逐差法物理实验

合集下载

逐差法在物理实验中的应用分析

逐差法在物理实验中的应用分析

逐差法在物理实验中的应用分析作者:孙玉晶贾芸冯晓张鹏董海洋翟鹏
来源:《科技风》2021年第22期
逐差法作為一种数据处理方法,在大学物理实验中被多次应用,较典型的实验例如弹性模量的测定、液体粘滞系数的计算等等。

早在1953年国内就有文献应用逐差法。

当测量关系式属于y=a+bx线性函数形式.且自变量x等间隔变化时,可利用逐差法进行直线拟合。

直线拟合方法还有作图法、最小二乘法,本文以线膨胀系数的测定实验为例,通过多种方法进行求解,说明了逐差法在处理数据时是可行的。

大学物理实验逐差法计算公式

大学物理实验逐差法计算公式

大学物理实验逐差法计算公式
公式:
逐差法是物理实验中使用最常见的一种数学计算方法。

它是通过连续的永恒的力学性质的测量,从而得出从第一个测量到最后一个测量的差分值对应的函数。

逐差法也被称为简捷法,其主要使用来计算在一系列无穷小变量中,单一变量对其结果的影响,从而找出一组函数表达式。

运用逐差法,可以得到一般情况下的公式为:Delta F=(delta x)(dy/dx)。

其中Delta F表示从一次测量到另一次的差分值,delta x表示在位置x的变化量,dy/dx 则表示此时此刻变量x对变量y的导数值。

由于逐差法只是求出一系列微小变化时候多变量之间的关系,因此在使用时要注意,在变量之间满足线性关系情况下才能用此方法得出正确结果。

逐差法极大地提高了实验简便性,在实验中可以省去繁琐的重复测量过程,快速地确定对结果影响最大的变量,同时也提高了实验准确度。

因此,逐差法已经成为大学物理实验的主要计算方式之一。

与符号法相比,它不仅更加直观,同时也更加简单快捷,因此受到广大实验人员的喜爱。

只要掌握了这一方法,在运用中不可厌烦,就可以发挥出它极大的作用,既提高实验效率又提高实验准确度。

实验 匀变速直线运动的实验研究(逐差法求加速度)(课件)高中物理课件

实验 匀变速直线运动的实验研究(逐差法求加速度)(课件)高中物理课件
计量时间。实验前,将该计时器固定在小车旁,如图2(a)所示。实验时,保持桌
面水平,用手轻推一下小车。在小车运动过程中,滴水计时器等时间间隔地滴下
小水滴,图(b)记录了桌面上连续6个水滴的位置。(已知滴水计时器每30 s内共滴
从右向左
下46个小水滴) (1)由图(b)可知,小车在桌面上是________(填“从右向左”或“
内位移之差相等,因此小车做匀加速直线运动。
(2)由“逐差法”求加速度:
x6+x5+x4 - x3+x2+x1a=Fra bibliotek9T2
10.71+9.10+7.57 - 5.95+4.40+2.80

×10-2 m/s2≈1.58 m/s2。
2
9× 0.1
1、实验情景的变化
【例题3】某探究小组为了研究小车在桌面上的直线运动,用自制“滴水计时器”
,解
2
6(Δt)2

3
得 a=0.038 m/s2。
2、实验方法的拓展
【例题4】某同学研究在固定斜面上运动物体的平均速度、瞬时速度和加速度之间
的关系。使用的器材有:斜面、滑块、长度不同的矩形挡光片、光电计时器。
实验步骤如下:
①如图3(a),将光电门固定在斜面下端附近:将一挡光片安装在滑块上,记下挡
++
刻的位移内的平均速度,即vn=


x1
x2
x3
x4

中间时刻的瞬时速度计算公式:vD
x5
+
=

思考:利用纸带如何求运动物体的加速度?
x6
➢应用纸带求解物体的加速度:
利用 Δ = 2 可以从纸带上求得加速度

逐差法测加速度的公式

逐差法测加速度的公式

逐差法测加速度的公式逐差法是一种在物理实验中用于测量加速度的常用方法,它所依据的公式可是相当重要的哟!在高中物理的学习中,我们常常会遇到需要测量加速度的情况。

而逐差法就是一个非常实用的利器。

逐差法测加速度的公式是:$a =\frac{\Delta x}{T^2}$ ,其中 $\Delta x$ 表示相邻相等时间间隔内的位移之差,$T$ 表示时间间隔。

