②|PM-PN|的值不变。
解:由题意得,M、N的坐标分别为[(a+x)/2,0]和[(b+x)/2,0],则① PM÷PN的值不变时,有|a-x|/|b-x|=|a-x0|/|b-x0|,其中x0是PM÷PN的值不变时的一个定值,化简得(a-x0)(b-x)=(b-x0)(a-x),即ax0-bx0=ax-bx0,解得x=(ax0-bx0+bx0)/2=a/2+b/2-x0/2.② |PM-PN|的值不变时,有[(a-x)/2-(b-x)/2]^2=K,其中K 是|PM-PN|的值不变时的一个定值,化简得(x-a+b)^2=4K,解得x=(a+b±2√K)/2.综上所述,当①成立时,x的取值为a/2+b/2-x0/2;当②成立时,x的取值为(a+b±2√K)/2.2.如图1,已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上的动点,其对应的数为x。
1) PA=|x-(-1)|=|x+1|,PB=|x-3|。
2) 若PA+PB=5,则有|x+1|+|x-3|=5,分成四种情况讨论:当x≤-1时,有-(x+1)-(x-3)=5,解得x=-2.当-1<x<3时,有-(x+1)+(x-3)=5,无解。
人教版七年级上册数学期末动点问题压轴题专题训练(含答案)

人教版七年级上册数学期末动点问题压轴题专题训练(1)则B点表示的数为;(1)______,______.(2)若动点P 、Q 分别从点A 、B 处同时向右移动,点P 的速度为(1)当点Q 到达点B 时,点P 对应的数为 ;=a b =(1)当秒时,两点在折线数轴上的和谐距离(2)当点都运动到折线段上时,(1)当动点P 在上时,把点P 到点A 的距离记为,则_______式表示);(2)当动点P 在上时,把点P 到点O 的距离记为,则_______2t =M N 、M N 、O B C --OA AP AP =OB OP OP =(3)若动点P 运动的终点是点C ,动点Q 运动的终点是点A,动点P 、Q 是否同时到达终点,请说明理由;(4)当点Q 在上时,Q 、B 两点在“折线数轴”上相距的长度与P 、O 两点在“折线数轴”上相距的长度相等时,t 的值为__________(直接写出结果).7.如图,数轴上点、、对应的数分别为、、,且、、使得与互为同类项.动点从点出发沿数轴以每秒5个单位的速度向右运动,当点运动到点之后立即以原速沿数轴向左运动,动点从点出发的同时动点从点出发沿数轴以每秒1个单位的速度向右运动.设运动的时间为秒,(1)填空:______,______,点在数轴上所表示的数为______(用含的代数式表示).(2)在整个运动过程中,与何时相遇?(3)若动点从点出发的同时动点也从点出发沿数轴向左运动,运动速度为每秒5个单位长度,是否存在非负数使得在一段时间内为定值,如果不存在,说明理由;如果存在,求出非负数.8.已知式子是关于的二次多项式,且二次项系数为,数轴上,两点所对应的数分别是和.(1)则______,______;,两点之间的距离为______;(2)有一动点从点出发第一次向左运动1个单位长度,然后在新的位置第二次向右运动2个单位长度,再在此位置第三次向左运动3个单位长度…,按照如此规律不断地左右运动,当运动到第2023次时,求点所对应的有理数;(3)若点以每秒3个单位长度的速度向左运动,同时点以每秒5个单位长度的速度向BC A B C a b c a b c 1212a b x y z --35c x y z P A P C P A Q B t =a b =Q t P Q P A M C n nQM PM +n 32(4)625M a x x x =++-+x b A B a b =a b =A B P A P A BAI(1)点A 表示的数为 ;点B 表示的数为 (1)数轴上点表示的数是 ;当点运动到(2)动点从点出发,以每秒2个单位长度的速度沿数轴向左匀速运动,B P Q B(1)a 的值为 ,b 的值为 ,(2)点P 是数轴上A 、C 两点间的一个点,当(1)线段的长为 ,点表示的数为 ;(2)若、、三个动点分别从,,三点同时出发,均沿数轴负方向运动,它们AC B P Q R A B C(1)写出数轴上点A表示的数与(1)点表示的有理数是 ,点表示的有理数是 ,点A C(1)两点之间的距离是 ;(1)点表示的数是_______;,A B B参考答案:。
完整版)七年级上册数学期末动点问题专题

完整版)七年级上册数学期末动点问题专题七年级上期末动点问题专题1.数轴上的动点问题已知数轴上两点A、B对应的数分别为-1和3,数轴上一动点P对应的数为x。
1) 若点P到点A和点B的距离相等,求点P对应的数。
