2015年上海高考数学(文科)试题答案详解

合集下载

【推荐】2015年上海市高考数学试卷(文科)

【推荐】2015年上海市高考数学试卷(文科)

2015年上海市高考数学试卷(文科)一、填空题(本大题共14小题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律零分)1.(4分)函数f ()=1﹣3sin 2的最小正周期为 .2.(4分)设全集U=R ,若集合A={1,2,3,4},B={|2≤≤3},则A ∩B= .3.(4分)若复数满足3+=1+i ,其中i 是虚数单位,则= .4.(4分)设f ﹣1()为f ()=的反函数,则f ﹣1(2)= .5.(4分)若线性方程组的增广矩阵为解为,则c 1﹣c 2= .6.(4分)若正三棱柱的所有棱长均为a ,且其体积为16,则a= . 7.(4分)抛物线y 2=2p (p >0)上的动点Q 到焦点的距离的最小值为1,则p= .8.(4分)方程log 2(9﹣1﹣5)=log 2(3﹣1﹣2)+2的解为 .9.(4分)若,y 满足,则目标函数=+2y 的最大值为 .10.(4分)在报名的3名男老师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为 (结果用数值表示).11.(4分)在(2+)6的二项式中,常数项等于 (结果用数值表示).12.(4分)已知双曲线C 1、C 2的顶点重合,C 1的方程为﹣y 2=1,若C 2的一条渐近线的斜率是C 1的一条渐近线的斜率的2倍,则C 2的方程为 .13.(4分)已知平面向量、、满足⊥,且||,||,||}={1,2,3},则|++|的最大值是 .14.(4分)已知函数f ()=sin .若存在1,2,…,m 满足0≤1<2<…<m ≤6π,且|f (1)﹣f (2)|+|f (2)﹣f (3)|+…+|f (m ﹣1)﹣f (m )|=12(m ≥2,m∈N *),则m 的最小值为 .二、选择题(本大题共4小题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律零分.15.(5分)设1、2∈C ,则“1、2均为实数”是“1﹣2是实数”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件16.(5分)下列不等式中,与不等式<2解集相同的是( ) A .(+8)(2+2+3)<2 B .+8<2(2+2+3)C .<D .>17.(5分)已知点A 的坐标为(4,1),将OA 绕坐标原点O 逆时针旋转至OB ,则点B 的纵坐标为( )A .B .C .D .18.(5分)设 P n (n ,y n )是直线2﹣y=(n ∈N *)与圆2+y 2=2在第一象限的交点,则极限=( ) A .﹣1B .﹣C .1D .2 三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(12分)如图,圆锥的顶点为P ,底面圆为O ,底面的一条直径为AB ,C 为半圆弧的中点,E 为劣弧的中点,已知PO=2,OA=1,求三棱锥P ﹣AOC 的体积,并求异面直线PA 和OE 所成角的大小.20.(14分)已知函数f ()=a 2+,其中a 为常数(1)根据a 的不同取值,判断函数f ()的奇偶性,并说明理由;(2)若a ∈(1,3),判断函数f ()在[1,2]上的单调性,并说明理由.21.(14分)如图,O ,P ,Q 三地有直道相通,OP=3千米,PQ=4千米,OQ=5千米,现甲、乙两警员同时从O 地出发匀速前往Q 地,经过t 小时,他们之间的距离为f (t )(单位:千米).甲的路线是OQ ,速度为5千米/小时,乙的路线是OPQ ,速度为8千米/小时,乙到达Q 地后在原地等待.设t=t 1时乙到达P 地,t=t 2时乙到达Q 地.(1)求t 1与f (t 1)的值;(2)已知警员的对讲机的有效通话距离是3千米,当t 1≤t ≤t 2时,求f (t )的表达式,并判断f (t )在[t 1,t 2]上的最大值是否超过3?说明理由.22.(16分)已知椭圆2+2y 2=1,过原点的两条直线l 1和l 2分别与椭圆交于点A 、B 和C 、D ,记△AOC 的面积为S .(1)设A (1,y 1),C (2,y 2),用A 、C 的坐标表示点C 到直线l 1的距离,并证明S=|;(2)设l 1:y=,,S=,求的值;(3)设l 1与l 2的斜率之积为m ,求m 的值,使得无论l 1和l 2如何变动,面积S 保持不变.23.(18分)已知数列{a n }与{b n }满足a n+1﹣a n =2(b n+1﹣b n ),n ∈N *.(1)若b n =3n+5,且a 1=1,求{a n }的通项公式;(2)设{a n }的第n 0项是最大项,即a n0≥a n (n ∈N*),求证:{b n }的第n 0项是最大项;(3)设a 1=3λ<0,b n =λn (n ∈N *),求λ的取值范围,使得对任意m ,n ∈N *,a n ≠0,且.2015年上海市高考数学试卷(文科)参考答案与试题解析一、填空题(本大题共14小题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律零分)1.(4分)函数f()=1﹣3sin2的最小正周期为π.【分析】由条件利用半角公式化简函数的解析式,再利用余弦函数的周期性求得函数的最小正周期.【解答】解:∵函数f()=1﹣3sin2=1﹣3=﹣+cos2,∴函数的最小正周期为=π,故答案为:π.【点评】本题主要考查半角公式的应用,余弦函数的周期性,属于基础题.2.(4分)设全集U=R,若集合A={1,2,3,4},B={|2≤≤3},则A∩B= {2,3} .【分析】由A与B,找出两集合的交集即可.【解答】解:∵全集U=R,A={1,2,3,4},B={|2≤≤3},∴A∩B={2,3},故答案为:{2,3}【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.3.(4分)若复数满足3+=1+i,其中i是虚数单位,则= .【分析】设=a+bi,则=a﹣bi(a,b∈R),利用复数的运算法则、复数相等即可得出.【解答】解:设=a+bi,则=a﹣bi(a,b∈R),又3+=1+i ,∴3(a+bi )+(a ﹣bi )=1+i ,化为4a+2bi=1+i ,∴4a=1,2b=1,解得a=,b=.∴=. 故答案为:. 【点评】本题考查了复数的运算法则、复数相等,属于基础题.4.(4分)设f ﹣1()为f ()=的反函数,则f ﹣1(2)= ﹣ .【分析】由原函数解析式把用含有y 的代数式表示,,y 互换求出原函数的反函数,则f ﹣1(2)可求.【解答】解:由y=f ()=,得, ,y 互换可得,,即f ﹣1()=. ∴. 故答案为:. 【点评】本题考查了函数的反函数的求法,是基础的计算题.5.(4分)若线性方程组的增广矩阵为解为,则c 1﹣c 2= 16 .【分析】根据增广矩阵的定义得到,是方程组的解,解方程组即可.【解答】解:由题意知,是方程组的解, 即,则c 1﹣c 2=21﹣5=16,故答案为:16.【点评】本题主要考查增广矩阵的求解,根据条件建立方程组关系是解决本题的关键.6.(4分)若正三棱柱的所有棱长均为a ,且其体积为16,则a= 4 .【分析】由题意可得(•a •a •sin60°)•a=16,由此求得a 的值.【解答】解:由题意可得,正棱柱的底面是变长等于a 的等边三角形,面积为•a •a •sin60°,正棱柱的高为a , ∴(•a •a •sin60°)•a=16,∴a=4,故答案为:4.【点评】本题主要考查正棱柱的定义以及体积公式,属于基础题.7.(4分)抛物线y 2=2p (p >0)上的动点Q 到焦点的距离的最小值为1,则p= 2 .【分析】利用抛物线的顶点到焦点的距离最小,即可得出结论.【解答】解:因为抛物线y 2=2p (p >0)上的动点Q 到焦点的距离的最小值为1, 所以=1,所以p=2.故答案为:2.【点评】本题考查抛物线的方程与性质,考查学生的计算能力,比较基础.8.(4分)方程log 2(9﹣1﹣5)=log 2(3﹣1﹣2)+2的解为 2 .【分析】利用对数的运算性质化为指数类型方程,解出并验证即可.【解答】解:∵log 2(9﹣1﹣5)=log 2(3﹣1﹣2)+2,∴log 2(9﹣1﹣5)=log 2[4×(3﹣1﹣2)],∴9﹣1﹣5=4(3﹣1﹣2),化为(3)2﹣12•3+27=0,因式分解为:(3﹣3)(3﹣9)=0,∴3=3,3=9,解得=1或2.经过验证:=1不满足条件,舍去.∴=2.故答案为:2.【点评】本题考查了对数的运算性质及指数运算性质及其方程的解法,考查了计算能力,属于基础题.9.(4分)若,y 满足,则目标函数=+2y 的最大值为 3 .【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分).由=+2y 得y=﹣+,平移直线y=﹣+,由图象可知当直线y=﹣+经过点B 时,直线y=﹣+的截距最大, 此时最大.由,解得,即B(1,1),代入目标函数=+2y得=2×1+1=3故答案为:3.【点评】本题主要考查线性规划的应用,利用图象平行求得目标函数的最大值和最小值,利用数形结合是解决线性规划问题中的基本方法.10.(4分)在报名的3名男老师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为120 (结果用数值表示).【分析】根据题意,运用排除法分析,先在9名老师中选取5人,参加义务献血,由组合数公式可得其选法数目,再排除其中只有女教师的情况;即可得答案.【解答】解:根据题意,报名的有3名男老师和6名女教师,共9名老师,5=126种;在9名老师中选取5人,参加义务献血,有C95=6种情况;其中只有女教师的有C6则男、女教师都有的选取方式的种数为126﹣6=120种;故答案为:120.【点评】本题考查排列、组合的运用,本题适宜用排除法(间接法),可以避免分类讨论,简化计算.11.(4分)在(2+)6的二项式中,常数项等于240 (结果用数值表示).【分析】写出二项展开式的通项,由的指数为0求得r值,则答案可求.【解答】解:由(2+)6,得=.由6﹣3r=0,得r=2. ∴常数项等于. 故答案为:240.【点评】本题考查了二项式系数的性质,关键是对二项展开式通项的记忆与运用,是基础题.12.(4分)已知双曲线C 1、C 2的顶点重合,C 1的方程为﹣y 2=1,若C 2的一条渐近线的斜率是C 1的一条渐近线的斜率的2倍,则C 2的方程为.【分析】求出C 1的一条渐近线的斜率,可得C 2的一条渐近线的斜率,利用双曲线C 1、C 2的顶点重合,可得C 2的方程.【解答】解:C 1的方程为﹣y 2=1,一条渐近线的方程为y=,因为C 2的一条渐近线的斜率是C 1的一条渐近线的斜率的2倍,所以C 2的一条渐近线的方程为y=,因为双曲线C 1、C 2的顶点重合,所以C 2的方程为. 故答案为:. 【点评】本题考查双曲线的方程与性质,考查学生的计算能力,比较基础.13.(4分)已知平面向量、、满足⊥,且||,||,||}={1,2,3},则|++| 3+ .【分析】分别以所在的直线为,y轴建立直角坐标系,分类讨论:当{||,||}={1,2},||=3,设,则2+y2=9,则++=(1+,2+y),有||=的最大值,其几何意义是圆2+y2=9上点(,y)与定点(﹣1,﹣2)的距离的最大值;其他情况同理,然后求出各种情况的最大值进行比较即可.【解答】解:分别以所在的直线为,y轴建立直角坐标系,①当{||,||}={1,2},||=3,则,设,则2+y2=9,∴++=(1+,2+y),∴||=的最大值,其几何意义是圆2+y2=9上点(,y)与定点(﹣1,﹣2)的距离的最大值为=3+;②且{||,||}={1,3},||=2,则,2+y2=4,∴++=(1+,3+y)∴||=的最大值,其几何意义是圆2+y2=4上点(,y)与定点(﹣1,﹣3)的距离的最大值为2+=2+,③{||,||}={2,3},||=1,则,设,则2+y2=1∴++=(2+,3+y)∴||=的最大值,其几何意义是在圆2+y2=1上取点(,y)与定点(﹣2,﹣3)的距离的最大值为1+=1+∵,故|++|的最大值为3+.故答案为:3+【点评】本题主要考查了向量的模的求解,解题的关键是圆的性质的应用:在圆外取一点,使得其到圆上点的距离的最大值:r+d(r为该圆的半径,d为该点与圆心的距离).14.(4分)已知函数f ()=sin .若存在1,2,…,m 满足0≤1<2<…<m ≤6π,且|f (1)﹣f (2)|+|f (2)﹣f (3)|+…+|f (m ﹣1)﹣f (m )|=12(m ≥2,m ∈N *),则m 的最小值为 8 .