比如说,咱们做一个小车在斜面上运动的实验。

我们在斜面上每隔相等的时间记录下小车的位置,假设第一次记录的位置是$x_1$,经过一个时间间隔$T$ 后,记录的位置是$x_2$,再经过一个时间间隔$T$ ,位置是$x_3$ ,以此类推。

那这个位移之差$\Delta x$ 怎么算呢?就是用后面的位移减去前面的位移,比如:$\Delta x_1 = x_2 - x_1$ ,$\Delta x_2 = x_3 - x_2$ ,$\Delta x_3 = x_4 - x_3$ 等等。

还记得我曾经给学生们做这个实验的时候,有个学生特别较真儿。

他就一直在那琢磨,为啥要这么算,会不会有误差。

我就告诉他,你看啊,咱们这样做是为了尽可能减小误差。

因为在实验中,测量总是会有一些小偏差的,如果只用两组数据来算加速度,那偶然误差就可能会比较大。

但是用逐差法,多取几组数据,就能把这个误差给平均掉,算出来的加速度就更接近真实值啦。

而且逐差法还有个好处,就是能充分利用我们测量得到的数据。

比如说,我们测了六组数据,如果不用逐差法,可能就只用了两组,那剩下的四组不就浪费了嘛。

但是用逐差法,这六组数据都能派上用场,算出的结果自然就更可靠。

再比如说,如果时间间隔$T$ 是 0.1 秒,我们测得了 $x_1 = 0.2$ 米,$x_2 = 0.5$ 米,$x_3 = 0.9$ 米,$x_4 = 1.4$ 米,$x_5 = 2.0$ 米,$x_6 = 2.7$ 米。

那 $\Delta x_1 = x_2 - x_1 = 0.5 - 0.2 = 0.3$ 米,$\Delta x_2 = x_3 -x_2 = 0.9 - 0.5 = 0.4$ 米,$\Delta x_3 = x_4 - x_3 = 1.4 - 0.9 = 0.5$ 米,$\Delta x_4 = x_5 - x_4 = 2.0 - 1.4 = 0.6$ 米,$\Delta x_5 = x_6 - x_5 =2.7 - 2.0 = 0.7$ 米。

逐差法物理实验

逐差法物理实验

逐差法求加速度一、用逐差法求加速度的原因:如果物体做匀变速直线运动,S1,S2……Sn为其在连续相等时间T内的位移,a为其加速度,T 为相等时间间隔值,则有假如用相邻的距离之差ΔS1,ΔS2……ΔSn-1分别除以T的平方,再取其平均值,有从上式中可以看成,在取算术平均值的过程中,中间各数值S2,S3,S4……Sn-1都被消去,只剩下首尾两个数值S1、Sn起作用,因而不能起到利用多个数据减少偶然误差的作用。

二、逐差法(1)偶数段逐差法是把连续的数据(必须是偶数个)S1,S2,S3……Sn从中间对半分成两组,每组有m=n /2个数据,前一半为S1,S2,S3……Sm,后一半为Sm+1,Sm+2……Sn,将后一半的第一个数据减去前一半的第一个数据得,后一半的第二个数据减去前一半的第二个数据,则由这些差值求得的加速度分为:。

取这样得到的加速度的平均值从上式可以看出,所有的数据S1,S2……Sn都用到了,因而减少了偶然误差。

例:以下纸带记录了某匀变速运动物体的位移,每段位移时间间隔均为T 。

如果计算该物体的加速度,可以将这四段位移分成两大段:S OB 和S BD ,每段的时间均为2T ,所以加速度为212342)2()()()2(T S S S S T S S a OB BD +-+=-=(2)奇数段如果连续的数据是奇数个S1,S2,S3……Sn ,则舍去最中间的数据,其余分成两组,每组有m =(n-1)/2个数据,前一半为S1,S2,S3……Sm ,后一半为Sm+2,Sm+3……Sn ,将后一半的第一个数据减去前一半的第一个数据得2121)1(aT m S S S m +=-=∆+,后一半的第二个数据减去前一半的第二个数2232)1(aT m S S S m +=-=∆+,第n 个数据减去前一半最后一个数据2)1(aT m S S S m n m +=-=∆,则由这些差值求得的加速度分为:2222211)1(,)1(,)1(T m s a T m s a T m s a m m +∆=+∆=+∆=。