解:由题意得,PA=PB,即 |x-(-1)|=|x-3|,解得x=1.2) 当点P以每分钟1个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度的速度向左运动,点B以每分钟20个单位长度的速度向左运动,问几分钟时点P到点A 和点B的距离相等。
解:设P点向左运动t分钟后到达距离O点x的位置,则A点和B点向左运动5t和20t个单位长度后,分别到达距离O 点-5t和3-20t的位置。
由于PA=PB,因此有:x-(-1+1t)|=|x-3-17t|解得t=2,代入得到x=-1+2t=-3.2.射线上的动点问题如图,在射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm,点P从点O出发,沿OM方向以1cm/s的速度匀速运动,点Q从点C出发在线段CO上向点O 匀速运动(点Q运动到点O时停止运动),两点同时出发。
1) 当PA=2PB时,点Q运动到的位置恰好是线段AB的三等分点,求点Q的运动速度。
解:设Q点向左运动t秒后到达距离O点x的位置,则有:OC-x|=|OP+t|OB-2x|=2|PA-OP-t|AB-3x|=3|PA-OP-t|解得x=10,t=10,因此Q点的运动速度为3cm/s。
2) 若点Q运动速度为3cm/s,经过多长时间P、Q两点相距70cm。
解:设P点向右运动t秒后到达距离O点y的位置,则有:y|=|x+t-20|y|=|60-x-t|解得t=25,因此P、Q两点相距70cm时,P点向右运动了25秒,Q点向左运动了25秒。
3) 当点P运动到线段AB上时,分别取OP和AB的中点E、F,求OB-AP/EF的值。
解:设P点向右运动t秒后到达线段AB上的点E,则有:OE|=|20+t/2|由于AE=40,因此有AP=AE-PE=40-(20+t/2)=60-t/2.又因为OF=FB=30,因此有:OB-AP/EF=2OB/AB-AP/AF=2(20+t)-60/(2OF)=t+1.3.相向而行的动点问题甲、乙物体分别从相距70米的两处同时相向运动。
七年级数学动点题50道

七年级数学动点题50道一、数轴上的动点问题(20道)1. 已知数轴上点A表示的数为 3,点B表示的数为1,点P以每秒2个单位长度的速度从点A出发向左运动,同时点Q以每秒3个单位长度的速度从点B出发向右运动,设运动时间为t秒。
(1)当t = 1时,求PQ的长度。
(2)求经过多少秒后,PQ = 5。
解析:(1)当t = 1时,点P表示的数为公式,点Q表示的数为公式。
所以公式。
(2)运动t秒后,点P表示的数为公式,点Q表示的数为公式。
则公式。
当公式时,即公式。
则公式或公式。
当公式时,公式,公式(舍去,因为时间不能为负)。
当公式时,公式,公式。
2. 数轴上点A对应的数为 2,点B对应的数为4,点C对应的数为x,若点C在点A、B之间,且公式,求x的值。
解析:因为点C在点A、B之间,公式,公式。
又因为公式,所以公式。
去括号得公式。
移项得公式。
合并同类项得公式。
解得公式。
3. 数轴上有A、B两点,A表示的数为 1,B表示的数为3,点P以每秒1个单位长度的速度从点A出发向右运动,设运动时间为t秒。
(1)当t为何值时,点P到点B的距离为2?(2)点Q以每秒2个单位长度的速度从点B出发向左运动,当公式时,求t的值。
解析:(1)点P表示的数为公式。
当点P到点B的距离为2时,公式。
则公式或公式。
解得公式或公式。
(2)点Q表示的数为公式,公式。
当公式时,公式。
即公式。
则公式或公式。
当公式时,公式,公式。
当公式时,公式,公式。
4. 数轴上点A表示的数为5,点B表示的数为 3,点M从点A出发,以每秒1个单位长度的速度向左运动,点N从点B出发,以每秒2个单位长度的速度向右运动,设运动时间为t秒。
(1)求t秒后,点M表示的数和点N表示的数。
(2)当t为何值时,点M与点N相距4个单位长度?解析:(1)t秒后,点M表示的数为公式,点N表示的数为公式。
(2)当点M与点N相距4个单位长度时,公式。
则公式或公式。
当公式时,公式,公式。
当公式时,公式,公式。
北师大版数学七年级上册第二章数轴动点专题课件

CA
B
题型三:动点移动问题
例1:如图A,B,C三点在数轴上,A表示的数是-9,B表示的数是12,
点C在A与B之间,且AC=BC,
(1)求AB两点之间的距离;
(2)求C点对应的数
(3)甲乙分别从AB两点同时相向运动,甲的速度为1个单位长度,
已的速度为2个单位长度,求相遇时D点表示的数。
A
B
题型三:动点移动问题
题型一:点移动后的表示
一、【总结归纳】: 在数轴中动点移动的问题之间就是行程问题解决; 1、点移动的单位长度就是路程、每秒移动的单位长度就是速度 (v),和时间(t)的基本关系:
s=vt (路程=速度×时间即点移动的单位长度=每秒移动的单位 长度×时间)
动点向右移动后表示的数=起点+每秒移动的单位长度×时间 动点向左移动后表示的数=起点-每秒移动的单位长度×时间
题型一:点移动后的表示
③在数轴上A表示的数为-2,现将A点以每秒2个单位长度向右平 移,时间为t,回答下列问题: (2)当A点移动4秒时,A点移动_8____个单位长度,此时A点表示 的数是_6____ (3)当A点向右移动t秒时,A点移动__2_t__个单位长度,此时A点 表示的数是_-_2_+_2_t
题型一:点移动后的表示
【总结归纳】 点的移动问题方法:“三找”:
(1)找起点;(2)找方向;(3)找长度
题型二:点的距离公式
数轴上的公式: 设点A在数轴上表示的数为a,点B在数轴上表示的数为b,AB的中 点为M。则: 1、距离公式:AB=|a-b|=|b-a|(或者:右边的数-左边的数) 2、中点公式:点M表示的数为:(a+b)/2; 3、移动公式:当点A向右移动m个单位,则A表示的数为:a+m; 当A向左移动m个单位,则A表示的数为a-m.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九讲 数轴上的线段与动点问题
1、如图,已知数轴上有三点A 、B 、C ,AB = AC ,点C 对应的数是200。
(1)若BC =300,求A 点所对应的数;
(2)在(1)的条件下,动点P 、Q 分别从A 、C 两点同时出发向左运动,同时动点R 从A 点出发向
右运动,点P 、Q 、R 的速度分别为10单位长度每秒、5单位长度每秒、2单位长度每秒,点M 为线段PR 的中点,点N 为线段RQ 的中点,多少秒时恰好满足MR =4RN (不考虑点R 与点Q 相遇之后的情形)
(3)在(1)的条件下,若点E 、D 对应的数分别为-800、0,动点P 、Q 分别从E 、D 两点同时出发
向左运动,P 、Q 的速度分别为10单位长度每秒、5单位长度每秒,点M 为线段PQ 的中点,点Q 在从点D 运动到点A 的过程中,QC -AM 的值是否发生变化?若不变,求其值;若变化,说明理由。
2、数轴上A 点对应的数为-5,B 点在A 点右边,电子蚂蚁甲、乙在B 分别以分别以2个单位/秒、1个单位/秒的速度向左运动,电子蚂蚁丙在A 以3个单位/秒的速度向右运动。
(1)若电子蚂蚁丙经过5秒运动到C 点,求C 点表示的数;
A B
-5
(2)若它们同时出发,若丙在遇到甲后1秒遇到乙,求B 点表示的数;
A B
-5
(3)在(2)的条件下,设它们同时出发的时间为t 秒,是否存在t 的值,使丙到乙的距离是丙
到甲的距离的2倍?若存在,求出t 值;若不存在,说明理由。
A B
-5 C
B A P Q
R
R Q P 200C
A -800
0D
E 200C A
3、已知数轴上A 、B 两点对应数为-2、4,P 为数轴上一动点,对应的数为x 。
A B
-2 -1 0 1 2 3 4 (1) 若P 为AB 线段的三等分点,求P 对应的数;
(2)数轴上是否存在P ,使P 到A 点、B 点距离和为10,若存在,求出x ;若不存在,说明理由。
(3)A 点、B 点和P 点(P 在原点)分别以速度比1 :10 :2(长度:单位/分),向右运动几
分钟时,P 为AB 的中点。
4、如图,若点A 在数轴上对应的数为a ,点B 在数轴上对应的数为b ,且a ,b 满足 |a +2|+(b -1)2
=0。
A B
(1)求线段AB 的长; 0
(2)点C 在数轴上对应的数为x ,且x 是方程2x -1= x +2的根,在数轴上是否存在点P ,使PA
+PB =PC ,若存在,求出点P 对应的数;若不存在,说明理由。
(3)若P 是A 左侧的一点,PA 的中点为M ,PB 的中点为N ,当P 点在A 点左侧运动时,有两个结
论:PM +PN 的值不变;PN -PM 的值不变,其中只有一个结论正确,请判断正确结论,并求出其值。
A B C D
5、如图,在射线OM 上有三点A 、B 、C ,满足OA=20cm,AB=60cm ,BC=10cm (如图所示),点P 从点O 出发,沿OM 方向以1cm/s 的速度匀速运动,点Q 从点C 出发在线段CO 上向点O 匀速运动,两点同时出发。
(1)当PA=2PB 时,点Q 运动到的位置恰好是线段AB 的三等分点,求点Q 运动的速度;
(2)若点Q 运动的速度为3cm/s,经过多长时间P 、Q 两点相距70cm ;
6、已知数轴上有顺次三点A, B, C 。
其中A 的坐标为-20.C 点坐标为40,一电子蚂蚁甲从C 点出发,以每秒
2个单位的速度向左移动。
(1)当电子蚂蚁走到BC 的中点D 处时,它离A,B 两处的距离之和是多少?