【分析】由正弦函数的有界性可得,对任意i ,j (i ,j=1,2,3,…,m ),都有|f (i )﹣f (j )|≤f ()ma ﹣f ()min =2,要使m 取得最小值,尽可能多让i(i=1,2,3,…,m )取得最高点,然后作图可得满足条件的最小m 值. 【解答】解:∵y=sin 对任意i ,j (i ,j=1,2,3,…,m ),都有|f (i )﹣f (j )|≤f ()ma ﹣f ()min =2,要使m 取得最小值,尽可能多让i (i=1,2,3,…,m )取得最高点, 考虑0≤1<2<…<m ≤6π,|f (1)﹣f (2)|+|f (2)﹣f (3)|+…+|f (m ﹣1)﹣f (m )|=12,按下图取值即可满足条件,∴m 的最小值为8. 故答案为:8.【点评】本题考查正弦函数的图象和性质,考查分析问题和解决问题的能力,考查数学转化思想方法,正确理解对任意i ,j (i ,j=1,2,3,…,m ),都有|f (i )﹣f (j )|≤f ()ma ﹣f ()min =2是解答该题的关键,是难题.二、选择题(本大题共4小题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律零分.15.(5分)设1、2∈C ,则“1、2均为实数”是“1﹣2是实数”的( ) A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件【分析】根据充分条件和必要条件的定义结合复数的有关概念进行判断即可. 【解答】解:若1、2均为实数,则1﹣2是实数,即充分性成立,当1=i ,2=i ,满足1﹣2=0是实数,但1、2均为实数不成立,即必要性不成立, 故“1、2均为实数”是“1﹣2是实数”的充分不必要条件, 故选:A .【点评】本题主要考查充分条件和必要条件的判断,根据复数的有关概念是解决本题的关键.16.(5分)下列不等式中,与不等式<2解集相同的是( )A .(+8)(2+2+3)<2B .+8<2(2+2+3)C .<D .>【分析】根据2+2+3=(+1)2+2>0,可得不等式<2,等价于+8<2(2+2+3),从而得出结论.【解答】解:由于2+2+3=(+1)2+2>0,不等式<2,等价于+8<2(2+2+3), 故选:B .【点评】本题主要考查不等式的基本性质的应用,体现了等价转化的数学思想,属于基础题.17.(5分)已知点A 的坐标为(4,1),将OA 绕坐标原点O 逆时针旋转至OB ,则点B 的纵坐标为( ) A .B .C .D .【分析】根据三角函数的定义,求出∠OA 的三角函数值,利用两角和差的正弦公式进行求解即可.【解答】解:∵点 A 的坐标为(4,1),∴设∠OA=θ,则sin θ==,cos θ==,将OA 绕坐标原点O 逆时针旋转至OB ,则OB 的倾斜角为θ+,则|OB|=|OA|=,则点B 的纵坐标为y=|OB|sin (θ+)=7(sin θcos+cos θsin)=7(×+)=+6=,故选:D .【点评】本题主要考查三角函数值的计算,根据三角函数的定义以及两角和差的正弦公式是解决本题的关键.18.(5分)设 P n (n ,y n )是直线2﹣y=(n ∈N *)与圆2+y 2=2在第一象限的交点,则极限=( ) A .﹣1B .﹣C .1D .2【分析】当n →+∞时,直线2﹣y=趋近于2﹣y=1,与圆2+y 2=2在第一象限的交点无限靠近(1,1),利用圆的切线的斜率、斜率计算公式即可得出. 【解答】解:当n →+∞时,直线2﹣y=趋近于2﹣y=1,与圆2+y 2=2在第一象限的交点无限靠近(1,1),而可看作点Pn (n,yn)与(1,1)连线的斜率,其值会无限接近圆2+y2=2在点(1,1)处的切线的斜率,其斜率为﹣1.∴=﹣1.故选:A.【点评】本题考查了极限思想、圆的切线的斜率、斜率计算公式,考查了推理能力与计算能力,属于中档题.三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(12分)如图,圆锥的顶点为P,底面圆为O,底面的一条直径为AB,C 为半圆弧的中点,E为劣弧的中点,已知PO=2,OA=1,求三棱锥P﹣AOC的体积,并求异面直线PA和OE所成角的大小.【分析】由条件便知PO为三棱锥P﹣AOC的高,底面积S△AOC又容易得到,从而带入棱锥的体积公式即可得到该三棱锥的体积.根据条件能够得到OE∥AC,从而找到异面直线PA,OE所成角为∠PAC,可取AC中点H,连接PH,便得到PH⊥AC,从而可在Rt△PAH中求出cos∠PAC,从而得到∠PAC.【解答】解:∵PO=2,OA=1,OC⊥AB;∴;E为劣弧的中点;∴∠BOE=45°,又∠ACO=45°;∴OE∥AC;∴∠PAC便是异面直线PA和OE所成角;在△ACP中,AC=,;如图,取AC中点H,连接PH,则PH⊥AC,AH=;∴在Rt△PAH中,cos∠PAH=;∴异面直线PA与OE所成角的大小为arccos.【点评】考查圆锥的定义,圆锥的高和母线,等弧所对的圆心角相等,能判断两直线平行,以及异面直线所成角的定义及找法、求法,能用反三角函数表示角.20.(14分)已知函数f()=a2+,其中a为常数(1)根据a的不同取值,判断函数f()的奇偶性,并说明理由;(2)若a∈(1,3),判断函数f()在[1,2]上的单调性,并说明理由.【分析】(1)根据函数的奇偶性的定义即可判断,需要分类讨论;(2)根据导数和函数的单调性的关系即可判断.【解答】解:(1)当a=0时,f()=,显然为奇函数,当a≠0时,f(1)=a+1,f(﹣1)=a﹣1,f(1)≠f(﹣1),且f(1)+f(﹣1)≠0,所以此时f ()为非奇非偶函数. (2)∵a ∈(1,3),f ()=a 2+, ∴f ′()=2a ﹣=,∵a ∈(1,3),∈[1,2], ∴a >1, ∴a 3>1, ∴2a 3﹣1>0, ∴f ′()>0,∴函数f ()在[1,2]上的单调递增.【点评】本题考查了函数的奇偶性和单调性,属于基础题.21.(14分)如图,O ,P ,Q 三地有直道相通,OP=3千米,PQ=4千米,OQ=5千米,现甲、乙两警员同时从O 地出发匀速前往Q 地,经过t 小时,他们之间的距离为f (t )(单位:千米).甲的路线是OQ ,速度为5千米/小时,乙的路线是OPQ ,速度为8千米/小时,乙到达Q 地后在原地等待.设t=t 1时乙到达P 地,t=t 2时乙到达Q 地. (1)求t 1与f (t 1)的值;(2)已知警员的对讲机的有效通话距离是3千米,当t 1≤t ≤t 2时,求f (t )的表达式,并判断f (t )在[t 1,t 2]上的最大值是否超过3?说明理由.【分析】(1)用OP 长度除以乙的速度即可求得t 1=,当乙到达P 点时,可设甲到达A点,连接AP,放在△AOP中根据余弦定理即可求得AP,也就得出f (t);1=,设t,且t小时后甲到达B地,而乙到达C地,(2)求出t2并连接BC,能够用t表示出BQ,CQ,并且知道cos,这样根据余弦定理即可求出BC,即f(t),然后求该函数的最大值,看是否超过3即可.【解答】解:(1)根据条件知,设此时甲到达A点,并连接AP,如图所示,则OA=;)∴在△OAP中由余弦定理得,f(t1=AP==(千米);(2)可以求得,设t小时后,且,甲到达了B点,乙到达了C 点,如图所示:则BQ=5﹣5t,CQ=7﹣8t;∴在△BCQ中由余弦定理得,f(t)=BC==;即f (t )=,;设g (t )=25t 2﹣42t+18,,g (t )的对称轴为t=;且;即g (t )的最大值为,则此时f (t )取最大值;即f (t )在[t 1,t 2]上的最大值不超过3.【点评】考查余弦定理的应用,以及二次函数在闭区间上最值的求法.22.(16分)已知椭圆2+2y 2=1,过原点的两条直线l 1和l 2分别与椭圆交于点A 、B 和C 、D ,记△AOC 的面积为S .(1)设A (1,y 1),C (2,y 2),用A 、C 的坐标表示点C 到直线l 1的距离,并证明S=|;(2)设l 1:y=,,S=,求的值;(3)设l 1与l 2的斜率之积为m ,求m 的值,使得无论l 1和l 2如何变动,面积S 保持不变.【分析】(1)依题意,直线l 1的方程为y=,利用点到直线间的距离公式可求得点C到直线l 1的距离d=,再利用|AB|=2|AO|=2,可证得S=|AB|d=|1y 2﹣2y 1|;(2)由(1)得:S=|1y 2﹣2y 1|=×|1﹣y 1|=,进而得到答案;(3)方法一:设直线l 1的斜率为,则直线l 1的方程为y=,联立方程组,消去y 解得=±,可求得1、2、y 1、y 2,利用S=|1y 2﹣2y 1|=•,设=c (常数),整理得:4﹣2m 2+m 2=c 2[24+(1+4m 2)2+2m 2],由于左右两边恒成立,可得,此时S=;方法二:设直线l 1、l 2的斜率分别为、,则=m ,则m 12=﹣y 1y 2,变形整理,利用A (1,y 1)、C (2,y 2)在椭圆2+2y 2=1上,可求得面积S 的值. 【解答】解:(1)依题意,直线l 1的方程为y=,由点到直线间的距离公式得:点C 到直线l 1的距离d==,因为|AB|=2|AO|=2,所以S=|AB|d=|1y 2﹣2y 1|;(2)由(1)A (1,y 1),C (2,y 2),S=|1y 2﹣2y 1|=×|1﹣y 1|=.所以|1﹣y 1|=,由12+2y 12=1, 解得A (,﹣)或(,﹣)或(﹣,)或(﹣,),由=,得=﹣1或﹣;(3)方法一:设直线l 1的斜率为,则直线l 2的斜率为,直线l 1的方程为y=, 联立方程组,消去y 解得=±,根据对称性,设1=,则y 1=,同理可得2=,y 2=,所以S=|1y 2﹣2y 1|=•,设=c (常数),所以(m ﹣2)2=c 2(1+22)(2+2m 2), 整理得:4﹣2m 2+m 2=c 2[24+(1+4m 2)2+2m 2],由于左右两边恒成立,所以只能是,所以,此时S=, 综上所述,m=﹣,S=.方法二:设直线l 1、l 2的斜率分别为、,则=m , 所以m 12=y 1y 2,∴m 2==m 12y 1y 2,∵A (1,y 1)、C (2,y 2)在椭圆2+2y 2=1上, ∴()()=+4+2(+)=1, 即(+4m )12y 1y 2+2(+)=1,所以+﹣212y 1y 2=(1y 2﹣2y 1)2=[1﹣(4m+)12y 1y 2]﹣212y 1y 2 =﹣(2m++2)12y 1y 2,是常数,所以|1y 2﹣2y 1|是常数,所以令2m++2=0即可,所以,m=﹣,S=.综上所述,m=﹣,S=. 【点评】本题考查直线与圆锥曲线的综合应用,考查方程思想、等价转化思想与综合运算能力,属于难题.23.(18分)已知数列{a n }与{b n }满足a n+1﹣a n =2(b n+1﹣b n ),n ∈N *.(1)若b n =3n+5,且a 1=1,求{a n }的通项公式;(2)设{a n }的第n 0项是最大项,即a n0≥a n (n ∈N*),求证:{b n }的第n 0项是最大项;(3)设a 1=3λ<0,b n =λn (n ∈N *),求λ的取值范围,使得对任意m ,n ∈N *,a n ≠0,且.【分析】(1)把b n =3n+5代入已知递推式可得a n+1﹣a n =6,由此得到{a n }是等差数列,则a n 可求;(2)由a n =(a n ﹣a n ﹣1)+(a n ﹣1﹣a n ﹣2)+…+(a 2﹣a 1)+a 1,结合递推式累加得到a n =2b n +a 1﹣2b 1,求得,进一步得到得答案;(3)由(2)可得,然后分﹣1<λ<0,λ=﹣1,λ<﹣1三种情况求得a n 的最大值M 和最小值m ,再由∈()列式求得λ的范围. 【解答】(1)解:∵a n+1﹣a n =2(b n+1﹣b n ),b n =3n+5,∴a n+1﹣a n =2(b n+1﹣b n )=2(3n+8﹣3n ﹣5)=6,∴{a n }是等差数列,首项为a 1=1,公差为6,则a n =1+(n ﹣1)×6=6n ﹣5;(2)∵a n =(a n ﹣a n ﹣1)+(a n ﹣1﹣a n ﹣2)+…+(a 2﹣a 1)+a 1=2(b n ﹣b n ﹣1)+2(b n ﹣1﹣b n ﹣2)+…+2(b 2﹣b 1)+a 1=2b n +a 1﹣2b 1, ∴, ∴.∴数列{b n }的第n 0项是最大项;(3)由(2)可得, ①当﹣1<λ<0时,单调递减,有最大值;单调递增,有最小值m=a1=3λ<0,∴的最小值为,最大值为,则,解得.∴λ∈().②当λ=﹣1时,a2n =1,a2n﹣1=﹣3,∴M=3,m=﹣1,不满足条件.③当λ<﹣1时,当n→+∞时,a2n→+∞,无最大值;当n→+∞时,a2n﹣1→﹣∞,无最小值.综上所述,λ∈(﹣,0)时满足条件.【点评】本题考查了数列递推式,考查了等差关系的确定,考查了数列的函数特性,训练了累加法求数列的通项公式,对(3)的求解运用了极限思想方法,是中档题.。