物理仿真实验

物理仿真实验

物理仿真实验报告——液体表面张力系数的测定实验简介:液体表层指液体与气体、液体与固体以及不相混合的液体之间的界面。

液体表层分子有从液面挤入液体内部的倾向,这使得液体的表面自然收缩,就整个液面来说,如同拉紧的弹性薄膜,这种沿着表面,使液面收缩的力称为表面张力。

表面张力在船舶制造、水利学、化学化工、凝聚态物理中都能找到它的应用。

测量液体(例如水)的表面张力系数有多种方法,如最大泡压法、平板法(亦称拉普拉斯法)、毛细管法、焦利氏秤法、扭力天平法等。

这里只介绍焦利氏秤法。

本实验首先利用逐差法测量焦利氏秤弹簧的倔强系数,然后利用拉脱法测量液体的表面张力系数。

实验原理1、液体分子受力情况液体表面层中分子的受力情况与液体内部不同。

在液体内部,分子在各个方向上受力均匀,合力为零。

而在表面层中,由于液面上方气体分子数较少,使得表面层中的分子受到向上的引力小于向下的引力,合力不为零,这个合力垂直于液体表面并指向液体内部,如图1所示。

所以,表面层的分子有从液面挤入液体内部的倾向,从而使得液体的表面自然收缩,直到达到动态平衡(即表面层中分图1 液体分子受力示意图子挤入液体内部的速率与液体内部分子热运动而达到液面的速率相等)。

这时,就整个液面来说,如同拉紧的弹性薄膜。

这种沿着表面,使液面收缩的力称为表面张力。

想象在液面上划一条线,表面张力就表现为直线两侧的液体以一定的拉力相互作用。

这种张力垂直于该直线且与线的长度成正比,比例系数称为表面张力系数。

2、 矩形金属框架测量原理将一表面清洁的矩形金属薄片竖直浸入水中,使其底面水平并轻轻提起。

当金属片底面与水面相平,或略高于水面时,由于液体表面张力的作用,金属片的四周将带起一部分水,使水面弯曲,呈图2所示的形状。

这时,金属片在竖直方向上受到(1)金属片的重力mg ;(2)向上的拉力F ;(3)水表面对金属片的作用力——表面张力。

图2 金属框受力示意图其中为水面与金属片侧面的夹角,称为接触角。

逐差法在中学物理实验中的应用

逐差法在中学物理实验中的应用

2011.NO35 0情况的。

由于大部分学生基础太差,如果上课用过多的英语进行授课,或用很多时间来练习听力,那就象让三岁小孩担百斤重担。

而我当下最重要的是让他们能“跳一跳,摸得到”。

单词是他们最大的难关,怎样才能使他们进行有效词语积累呢?除进行单词听写以外,课堂上进行句子的积累我认为是最好的方法,把教材中重要的句子让学生划下来,给他们时间,看谁读得好记得快,然后依次叫同学起来重复这个句子。

这样大部分同学开始行动,但可能有少数学生没行动起来,这时,我会走下去,很友好地提醒他,并明确告诉他重复这个句子时要叫他,因为这个任务是他能完成 的。

因此,他也会行动起来,当他在全班同学面前重复说出这个句子时,我立即给以表扬。

在这一过程中,一定要用自己敏锐的眼光发现那些愿意起来复述的同学,尤其是那些平常不开口,甚至不学英语的同学,这对恢复他们的自信心非常有用。

这个过程也就是我说的“读、说”过程。

课后再让他们去复习这些句子,第二天或利用课余时间或利用放听力的方式进行听写,这样就达到了“写、听“其后的目地。

经过这样的一个过程以后,学生可以记住这个句型,以及句型中的单词。

听、说、读、写也得到了训练和提高。

这一阶段实际就是基础的积累。

在这一过程中,全体同学都有任务,都有压力,而这一任务和压力是他们能够承受的,成功的喜悦又会让他们乐于接受这一任务和压力。

3、正确的考试评价。

英语课堂教学中,评价起着不可低估的调节作用。

教师通过评价,能把对学生及其行为的认识和教师的情感倾向,自觉或不自觉地传导给学生。

如果学生在学习中得到正面的评价,那么这意味着他的内在价值得到了外界的承认,其自尊心和自信心就会增强,会感到一种自我实现的快慰,学习外语的积极性相应提高,更高水平的需要由此产生。

相反,如果学生得到的负面评价过多,就会产生消极影响。

有些学生,特别是成绩较差的学生,会产生破罐子破摔的逆反心理,成绩继续直线下降。

我们的学生由于从初一开始,就落后于他所在年级应具有的水平,而每次的考试都是按这个年级应具有的水平来出的考题,因此,这些学生在以前的每次考试中都是失败的,从没有尝到过胜利的喜悦。