(2)这只电子蚂蚁甲由D 点走到BA 的中点E 处时,需要几秒钟?
(3)当点P 运动到线段AB 上时,取OP 和AB 的中点E ,求EF
AP
OB -的值。
7、已知线段AB =m ,CD =n ,线段CD 在直线AB 上运动(A 在B 左侧,C 在D 左侧),若
2)6(2n n m --=-.
⑴求线段AB 、CD 的长;
⑵M 、N 分别为线段AC 、BD 的中点,若BC =4,求MN ;
⑶当CD 运动到某一时刻时,D 点与B 点重合,P 是线段AB 延长线上任意一点,下列两个结论:①PC PB PA -是定值;②PC
PB
PA +是定值,请选择正确的一个并加以证明.
D C
B
A
M O
N
O
D C
B
A
1、已知:如图,∠AOB 被分成∠AOC ∶∠COD ∶∠DOB =2∶3∶4,OM 平分∠AOC ,ON 平分∠DOB ,且
∠MON =90°,求∠AOB 的度数.
2、已知:如图,OB 、OC 分别为定角∠AOD 内的两条动射线
⑴当OB 、OC 运动到如图的位置时,∠AOC +∠BOD =110°,∠AOB +∠COD =50°,求∠AOD 的度数;
⑵在⑴的条件下,射线OM 、ON 分别为∠AOB 、∠COD 的平分线,当∠COB 绕着点O 旋转时,下列结论:①∠AOM -∠DON 的值不变;②∠MON 的度数不变.可以证明,只有一个是正确的,请你作出正确的选择并求值.
3.如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角形的直角顶
点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.
(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,问:直线ON是否平分∠AOC?请说明理由;
(2)将图1中的三角板绕点O按每秒6°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为(直接写出结果);
(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究:∠AOM 与∠NOC之间的数量关系,并说明理由.
C
O
M N B
A
图1A B
N
M
O
C
图2
O
N
M
C
B
A
图3
巩固训练
1、已知A点在数轴上表示的数为-60,B点在数轴上表示的数位100,两只电子蚂蚁甲、乙分别从A、B两点同时相向而行,并且甲的速度是乙的速度的3倍
(1)甲、乙第一次相遇在C点,求C点表示的数;
(2)甲、乙第一次相遇后,各自继续前行,甲到达B点后立即折回去A点,又在D点处追上乙,试问:D点是线段AB的几等分点?说明理由
(3)甲、乙第二次相遇后,继续前行,甲到达A点后再返回,在E处又一次与乙相遇,求E点表示的数
2、已知数轴上顺次有三点A、B、C,且B为AC中点,点C对应的数是40
(1)若BC=60,求点A对应的数
(2)在(1)的条件下,动点P、Q分别从A、C两点同时出发向左运动,同时动点P从A点出发向右运动,点P、Q、R的速度分别为每秒10个单位长度,每秒5个单位长度、每秒2个单位长度,点M为线段PR的中点,点N为线段RQ的中点,求经过多少秒时恰好满足MR=4RN
(3)在(1)的条件下,若点E、D对应的数分别为-180,0,动点P、Q分别从E、D两点同时出发向左运动,点P、Q的速度分别为10单位长度/秒,5单位长度/秒,点M为线段PQ的中点,点Q在从点D运动到点A的过程中,CQ-AM的值是否发生变化?若不变,求其值;若变,请说明理由
3、已知A、B是数轴上两点,A点对应数为12,B点对应数位42
(1)C是数轴上一点,且AC=2AB,求C点对应的数
(2)D是数轴上A点左侧一点,动点P从D点出发向右运动,9秒钟到达A点,15秒到达B点,求P点运动的速度;
(3)在(2)的条件下,又有2 个动点Q和R分别从A、B和P点同时向右运动,Q的速度为每秒1个单位,R的速度为每秒2个单位,求经过几秒,P和Q的距离等于Q和R的距离的3倍。