2015年高考文科数学上海卷-答案

2015年高考文科数学上海卷-答案

【解析】()1f x =【提示】由条件利用半角公式化简函数的解析式,再利用余弦函数的周期性求得函数的最小正周期【考点】二倍角公式,三角函数的周期【答案】{}1,4 【解析】{UB x =<{}1,4UAB =【提示】由A 与B ,找出两集合的交集即可. 【考点】集合交集及其基本运算11【解析】()2f x =【提示】由原函数解析式把【考点】反函数.1sin 60=162a a ⎫⎪⎭【考点】立体几何的基本运算. 【解析】抛物线上的动点到焦点的距离等于动点到准线的距离【解析】12log (9x -且又2log (95)-1433x --+g【解析】条件要求男、女教师都有142332363636C +C C +C C 4515=+数目,再排除其中只有女教师的情况;即可得答案. 242246621(2)()C 2240x x ==. 求得r 值,则答案可求. 【解析】双曲线又C【解析】2a b c ++222a b c =++222a b a c b c +++22222a b c a c b c =++++2222()a b c c a b ++++,142cosc a b c a b c a b<+>=+++,1465cosc a b c a b<+>=++.2a b c ++的最大值为1465+. a b c ++的最大值为【提示】分别以a b ,所在的直线为【考点】平面向量的基本运算【解析】()sin 1f x x =当且仅当223())()f x x f x -+-m x ,满足120x x <<L 11【解析】22x x ++直接可得82(x +<它们的解集是相同的3112n b a +-)n λ-,。

[历年真题]2015年上海市高考数学试卷(文科)

[历年真题]2015年上海市高考数学试卷(文科)