大物实验逐差法处理数据

大物实验逐差法处理数据

大物实验逐差法处理数据大物实验是物理学实验的重要组成部分,而逐差法则是处理实验数据的重要方法之一。

逐差法是通过对实验数据的差值进行统计分析,并得到误差估计值,以评估实验数据的可靠性和准确性。

下面将介绍逐差法在实验数据处理中的应用。

首先,我们需要明确实验所涉及的物理量,如光强、电压、电流等。

在进行实验时,我们需要记录每次实验所得的数据,比如用光强计测量实验光源的光强时所得的光强值、用万用表测量电路中电流的电压值等。

这些数据通常会有一些随机误差和系统误差,因此需要进行处理和分析,以获取相对准确的物理量值和误差估计值。

其次,我们需要进行数据处理,使用逐差法则。

逐差法在处理数据时,通常采取两个数据之间的差值来计算误差,即每次测量所得的数据与第一次测量所得的数据之差。

将每次测量所得的数据与第一次测量所得的数据之差加起来,并除以测量次数,即可得到所求物理量的平均值。

然后,根据数据的分布情况计算误差,通常采用标准差公式或残差平方和公式计算误差。

最后,我们需要对处理后的数据进行分析,以评估实验数据的可靠性和准确性。

对于误差的估计,我们需要比较其与测量值的大小关系,通常采用相对误差衡量。

若误差较小,则证明实验数据较为可靠。

根据实验的目的和要求,我们可以进行多组实验数据的比较和分析,进一步验证实验结果的可靠性和准确性。

综上所述,逐差法在实验数据处理中具有重要的应用价值,能够有效地评估实验数据的可靠性和准确性。

在进行实验过程中,我们应注意数据的记录和分析,并结合实验的目的和要求,合理地使用逐差法,让实验结果更加准确可靠。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

逐差法求加速度
一、用逐差法求加速度的原因:
如果物体做匀变速直线运动,S1,S2……Sn为其在连续相等时间T内的位移,a为其加速度,T为相等时间间隔值,则有
假如用相邻的距离之差ΔS1,ΔS2……ΔSn-1分别除以T的平方,再取其平均值,有
从上式中可以看成,在取算术平均值的过程中,中间各数值S2,S3,S4……Sn-1都被消去,只剩下首尾两个数值S1、Sn起作用,因而不能起到利用多个数据减少偶然误差的作用。

二、逐差法
(1)偶数段
逐差法是把连续的数据(必须是偶数个)S1,S2,S3……Sn从中间对半分成两组,每组有m=n/2个数据,前一半为S1,S2,S3……Sm,后一半为Sm+1,Sm+2……Sn,将后一
半的第一个数据减去前一半的第一个数据得,后一半的第二个数据减去前一半的第二个数据,则由这些差值求得的加速度分为:。

取这样得到的加速度的平均值
从上式可以看出,所有的数据S1,S2……Sn都用到了,因而减少了偶然误差。

例:以下纸带记录了某匀变速运动物体的位移,每段位移时间间隔均为T 。

如果计算该物体的加速度,可以将这四段位移分成两大段:S OB 和S BD ,每段的时间均为2T ,所以加速度为2
12342)
2()
()()2(T S S S S T S S a OB BD +-+=-=
(2)奇数段
如果连续的数据是奇数个S1,S2,S3……Sn ,则舍去最中间的数据,其余分成两组,每组有m =(n-1)/2个数据,前一半为S1,S2,S3……Sm ,后一半为Sm+2,Sm+3……Sn ,
将后一半的第一个数据减去前一半的第一个数据得2
121)1(aT m S S S m +=-=∆+,后一半的第二个数据减去前一半的第二个数2
232)1(aT m S S S m +=-=∆+,第n 个数据减去前一半最后一个数据2
)1(aT m S S S m n m +=-=∆,则由这些差值求得的加速度分为:
2
22
2211)1(,)1(,)1(T m s a T m s a T m s a m m
+∆=+∆=+∆=。

取这样得到的加速度的平均值
2
13222121)1()
()()1(T m m S S S S S T m m s s s m a a a a m n m m m m ++-++=+∆+∆+∆=++=
++
例:以下纸带记录了某匀变速运动物体的位移,每段位移时间间隔均为T 。

如果计算该物体的加速度,可以舍去第4段,再分成两大段:S OC 和S DG ,每一大段有
3小段,其中第5段和第1段差4aT 2
,所以加速度为
2
123567243)
()(43T S S S S S S T S S a OC DG ⨯++-++=
⨯-=。

相关文档
最新文档