2015年上海市高考数学试卷(文科)一、填空题(本大题共14小题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律零分)1.(4分)函数f(x)=1﹣3sin2x的最小正周期为.2.(4分)设全集U=R,若集合A={1,2,3,4},B={x|2≤x≤3},则A∩B=.3.(4分)若复数z满足3z+=1+i,其中i是虚数单位,则z=.4.(4分)设f﹣1(x)为f(x)=的反函数,则f﹣1(2)=.5.(4分)若线性方程组的增广矩阵为解为,则c1﹣c2=.6.(4分)若正三棱柱的所有棱长均为a,且其体积为16,则a=.7.(4分)抛物线y2=2px(p>0)上的动点Q到焦点的距离的最小值为1,则p=.8.(4分)方程log2(9x﹣1﹣5)=log2(3x﹣1﹣2)+2的解为.9.(4分)若x,y满足,则目标函数z=x+2y的最大值为.10.(4分)在报名的3名男老师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为(结果用数值表示).11.(4分)在(2x+)6的二项式中,常数项等于(结果用数值表示).12.(4分)已知双曲线C1、C2的顶点重合,C1的方程为﹣y2=1,若C2的一条渐近线的斜率是C1的一条渐近线的斜率的2倍,则C2的方程为.13.(4分)已知平面向量、、满足⊥,且{||,||,||}={1,2,3},则|++|的最大值是.14.(4分)已知函数f(x)=sinx.若存在x1,x2,…,x m满足0≤x1<x2<…<x m≤6π,且|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(x m﹣1)﹣f(x m)|=12(m≥2,m ∈N*),则m的最小值为.二、选择题(本大题共4小题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律零分. 15.(5分)设z1、z2∈C,则“z1、z2均为实数”是“z1﹣z2是实数”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分又非必要条件16.(5分)下列不等式中,与不等式<2解集相同的是()A.(x+8)(x2+2x+3)<2 B.x+8<2(x2+2x+3)C.<D.>17.(5分)已知点A的坐标为(4,1),将OA绕坐标原点O逆时针旋转至OB,则点B的纵坐标为()A.B.C.D.18.(5分)设P n(x n,y n)是直线2x﹣y=(n∈N*)与圆x2+y2=2在第一象限的交点,则极限=()A.﹣1 B.﹣ C.1 D.2三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(12分)如图,圆锥的顶点为P,底面圆为O,底面的一条直径为AB,C为半圆弧的中点,E为劣弧的中点,已知PO=2,OA=1,求三棱锥P﹣AOC的体积,并求异面直线PA和OE所成角的大小.20.(14分)已知函数f(x)=ax2+,其中a为常数(1)根据a的不同取值,判断函数f(x)的奇偶性,并说明理由;(2)若a∈(1,3),判断函数f(x)在[1,2]上的单调性,并说明理由.21.(14分)如图,O,P,Q三地有直道相通,OP=3千米,PQ=4千米,OQ=5千米,现甲、乙两警员同时从O地出发匀速前往Q地,经过t小时,他们之间的距离为f(t)(单位:千米).甲的路线是OQ,速度为5千米/小时,乙的路线是OPQ,速度为8千米/小时,乙到达Q地后在原地等待.设t=t1时乙到达P地,t=t2时乙到达Q地.(1)求t1与f(t1)的值;(2)已知警员的对讲机的有效通话距离是3千米,当t1≤t≤t2时,求f(t)的表达式,并判断f(t)在[t1,t2]上的最大值是否超过3?说明理由.22.(16分)已知椭圆x2+2y2=1,过原点的两条直线l1和l2分别与椭圆交于点A、B和C、D,记△AOC的面积为S.(1)设A(x1,y1),C(x2,y2),用A、C的坐标表示点C到直线l1的距离,并证明S=|;(2)设l1:y=kx,,S=,求k的值;(3)设l1与l2的斜率之积为m,求m的值,使得无论l1和l2如何变动,面积S保持不变.23.(18分)已知数列{a n}与{b n}满足a n+1﹣a n=2(b n+1﹣b n),n∈N*.(1)若b n=3n+5,且a1=1,求{a n}的通项公式;(2)设{a n}的第n0项是最大项,即a n0≥a n(n∈N*),求证:{b n}的第n0项是最大项;(3)设a1=3λ<0,b n=λn(n∈N*),求λ的取值范围,使得对任意m,n∈N*,a n≠0,且.2015年上海市高考数学试卷(文科)参考答案与试题解析一、填空题(本大题共14小题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律零分)1.(4分)(2015•上海)函数f(x)=1﹣3sin2x的最小正周期为π.【分析】由条件利用半角公式化简函数的解析式,再利用余弦函数的周期性求得函数的最小正周期.【解答】解:∵函数f(x)=1﹣3sin2x=1﹣3=﹣+cos2x,∴函数的最小正周期为=π,故答案为:π.【点评】本题主要考查半角公式的应用,余弦函数的周期性,属于基础题.2.(4分)(2015•上海)设全集U=R,若集合A={1,2,3,4},B={x|2≤x≤3},则A∩B= {2,3} .【分析】由A与B,找出两集合的交集即可.【解答】解:∵全集U=R,A={1,2,3,4},B={x|2≤x≤3},∴A∩B={2,3},故答案为:{2,3}【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.3.(4分)(2015•上海)若复数z满足3z+=1+i,其中i是虚数单位,则z=.【分析】设z=a+bi,则=a﹣bi(a,b∈R),利用复数的运算法则、复数相等即可得出.【解答】解:设z=a+bi,则=a﹣bi(a,b∈R),又3z+=1+i,∴3(a+bi)+(a﹣bi)=1+i,化为4a+2bi=1+i,∴4a=1,2b=1,解得a=,b=.∴z=.故答案为:.【点评】本题考查了复数的运算法则、复数相等,属于基础题.4.(4分)(2015•上海)设f﹣1(x)为f(x)=的反函数,则f﹣1(2)=﹣.【分析】由原函数解析式把x用含有y的代数式表示,x,y互换求出原函数的反函数,则f﹣1(2)可求.【解答】解:由y=f(x)=,得,x,y互换可得,,即f﹣1(x)=.∴.故答案为:.【点评】本题考查了函数的反函数的求法,是基础的计算题.5.(4分)(2015•上海)若线性方程组的增广矩阵为解为,则c1﹣c2=16.【分析】根据增广矩阵的定义得到,是方程组的解,解方程组即可.【解答】解:由题意知,是方程组的解,即,则c1﹣c2=21﹣5=16,故答案为:16.【点评】本题主要考查增广矩阵的求解,根据条件建立方程组关系是解决本题的关键.6.(4分)(2015•上海)若正三棱柱的所有棱长均为a,且其体积为16,则a= 4.【分析】由题意可得(•a•a•sin60°)•a=16,由此求得a的值.【解答】解:由题意可得,正棱柱的底面是变长等于a的等边三角形,面积为•a•a•sin60°,正棱柱的高为a,∴(•a•a•sin60°)•a=16,∴a=4,故答案为:4.【点评】本题主要考查正棱柱的定义以及体积公式,属于基础题.7.(4分)(2015•上海)抛物线y2=2px(p>0)上的动点Q到焦点的距离的最小值为1,则p=2.【分析】利用抛物线的顶点到焦点的距离最小,即可得出结论.【解答】解:因为抛物线y2=2px(p>0)上的动点Q到焦点的距离的最小值为1,所以=1,所以p=2.故答案为:2.【点评】本题考查抛物线的方程与性质,考查学生的计算能力,比较基础.8.(4分)(2015•上海)方程log2(9x﹣1﹣5)=log2(3x﹣1﹣2)+2的解为2.【分析】利用对数的运算性质化为指数类型方程,解出并验证即可.【解答】解:∵log2(9x﹣1﹣5)=log2(3x﹣1﹣2)+2,∴log2(9x﹣1﹣5)=log2[4×(3x ﹣1﹣2)],∴9x﹣1﹣5=4(3x﹣1﹣2),化为(3x)2﹣12•3x+27=0,因式分解为:(3x﹣3)(3x﹣9)=0,∴3x=3,3x=9,解得x=1或2.经过验证:x=1不满足条件,舍去.∴x=2.故答案为:2.【点评】本题考查了对数的运算性质及指数运算性质及其方程的解法,考查了计算能力,属于基础题.9.(4分)(2015•上海)若x,y满足,则目标函数z=x+2y的最大值为3.【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分).由z=x+2y得y=﹣x+z,平移直线y=﹣x+z,由图象可知当直线y=﹣x+z经过点B时,直线y=﹣x+z的截距最大,此时z最大.由,解得,即B(1,1),代入目标函数z=x+2y得z=2×1+1=3故答案为:3.【点评】本题主要考查线性规划的应用,利用图象平行求得目标函数的最大值和最小值,利用数形结合是解决线性规划问题中的基本方法.10.(4分)(2015•上海)在报名的3名男老师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为120(结果用数值表示).【分析】根据题意,运用排除法分析,先在9名老师中选取5人,参加义务献血,由组合数公式可得其选法数目,再排除其中只有女教师的情况;即可得答案.【解答】解:根据题意,报名的有3名男老师和6名女教师,共9名老师,在9名老师中选取5人,参加义务献血,有C95=126种;其中只有女教师的有C65=6种情况;则男、女教师都有的选取方式的种数为126﹣6=120种;故答案为:120.【点评】本题考查排列、组合的运用,本题适宜用排除法(间接法),可以避免分类讨论,简化计算.11.(4分)(2015•上海)在(2x+)6的二项式中,常数项等于240(结果用数值表示).【分析】写出二项展开式的通项,由x的指数为0求得r值,则答案可求.【解答】解:由(2x+)6,得=.由6﹣3r=0,得r=2.∴常数项等于.故答案为:240.【点评】本题考查了二项式系数的性质,关键是对二项展开式通项的记忆与运用,是基础题.12.(4分)(2015•上海)已知双曲线C1、C2的顶点重合,C1的方程为﹣y2=1,若C2的一条渐近线的斜率是C1的一条渐近线的斜率的2倍,则C2的方程为.【分析】求出C1的一条渐近线的斜率,可得C2的一条渐近线的斜率,利用双曲线C1、C2的顶点重合,可得C2的方程.【解答】解:C1的方程为﹣y2=1,一条渐近线的方程为y=,因为C2的一条渐近线的斜率是C1的一条渐近线的斜率的2倍,所以C2的一条渐近线的方程为y=x,因为双曲线C1、C2的顶点重合,所以C2的方程为.故答案为:.【点评】本题考查双曲线的方程与性质,考查学生的计算能力,比较基础.13.(4分)(2015•上海)已知平面向量、、满足⊥,且{||,||,||}={1,2,3},则|++|的最大值是3+.【分析】分别以所在的直线为x,y轴建立直角坐标系,分类讨论:当{||,||}={1,2},||=3,设,则x2+y2=9,则++=(1+x,2+y),有||=的最大值,其几何意义是圆x2+y2=9上点(x,y)与定点(﹣1,﹣2)的距离的最大值;其他情况同理,然后求出各种情况的最大值进行比较即可.【解答】解:分别以所在的直线为x,y轴建立直角坐标系,①当{||,||}={1,2},||=3,则,设,则x2+y2=9,∴++=(1+x,2+y),∴||=的最大值,其几何意义是圆x2+y2=9上点(x,y)与定点(﹣1,﹣2)的距离的最大值为=3+;②且{||,||}={1,3},||=2,则,x2+y2=4,∴++=(1+x,3+y)∴||=的最大值,其几何意义是圆x2+y2=4上点(x,y)与定点(﹣1,﹣3)的距离的最大值为2+=2+,③{||,||}={2,3},||=1,则,设,则x2+y2=1∴++=(2+x,3+y)∴||=的最大值,其几何意义是在圆x2+y2=1上取点(x,y)与定点(﹣2,﹣3)的距离的最大值为1+=1+∵,故|++|的最大值为3+.故答案为:3+【点评】本题主要考查了向量的模的求解,解题的关键是圆的性质的应用:在圆外取一点,使得其到圆上点的距离的最大值:r+d(r为该圆的半径,d为该点与圆心的距离).14.(4分)(2015•上海)已知函数f(x)=sinx.若存在x1,x2,…,x m满足0≤x1<x2<…<x m≤6π,且|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(x m﹣1)﹣f(x m)|=12(m≥2,m∈N*),则m的最小值为8.【分析】由正弦函数的有界性可得,对任意x i,x j(i,j=1,2,3,…,m),都有|f(x i)﹣f (x j)|≤f(x)max﹣f(x)min=2,要使m取得最小值,尽可能多让x i(i=1,2,3,…,m)取得最高点,然后作图可得满足条件的最小m值.【解答】解:∵y=sinx对任意x i,x j(i,j=1,2,3,…,m),都有|f(x i)﹣f(x j)|≤f(x)max﹣f(x)min=2,要使m取得最小值,尽可能多让x i(i=1,2,3,…,m)取得最高点,考虑0≤x1<x2<…<x m≤6π,|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(x m﹣1)﹣f(x m)|=12,按下图取值即可满足条件,∴m的最小值为8.故答案为:8.【点评】本题考查正弦函数的图象和性质,考查分析问题和解决问题的能力,考查数学转化思想方法,正确理解对任意x i,x j(i,j=1,2,3,…,m),都有|f(x i)﹣f(x j)|≤f(x)max﹣f(x)min=2是解答该题的关键,是难题.二、选择题(本大题共4小题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律零分. 15.(5分)(2015•上海)设z1、z2∈C,则“z1、z2均为实数”是“z1﹣z2是实数”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分又非必要条件【分析】根据充分条件和必要条件的定义结合复数的有关概念进行判断即可.【解答】解:若z1、z2均为实数,则z1﹣z2是实数,即充分性成立,当z1=i,z2=i,满足z1﹣z2=0是实数,但z1、z2均为实数不成立,即必要性不成立,故“z1、z2均为实数”是“z1﹣z2是实数”的充分不必要条件,故选:A.【点评】本题主要考查充分条件和必要条件的判断,根据复数的有关概念是解决本题的关键.16.(5分)(2015•上海)下列不等式中,与不等式<2解集相同的是()A.(x+8)(x2+2x+3)<2 B.x+8<2(x2+2x+3)C.<D.>【分析】根据x2+2x+3=(x+1)2+2>0,可得不等式<2,等价于x+8<2(x2+2x+3),从而得出结论.【解答】解:由于x2+2x+3=(x+1)2+2>0,不等式<2,等价于x+8<2(x2+2x+3),故选:B.【点评】本题主要考查不等式的基本性质的应用,体现了等价转化的数学思想,属于基础题.17.(5分)(2015•上海)已知点A的坐标为(4,1),将OA绕坐标原点O逆时针旋转至OB,则点B的纵坐标为()A.B.C.D.【分析】根据三角函数的定义,求出∠xOA的三角函数值,利用两角和差的正弦公式进行求解即可.【解答】解:∵点A的坐标为(4,1),∴设∠xOA=θ,则sinθ==,cosθ==,将OA绕坐标原点O逆时针旋转至OB,则OB的倾斜角为θ+,则|OB|=|OA|=,则点B的纵坐标为y=|OB|sin(θ+)=7(sinθcos+cosθsin)=7(×+)=+6=,故选:D.【点评】本题主要考查三角函数值的计算,根据三角函数的定义以及两角和差的正弦公式是解决本题的关键.18.(5分)(2015•上海)设P n(x n,y n)是直线2x﹣y=(n∈N*)与圆x2+y2=2在第一象限的交点,则极限=()A.﹣1 B.﹣ C.1 D.2【分析】当n→+∞时,直线2x﹣y=趋近于2x﹣y=1,与圆x2+y2=2在第一象限的交点无限靠近(1,1),利用圆的切线的斜率、斜率计算公式即可得出.【解答】解:当n→+∞时,直线2x﹣y=趋近于2x﹣y=1,与圆x2+y2=2在第一象限的交点无限靠近(1,1),而可看作点P n(x n,y n)与(1,1)连线的斜率,其值会无限接近圆x2+y2=2在点(1,1)处的切线的斜率,其斜率为﹣1.∴=﹣1.故选:A.【点评】本题考查了极限思想、圆的切线的斜率、斜率计算公式,考查了推理能力与计算能力,属于中档题.三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(12分)(2015•上海)如图,圆锥的顶点为P,底面圆为O,底面的一条直径为AB,C为半圆弧的中点,E为劣弧的中点,已知PO=2,OA=1,求三棱锥P﹣AOC的体积,并求异面直线PA和OE所成角的大小.又容易得到,从而带【分析】由条件便知PO为三棱锥P﹣AOC的高,底面积S△AOC入棱锥的体积公式即可得到该三棱锥的体积.根据条件能够得到OE∥AC,从而找到异面直线PA,OE所成角为∠PAC,可取AC中点H,连接PH,便得到PH⊥AC,从而可在Rt△PAH中求出cos∠PAC,从而得到∠PAC.【解答】解:∵PO=2,OA=1,OC⊥AB;∴;E为劣弧的中点;∴∠BOE=45°,又∠ACO=45°;∴OE∥AC;∴∠PAC便是异面直线PA和OE所成角;在△ACP中,AC=,;如图,取AC中点H,连接PH,则PH⊥AC,AH=;∴在Rt△PAH中,cos∠PAH=;∴异面直线PA与OE所成角的大小为arccos.【点评】考查圆锥的定义,圆锥的高和母线,等弧所对的圆心角相等,能判断两直线平行,以及异面直线所成角的定义及找法、求法,能用反三角函数表示角.20.(14分)(2015•上海)已知函数f(x)=ax2+,其中a为常数(1)根据a的不同取值,判断函数f(x)的奇偶性,并说明理由;(2)若a∈(1,3),判断函数f(x)在[1,2]上的单调性,并说明理由.【分析】(1)根据函数的奇偶性的定义即可判断,需要分类讨论;(2)根据导数和函数的单调性的关系即可判断.【解答】解:(1)当a=0时,f(x)=,显然为奇函数,当a≠0时,f(1)=a+1,f(﹣1)=a﹣1,f(1)≠f(﹣1),且f(1)+f(﹣1)≠0,所以此时f(x)为非奇非偶函数.(2)∵a∈(1,3),f(x)=ax2+,∴f′(x)=2ax﹣=,∵a∈(1,3),x∈[1,2],∴ax>1,∴ax3>1,∴2ax3﹣1>0,∴f′(x)>0,∴函数f(x)在[1,2]上的单调递增.【点评】本题考查了函数的奇偶性和单调性,属于基础题.21.(14分)(2015•上海)如图,O,P,Q三地有直道相通,OP=3千米,PQ=4千米,OQ=5千米,现甲、乙两警员同时从O地出发匀速前往Q地,经过t小时,他们之间的距离为f(t)(单位:千米).甲的路线是OQ,速度为5千米/小时,乙的路线是OPQ,速度为8千米/小时,乙到达Q地后在原地等待.设t=t1时乙到达P地,t=t2时乙到达Q 地.(1)求t1与f(t1)的值;(2)已知警员的对讲机的有效通话距离是3千米,当t1≤t≤t2时,求f(t)的表达式,并判断f(t)在[t1,t2]上的最大值是否超过3?说明理由.【分析】(1)用OP长度除以乙的速度即可求得t1=,当乙到达P点时,可设甲到达A点,连接AP,放在△AOP中根据余弦定理即可求得AP,也就得出f(t1);(2)求出t2=,设t,且t小时后甲到达B地,而乙到达C地,并连接BC,能够用t表示出BQ,CQ,并且知道cos,这样根据余弦定理即可求出BC,即f(t),然后求该函数的最大值,看是否超过3即可.【解答】解:(1)根据条件知,设此时甲到达A点,并连接AP,如图所示,则OA=;∴在△OAP中由余弦定理得,f(t1)=AP==(千米);(2)可以求得,设t小时后,且,甲到达了B点,乙到达了C点,如图所示:则BQ=5﹣5t,CQ=7﹣8t;∴在△BCQ中由余弦定理得,f(t)=BC==;即f(t)=,;设g(t)=25t2﹣42t+18,,g(t)的对称轴为t=;且;即g(t)的最大值为,则此时f(t)取最大值;即f(t)在[t1,t2]上的最大值不超过3.【点评】考查余弦定理的应用,以及二次函数在闭区间上最值的求法.22.(16分)(2015•上海)已知椭圆x2+2y2=1,过原点的两条直线l1和l2分别与椭圆交于点A、B和C、D,记△AOC的面积为S.(1)设A(x1,y1),C(x2,y2),用A、C的坐标表示点C到直线l1的距离,并证明S=|;(2)设l1:y=kx,,S=,求k的值;(3)设l1与l2的斜率之积为m,求m的值,使得无论l1和l2如何变动,面积S保持不变.【分析】(1)依题意,直线l1的方程为y=x,利用点到直线间的距离公式可求得点C到直线l1的距离d=,再利用|AB|=2|AO|=2,可证得S=|AB|d=|x1y2﹣x2y1|;(2)由(1)得:S=|x1y2﹣x2y1|=×|x1﹣y1|=,进而得到答案;(3)方法一:设直线l1的斜率为k,则直线l1的方程为y=kx,联立方程组,消去y解得x=±,可求得x1、x2、y1、y2,利用S=|x1y2﹣x2y1|=•,设=c(常数),整理得:k4﹣2mk2+m2=c2[2k4+(1+4m2)k2+2m2],由于左右两边恒成立,可得,此时S=;方法二:设直线l1、l2的斜率分别为、,则=m,则mx1x2=﹣y1y2,变形整理,利用A(x1,y1)、C(x2,y2)在椭圆x2+2y2=1上,可求得面积S的值.【解答】解:(1)依题意,直线l1的方程为y=x,由点到直线间的距离公式得:点C到直线l1的距离d==,因为|AB|=2|AO|=2,所以S=|AB|d=|x1y2﹣x2y1|;(2)由(1)A(x1,y1),C(x2,y2),S=|x1y2﹣x2y1|=×|x1﹣y1|=.所以|x1﹣y1|=,由x12+2y12=1,解得A(,﹣)或(,﹣)或(﹣,)或(﹣,),由k=,得k=﹣1或﹣;(3)方法一:设直线l1的斜率为k,则直线l2的斜率为,直线l1的方程为y=kx,联立方程组,消去y解得x=±,根据对称性,设x1=,则y1=,同理可得x2=,y2=,所以S=|x1y2﹣x2y1|=•,设=c(常数),所以(m﹣k2)2=c2(1+2k2)(k2+2m2),整理得:k4﹣2mk2+m2=c2[2k4+(1+4m2)k2+2m2],由于左右两边恒成立,所以只能是,所以,此时S=,综上所述,m=﹣,S=.方法二:设直线l1、l2的斜率分别为、,则=m,所以mx1x2=y1y2,∴m2==mx1x2y1y2,∵A(x1,y1)、C(x2,y2)在椭圆x2+2y2=1上,∴()()=+4+2(+)=1,即(+4m)x1x2y1y2+2(+)=1,所以+﹣2x1x2y1y2=(x1y2﹣x2y1)2=[1﹣(4m+)x1x2y1y2]﹣2x1x2y1y2=﹣(2m++2)x1x2y1y2,是常数,所以|x1y2﹣x2y1|是常数,所以令2m++2=0即可,所以,m=﹣,S=.综上所述,m=﹣,S=.【点评】本题考查直线与圆锥曲线的综合应用,考查方程思想、等价转化思想与综合运算能力,属于难题.23.(18分)(2015•上海)已知数列{a n}与{b n}满足a n+1﹣a n=2(b n+1﹣b n),n∈N*.(1)若b n=3n+5,且a1=1,求{a n}的通项公式;(2)设{a n}的第n0项是最大项,即a n0≥a n(n∈N*),求证:{b n}的第n0项是最大项;(3)设a1=3λ<0,b n=λn(n∈N*),求λ的取值范围,使得对任意m,n∈N*,a n≠0,且.【分析】(1)把b n=3n+5代入已知递推式可得a n+1﹣a n=6,由此得到{a n}是等差数列,则a n可求;(2)由a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1,结合递推式累加得到a n=2b n+a1﹣2b1,求得,进一步得到得答案;(3)由(2)可得,然后分﹣1<λ<0,λ=﹣1,λ<﹣1三种情况求得a n 的最大值M和最小值m,再由∈()列式求得λ的范围.﹣a n=2(b n+1﹣b n),b n=3n+5,【解答】(1)解:∵a n+1﹣a n=2(b n+1﹣b n)=2(3n+8﹣3n﹣5)=6,∴a n+1∴{a n}是等差数列,首项为a1=1,公差为6,则a n=1+(n﹣1)×6=6n﹣5;(2)∵a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1=2(b n﹣b n﹣1)+2(b n﹣1﹣b n﹣2)+…+2(b2﹣b1)+a1=2b n+a1﹣2b1,∴,∴.∴数列{b n}的第n0项是最大项;(3)由(2)可得,①当﹣1<λ<0时,单调递减,有最大值;单调递增,有最小值m=a1=3λ<0,∴的最小值为,最大值为,则,解得.∴λ∈().②当λ=﹣1时,a2n=1,a2n﹣1=﹣3,∴M=3,m=﹣1,不满足条件.③当λ<﹣1时,当n→+∞时,a2n→+∞,无最大值;→﹣∞,无最小值.当n→+∞时,a2n﹣1综上所述,λ∈(﹣,0)时满足条件.【点评】本题考查了数列递推式,考查了等差关系的确定,考查了数列的函数特性,训练了累加法求数列的通项公式,对(3)的求解运用了极限思想方法,是中档题.参与本试卷答题和审题的老师有:caoqz;sllwyn;沂蒙松;sxs123;maths;刘长柏;danbo7801;吕静;wkl197822;whgcn;wfy814(排名不分先后)菁优网2017年3月17日。

2015上海高考数学试题(含答案)

2015上海高考数学试题(含答案)

2015上海高考数学(文)答案二.选择题15. A 16. B 17. D 18. A 三.解答题19. 11.33P AOC AOC V S PO -==取PB 的中点F , 连接OF 、EF 因OF||PB 所以 FOE ∠就是异面直线PA,OE 所成的角在三角形OEF 中:2OF =, 1OE = , FE ==所以 cos FOE ∠=故异面直线PA,OE 所成的角为arc 本题也可以以O 为坐标原点,OC,OB,OP 分别为x 轴,y 轴z 轴建立空间直角坐标系利用空间向量知识来解决20.解: 0x R x ∈≠且(1)0a =时 1()f x x = 此时1()()f x f x x-=-=- 此时()f x 为奇函数0a ≠时 21()f x ax x=+此时, (1)1f a -=- (1)1f a =+ (1)(1)(1)(1)f f f f -≠--≠且 此时()f x 是非奇非偶函数(2) 对于任意的 1212x x ≤<≤12221212()()11()()f x f x a x x x x -=-+-所以当(1,3)a ∈时所以12()()0f x f x -<,故()f x 在区间[1,2]为增函数 21.解(1)由已知得: 1237,88t t ==13()()8f t f ===(2).设 t 时刻37[,]88t ∈乙到达E,甲到达F,348()788QE t t =--=-,55QF t =-()f t ==37[,]88t ∈因()f t 在321[,]825单调递减,在217[,]258单调递增121212120,0()(2,16)x x x x x x x x -<>+∈12121212()1[()].a x x x x x x x x a-=+-12121()0x x x x a+->所以max ()f t =3()388f =< 22.解(1) 11||||sin ||||1cos 22S OA OC AOC OA OC =⋅∠=⋅-)]||||OA OC =⋅2|||)(OA OC =⋅-=12211||2x y x y ===-(2)由(1) 1111||23S x == 所以 2213(1)4k x -= -----(1) 又 221(12)1k x += -----(2)(1)/(2)得 25610k k ++= 解得115k ork =-=- (3)设1122(,),(,)mA x kxB x x k由2221y kx x y =⎧⎨+=⎩得212112x k =+ 同理222222k x k m =+ 212211211||||||22m k S x y x y x x k-=-== ∴2142(2)m m +=- 故12m =- 23.解(1) 112()6n n n n a a b b ++-=-= 故数列{}n a 是公差为6等差数列 ∴ 65n a n =-(2)根据题意000011n n n n a a a a +-≥⎧⎪⎨≥⎪⎩ ∴00011n n nn b b b b +-≥⎧⎪⎨≥⎪⎩所以0n b 是{}n b 的最大项(3)由 112()2(1)nn n n n a a b b λλ++-=-=-所以: 121321()()()n n n a a a a a a a a -=+-+-++- 2132(1)2(1)2(1)n λλλλλλλ-=+-+-++- 2132(1)2(1)2(1)n λλλλλλλ-=+-+-++-2n λλ=+则12662m nλλλλ+<<+ 111216621m n λλ--+<<+ ∵。

2015年高考数学(文)试题(上海题)含答案

2015年高考数学(文)试题(上海题)含答案
已知函数 f ( x ) ax
2
21. (本题满分 14 分)本题共有 2 个小题,第 1 小题满分 6 分,第 2 小题满分 8 分.
如图, O , P, Q 三地有直道相通, OP 3 千米, PQ 4 千米, OQ 5 千米,现甲、乙两警员同时从
O 地出发匀速前往 Q 地,经过 t 小时,他们之间的距离为 f (t ) (单位:千米).甲的路线是 OQ ,速度为 5 千 米/小时, 乙的路线是 OPQ , 速度为 8 千米/小时, 乙到达 Q 地后在原地等待.设 t t1 时, 乙到达 P 地,t t2 时,乙到达 Q 地. (1)求 t1 与 f (t1 ) 的值;
2015 年普通高等学校招生全国统一考试(上海卷)文
2015 年上海市文科试题
一.填空题(本大题共 14 小题,满分 56 分)考生应在答题纸相应编号的空格内直接填写结果,每个空格 填对得 4 分,否则一律零分) 1.函数 f ( x ) 1 3 sin x 的最小正周期为. 2.设全集 U R .若集合 A {1,2,3,4} , B {x | 2 x 3} ,则 A (CU B ) . 3.若复数 z 满足 3 z z 1 i ,其中 i 是虚数单位,则 z . 4.设 f
x 1 2
5) log 2 (3 x 1 2) 2 的解为.
x y 0 9.若 x, y 满足 x y 2 ,则目标函数 f x 2 y 的最大值为. y 0
10. 在报名的 3 名男老师和 6 名女教师中,选取 5 人参加义务献血,要求男、女教师都有,则不同的选取 方式的种数为 11.在 ( 2 x (结果用数值表示). (结果用数值表示).

2015年上海高考数学(文科)填空选择真题解析

2015年上海高考数学(文科)填空选择真题解析
【解析】设 AOx ,∴ sin 【答案】D 18. 设 Pn ( xn , yn ) 是直线 2 x y 限 lim
n
n (n N* ) 与圆 x 2 y 2 2 在第一象限的交点,则极 n 1
yn 1 ( xn 1
) B.
A. 1
1 2

3 2 a a 16 3 ,解得 a 4 4

资料整理
sh-maths
FunshineMaths 峰行数学
8. 方程 log 2 (9
x 1
5) log 2 (3x 1 2) 2 的解为

【解析】 log 2 (9 x 1 5) log 2 (3x 1 2) 2 log 2 (4 3x1 8) ,即 9 x 1 5 4 3x1 8 , 设 3 t ,化简得 t 12t 27 0 ,即 t 3 或 t 9 ,解得 x 1 (舍)或 x 2 【答案】 x 2
2

3 1 2 2 cos 2 x , T 2 2 2
1 1 1 1 , b ,∴ z i 4 2 4 2
1 1 i 4 2
x 的反函数,则 f 1 (2) ; 2x 1 x 2 2 【解析】即 2 ,解得 x ,即 f 1 (2) 2x 1 3 3 2 【答案】 3 2 3 c1 x 3 5. 若线性方程组的增广矩阵为 ,则 c1 c2 ,解为 0 1 c2 y 5
大值是 ;
【解析】平方后可知 c 与 a b 同向时,取最大, 情况不是很多,列举法,如图可得 3 5


资料整理
sh-maths

2015年上海高考文科数学真题试卷(有答案)讲课教案

2015年上海高考文科数学真题试卷(有答案)讲课教案

2015年普通高等学校招生全国统一考试(上海卷)文2015年上海市文科试题一.填空题(本大题共14小题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律零分) 1.函数x x f 2sin 31)(-=的最小正周期为.2.设全集R =U .若集合}4,3,2,1{=A ,}32|{<≤=x x B ,则=)(B C A U .3.若复数z 满足i z z +=+13,其中i 是虚数单位,则=z .4.设)(1x f-为12)(+=x x x f 的反函数,则=-)2(1f . 5.若线性方程组的增广矩阵为⎝⎛0213⎪⎪⎭⎫21c c 解为⎩⎨⎧==53y x ,则=-21c c . 6.若正三棱柱的所有棱长均为a ,且其体积为316,则=a .7.抛物线)0(22>=p px y 上的懂点Q 到焦点的距离的最小值为1,则=p . 8. 方程2)23(log )59(log 1212+-=---x x 的解为.9.若y x ,满足020x y x y y -≥⎧⎪+≤⎨⎪≥⎩,则目标函数2f x y =+的最大值为.10. 在报名的3名男老师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为 (结果用数值表示). 11.在62)12(x x +的二项式中,常数项等于 (结果用数值表示). 12.已知双曲线1C 、2C 的顶点重合,1C 的方程为1422=-y x ,若2C 的一条渐近线的斜率是1C 的一条渐近线的斜率的2倍,则2C 的方程为13.已知平面向量、、满足⊥,且}3,2,1{|}||,||,{|=c b a ,则||c b a ++的最大值是14.已知函数x x f s i n)(=.若存在1x ,2x ,⋅⋅⋅,m x 满足π6021≤<⋅⋅⋅<<≤m x x x ,且12|)()(||)()(||)()(|13221=-+⋅⋅⋅+-+--m m x f x f x f x f x f x f ),12(*∈≥N m m ,则m 的最小值为二.选择题(本大题共4小题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律零分.15. 设1z 、C ∈2z ,则“1z 、2z 均为实数”是“21z z -是实数”的( ).A. 充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件 16. 下列不等式中,与不等式23282<+++x x x 解集相同的是( ).A. 2)32)(8(2<+++x x x B. )32(282++<+x x xC. 823212+<++x x x D. 218322>+++x x x 17. 已知点 A 的坐标为)1,34(,将OA 绕坐标原点O 逆时针旋转3π至OB ,则点B 的纵坐标为( ).A.233 B. 235 C.211 D. 213 18. 设),(n n n y x P 是直线)(12*∈+=-N n n ny x 与圆222=+y x 在第一象限的交点,则极限=--∞→11limn n n x y ( ).A. 1-B. 21-C. 1D. 2三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分)如图,圆锥的顶点为P ,底面圆为O ,底面的一条直径为AB ,C 为半圆弧AB 的中点,E 为劣弧CB 的中点,已知2,1PO OA ==,求三棱锥P AOC -的体积,并求异面直线PA 和OE 所成角的大小.20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.已知函数21()f x ax x=+,其中a 为常数 (1)根据a 的不同取值,判断函数()f x 的奇偶性,并说明理由; (2)若(1,3)a ∈,判断函数()f x 在[1,2]上的单调性,并说明理由.21. (本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.如图,,,O P Q 三地有直道相通,3OP =千米,4PQ =千米,5OQ =千米,现甲、乙两警员同时从O 地出发匀速前往Q 地,经过t 小时,他们之间的距离为()f t (单位:千米).甲的路线是OQ ,速度为5千米/小时,乙的路线是OPQ ,速度为8千米/小时,乙到达Q 地后在原地等待.设1t t =时,乙到达P 地,2t t =时,乙到达Q 地.(1)求1t 与1()f t 的值;(2)已知警员的对讲机的有效通话距离是3千米,当12t t t ≤≤时,求()f t 的表达式,并判断()f t 在12[,]t t 上的最大值是否超过3?说明理由.22. (本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知椭圆2221x y +=,过原点的两条直线1l 和2l 分别与椭圆交于点A 、B 和C 、D ,记A O C ∆的面积为S .(1)设1122(,),(,)A x y C x y ,用A 、C 的坐标表示点C 到直线1l 的距离,并证明122112S x y x y =-;(2)设1:l y kx =,C ⎝⎭,13S =,求k 的值;(3)设1l 与2l 的斜率之积为m ,求m 的值,使得无论1l 和2l 如何变动,面积S 保持不变.23. (本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分, 第3小题满分8分.已知数列{}n a 与{}n b 满足112(),*n n n n a a b b n N ++-=-∈. (1)若35,n b n =+且11a =,求{}n a 的通项公式;(2)设{}n a 的第0n 项是最大项,即0(*)n n a a n N ≥∈,求证:{}n b 的第0n 项是最大项;(3)设130a λ=<,(*)nn b n N λ=∈,求λ的取值范围,使得对任意,*m n N ∈,0n a ≠,且1,66m n a a ⎛⎫∈ ⎪⎝⎭答案 一、(第1题至第14题)1. π2.{1.4}3. 1142i +4. 23- 5.16 6. 4 7. 2 8. 29. 3 10. 120 11.240 12. 22144x y -=13. 3 14.8 二、(第15题至第18题)15 .A 16.B 17.D 18.A 三、(第19题至第23题) 19.[解] 1112323P AOC V -=⨯⨯= 因为A CO E ,所以PAC ∠为异面直线PA 与OE 所成的角或其补角由2,1PO OA OC ===,得PA PC ==AC =在PAC中,由余弦定理得cos 10PAC ∠=,故异面直线PA 与OE所成的角的大小为arccos 1020.[解](1)()f x 的定义域为{0,}x x x R ≠∈,关于原点对称,2211()()f x a x ax x x-=-+=--, 当0a =时,()()f x f x -=-为奇函数当0a ≠时,由(1)1,(1)1f a f a =+-=-,知(1)(1)f f -≠-,故()f x 即不是奇函数也不是偶函数。

2015年上海市高考数学试卷(文科)

2015年上海市高考数学试卷(文科)

2015年上海市高考数学试卷(文科)一、填空题(本大题共14小题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律零分) 1.(4分)函数f (x )=1﹣3sin 2x 的最小正周期为 .2.(4分)设全集U=R ,若集合A={1,2,3,4},B={x|2≤x ≤3},则A ∩B= . 3.(4分)若复数z 满足3z+=1+i ,其中i 是虚数单位,则z= . 4.(4分)设f ﹣1(x )为f (x )=的反函数,则f ﹣1(2)= .5.(4分)若线性方程组的增广矩阵为解为,则c 1﹣c 2= . 6.(4分)若正三棱柱的所有棱长均为a ,且其体积为16,则a= .7.(4分)抛物线y 2=2px (p >0)上的动点Q 到焦点的距离的最小值为1,则p= .8.(4分)方程log 2(9x ﹣1﹣5)=log 2(3x ﹣1﹣2)+2的解为 . 9.(4分)若x ,y 满足,则目标函数z=x+2y 的最大值为 .10.(4分)在报名的3名男老师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为 (结果用数值表示).11.(4分)在(2x+)6的二项式中,常数项等于 (结果用数值表示).12.(4分)已知双曲线C 1、C 2的顶点重合,C 1的方程为﹣y 2=1,若C 2的一条渐近线的斜率是C 1的一条渐近线的斜率的2倍,则C 2的方程为 . 13.(4分)已知平面向量、、满足⊥,且||,||,||}={1,2,3},则|++|的最大值是 .14.(4分)已知函数f (x )=sinx .若存在x 1,x 2,…,x m 满足0≤x 1<x 2<…<x m ≤6π,且|f (x 1)﹣f (x 2)|+|f (x 2)﹣f (x 3)|+…+|f (x m ﹣1)﹣f (x m )|=12(m ≥2,m ∈N *),则m 的最小值为 .二、选择题(本大题共4小题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律零分.15.(5分)设z 1、z 2∈C ,则“z 1、z 2均为实数”是“z 1﹣z 2是实数”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分又非必要条件 16.(5分)下列不等式中,与不等式<2解集相同的是( )A .(x+8)(x 2+2x+3)<2B .x+8<2(x 2+2x+3)C .<D .>17.(5分)已知点A 的坐标为(4,1),将OA 绕坐标原点O 逆时针旋转至OB ,则点B 的纵坐标为( ) A .B .C .D .18.(5分)设 P n (x n ,y n )是直线2x ﹣y=(n ∈N *)与圆x 2+y 2=2在第一象限的交点,则极限=( ) A .﹣1 B .﹣ C .1 D .2三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(12分)如图,圆锥的顶点为P ,底面圆为O ,底面的一条直径为AB ,C 为半圆弧的中点,E 为劣弧的中点,已知PO=2,OA=1,求三棱锥P ﹣AOC 的体积,并求异面直线PA 和OE 所成角的大小.20.(14分)已知函数f(x)=ax2+,其中a为常数(1)根据a的不同取值,判断函数f(x)的奇偶性,并说明理由;(2)若a∈(1,3),判断函数f(x)在[1,2]上的单调性,并说明理由.21.(14分)如图,O,P,Q三地有直道相通,OP=3千米,PQ=4千米,OQ=5千米,现甲、乙两警员同时从O地出发匀速前往Q地,经过t小时,他们之间的距离为f(t)(单位:千米).甲的路线是OQ,速度为5千米/小时,乙的路线是OPQ,速度为8千米/小时,乙到达Q地后在原地等待.设t=t1时乙到达P地,t=t2时乙到达Q地.(1)求t1与f(t1)的值;(2)已知警员的对讲机的有效通话距离是3千米,当t1≤t≤t2时,求f(t)的表达式,并判断f(t)在[t1,t2]上的最大值是否超过3?说明理由.22.(16分)已知椭圆x2+2y2=1,过原点的两条直线l1和l2分别与椭圆交于点A、B和C、D,记△AOC的面积为S.(1)设A(x1,y1),C(x2,y2),用A、C的坐标表示点C到直线l1的距离,并证明S=|;(2)设l1:y=kx,,S=,求k的值;(3)设l1与l2的斜率之积为m,求m的值,使得无论l1和l2如何变动,面积S保持不变.23.(18分)已知数列{an }与{bn}满足an+1﹣an=2(bn+1﹣bn),n∈N*.(1)若bn =3n+5,且a1=1,求{an}的通项公式;(2)设{an }的第n项是最大项,即an0≥an(n∈N*),求证:{bn}的第n项是最大项;(3)设a1=3λ<0,bn=λn(n∈N*),求λ的取值范围,使得对任意m,n∈N*,an≠0,且.2015年上海市高考数学试卷(文科)参考答案与试题解析一、填空题(本大题共14小题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律零分)1.(4分)函数f(x)=1﹣3sin2x的最小正周期为π.【分析】由条件利用半角公式化简函数的解析式,再利用余弦函数的周期性求得函数的最小正周期.【解答】解:∵函数f(x)=1﹣3sin2x=1﹣3=﹣+cos2x,∴函数的最小正周期为=π,故答案为:π.【点评】本题主要考查半角公式的应用,余弦函数的周期性,属于基础题.2.(4分)设全集U=R,若集合A={1,2,3,4},B={x|2≤x≤3},则A∩B= {2,3} .【分析】由A与B,找出两集合的交集即可.【解答】解:∵全集U=R,A={1,2,3,4},B={x|2≤x≤3},∴A∩B={2,3},故答案为:{2,3}【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.3.(4分)若复数z满足3z+=1+i,其中i是虚数单位,则z= .【分析】设z=a+bi,则=a﹣bi(a,b∈R),利用复数的运算法则、复数相等即可得出.【解答】解:设z=a+bi,则=a﹣bi(a,b∈R),又3z+=1+i,∴3(a+bi)+(a﹣bi)=1+i,化为4a+2bi=1+i,∴4a=1,2b=1,解得a=,b=.∴z=.故答案为:.【点评】本题考查了复数的运算法则、复数相等,属于基础题.4.(4分)设f﹣1(x)为f(x)=的反函数,则f﹣1(2)= ﹣.【分析】由原函数解析式把x用含有y的代数式表示,x,y互换求出原函数的反函数,则f﹣1(2)可求.【解答】解:由y=f(x)=,得,x,y互换可得,,即f﹣1(x)=.∴.故答案为:.【点评】本题考查了函数的反函数的求法,是基础的计算题.5.(4分)若线性方程组的增广矩阵为解为,则c1﹣c2= 16 .【分析】根据增广矩阵的定义得到,是方程组的解,解方程组即可.【解答】解:由题意知,是方程组的解,即,则c1﹣c2=21﹣5=16,故答案为:16.【点评】本题主要考查增广矩阵的求解,根据条件建立方程组关系是解决本题的关键.6.(4分)若正三棱柱的所有棱长均为a,且其体积为16,则a= 4 .【分析】由题意可得(•a•a•sin60°)•a=16,由此求得a的值.【解答】解:由题意可得,正棱柱的底面是变长等于a的等边三角形,面积为•a•a•sin60°,正棱柱的高为a,∴(•a•a•sin60°)•a=16,∴a=4,故答案为:4.【点评】本题主要考查正棱柱的定义以及体积公式,属于基础题.7.(4分)抛物线y2=2px(p>0)上的动点Q到焦点的距离的最小值为1,则p= 2 .【分析】利用抛物线的顶点到焦点的距离最小,即可得出结论.【解答】解:因为抛物线y2=2px(p>0)上的动点Q到焦点的距离的最小值为1,所以=1,所以p=2.故答案为:2.【点评】本题考查抛物线的方程与性质,考查学生的计算能力,比较基础.8.(4分)方程log2(9x﹣1﹣5)=log2(3x﹣1﹣2)+2的解为 2 .【分析】利用对数的运算性质化为指数类型方程,解出并验证即可.【解答】解:∵log2(9x﹣1﹣5)=log2(3x﹣1﹣2)+2,∴log2(9x﹣1﹣5)=log2[4×(3x﹣1﹣2)],∴9x﹣1﹣5=4(3x﹣1﹣2),化为(3x)2﹣12•3x+27=0,因式分解为:(3x﹣3)(3x﹣9)=0,∴3x=3,3x=9,解得x=1或2.经过验证:x=1不满足条件,舍去.∴x=2.故答案为:2.【点评】本题考查了对数的运算性质及指数运算性质及其方程的解法,考查了计算能力,属于基础题.9.(4分)若x,y满足,则目标函数z=x+2y的最大值为 3 .【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z 的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分).由z=x+2y得y=﹣x+z,平移直线y=﹣x+z,由图象可知当直线y=﹣x+z经过点B时,直线y=﹣x+z的截距最大,此时z最大.由,解得,即B(1,1),代入目标函数z=x+2y得z=2×1+1=3故答案为:3.【点评】本题主要考查线性规划的应用,利用图象平行求得目标函数的最大值和最小值,利用数形结合是解决线性规划问题中的基本方法.10.(4分)在报名的3名男老师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为120 (结果用数值表示).【分析】根据题意,运用排除法分析,先在9名老师中选取5人,参加义务献血,由组合数公式可得其选法数目,再排除其中只有女教师的情况;即可得答案.【解答】解:根据题意,报名的有3名男老师和6名女教师,共9名老师,在9名老师中选取5人,参加义务献血,有C95=126种;其中只有女教师的有C65=6种情况;则男、女教师都有的选取方式的种数为126﹣6=120种;故答案为:120.【点评】本题考查排列、组合的运用,本题适宜用排除法(间接法),可以避免分类讨论,简化计算.11.(4分)在(2x+)6的二项式中,常数项等于240 (结果用数值表示).【分析】写出二项展开式的通项,由x的指数为0求得r值,则答案可求.【解答】解:由(2x+)6,得=.由6﹣3r=0,得r=2.∴常数项等于.故答案为:240.【点评】本题考查了二项式系数的性质,关键是对二项展开式通项的记忆与运用,是基础题.12.(4分)已知双曲线C1、C2的顶点重合,C1的方程为﹣y2=1,若C2的一条渐近线的斜率是C1的一条渐近线的斜率的2倍,则C2的方程为.【分析】求出C1的一条渐近线的斜率,可得C2的一条渐近线的斜率,利用双曲线C1、C2的顶点重合,可得C2的方程.【解答】解:C1的方程为﹣y2=1,一条渐近线的方程为y=,因为C2的一条渐近线的斜率是C1的一条渐近线的斜率的2倍,所以C2的一条渐近线的方程为y=x,因为双曲线C1、C2的顶点重合,所以C2的方程为.故答案为:.【点评】本题考查双曲线的方程与性质,考查学生的计算能力,比较基础.13.(4分)已知平面向量、、满足⊥,且||,||,||}={1,2,3},则|++|的最大值是3+.【分析】分别以所在的直线为x,y轴建立直角坐标系,分类讨论:当{||,||}={1,2},||=3,设,则x2+y2=9,则++=(1+x,2+y),有||=的最大值,其几何意义是圆x2+y2=9上点(x,y)与定点(﹣1,﹣2)的距离的最大值;其他情况同理,然后求出各种情况的最大值进行比较即可.【解答】解:分别以所在的直线为x,y轴建立直角坐标系,①当{||,||}={1,2},||=3,则,设,则x2+y2=9,∴++=(1+x,2+y),∴||=的最大值,其几何意义是圆x2+y2=9上点(x,y)与定点(﹣1,﹣2)的距离的最大值为=3+;②且{||,||}={1,3},||=2,则,x2+y2=4,∴++=(1+x,3+y)∴||=的最大值,其几何意义是圆x2+y2=4上点(x,y)与定点(﹣1,﹣3)的距离的最大值为2+=2+,③{||,||}={2,3},||=1,则,设,则x 2+y 2=1∴++=(2+x ,3+y ) ∴||=的最大值,其几何意义是在圆x 2+y 2=1上取点(x ,y )与定点(﹣2,﹣3)的距离的最大值为1+=1+∵, 故|++|的最大值为3+.故答案为:3+【点评】本题主要考查了向量的模的求解,解题的关键是圆的性质的应用:在圆外取一点,使得其到圆上点的距离的最大值:r+d (r 为该圆的半径,d 为该点与圆心的距离).14.(4分)已知函数f (x )=sinx .若存在x 1,x 2,…,x m 满足0≤x 1<x 2<…<x m ≤6π,且|f (x 1)﹣f (x 2)|+|f (x 2)﹣f (x 3)|+…+|f (x m ﹣1)﹣f (x m )|=12(m ≥2,m ∈N *),则m 的最小值为 8 .【分析】由正弦函数的有界性可得,对任意x i ,x j (i ,j=1,2,3,…,m ),都有|f (x i )﹣f (x j )|≤f (x )max ﹣f (x )min =2,要使m 取得最小值,尽可能多让x i (i=1,2,3,…,m )取得最高点,然后作图可得满足条件的最小m 值. 【解答】解:∵y=sinx 对任意x i ,x j (i ,j=1,2,3,…,m ),都有|f (x i )﹣f (x j )|≤f (x )max ﹣f (x )min =2,要使m 取得最小值,尽可能多让x i (i=1,2,3,…,m )取得最高点, 考虑0≤x 1<x 2<…<x m ≤6π,|f (x 1)﹣f (x 2)|+|f (x 2)﹣f (x 3)|+…+|f (x m ﹣1)﹣f (x m )|=12, 按下图取值即可满足条件,∴m的最小值为8.故答案为:8.【点评】本题考查正弦函数的图象和性质,考查分析问题和解决问题的能力,考查数学转化思想方法,正确理解对任意xi ,xj(i,j=1,2,3,…,m),都有|f(xi )﹣f(xj)|≤f(x)max﹣f(x)min=2是解答该题的关键,是难题.二、选择题(本大题共4小题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律零分.15.(5分)设z1、z2∈C,则“z1、z2均为实数”是“z1﹣z2是实数”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件【分析】根据充分条件和必要条件的定义结合复数的有关概念进行判断即可.【解答】解:若z1、z2均为实数,则z1﹣z2是实数,即充分性成立,当z1=i,z2=i,满足z1﹣z2=0是实数,但z1、z2均为实数不成立,即必要性不成立,故“z1、z2均为实数”是“z1﹣z2是实数”的充分不必要条件,故选:A.【点评】本题主要考查充分条件和必要条件的判断,根据复数的有关概念是解决本题的关键.16.(5分)下列不等式中,与不等式<2解集相同的是()A.(x+8)(x2+2x+3)<2 B.x+8<2(x2+2x+3)C.< D.>【分析】根据x2+2x+3=(x+1)2+2>0,可得不等式<2,等价于x+8<2(x2+2x+3),从而得出结论.【解答】解:由于x2+2x+3=(x+1)2+2>0,不等式<2,等价于x+8<2(x2+2x+3),故选:B.【点评】本题主要考查不等式的基本性质的应用,体现了等价转化的数学思想,属于基础题.17.(5分)已知点A的坐标为(4,1),将OA绕坐标原点O逆时针旋转至OB,则点B的纵坐标为()A.B.C.D.【分析】根据三角函数的定义,求出∠xOA的三角函数值,利用两角和差的正弦公式进行求解即可.【解答】解:∵点 A的坐标为(4,1),∴设∠xOA=θ,则sinθ==,cosθ==,将OA绕坐标原点O逆时针旋转至OB,则OB的倾斜角为θ+,则|OB|=|OA|=,则点B的纵坐标为y=|OB|sin(θ+)=7(sinθcos+cosθsin)=7(×+)=+6=,故选:D.【点评】本题主要考查三角函数值的计算,根据三角函数的定义以及两角和差的正弦公式是解决本题的关键.18.(5分)设 P n (x n ,y n )是直线2x ﹣y=(n ∈N *)与圆x 2+y 2=2在第一象限的交点,则极限=( ) A .﹣1 B .﹣ C .1D .2【分析】当n→+∞时,直线2x ﹣y=趋近于2x ﹣y=1,与圆x 2+y 2=2在第一象限的交点无限靠近(1,1),利用圆的切线的斜率、斜率计算公式即可得出. 【解答】解:当n→+∞时,直线2x ﹣y=趋近于2x ﹣y=1,与圆x 2+y 2=2在第一象限的交点无限靠近(1,1),而可看作点 P n (x n ,y n )与(1,1)连线的斜率,其值会无限接近圆x 2+y 2=2在点(1,1)处的切线的斜率,其斜率为﹣1. ∴=﹣1.故选:A .【点评】本题考查了极限思想、圆的切线的斜率、斜率计算公式,考查了推理能力与计算能力,属于中档题.三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(12分)如图,圆锥的顶点为P ,底面圆为O ,底面的一条直径为AB ,C 为半圆弧的中点,E 为劣弧的中点,已知PO=2,OA=1,求三棱锥P ﹣AOC 的体积,并求异面直线PA 和OE 所成角的大小.【分析】由条件便知PO 为三棱锥P ﹣AOC 的高,底面积S △AOC 又容易得到,从而带入棱锥的体积公式即可得到该三棱锥的体积.根据条件能够得到OE∥AC,从而找到异面直线PA,OE所成角为∠PAC,可取AC中点H,连接PH,便得到PH⊥AC,从而可在Rt△PAH中求出cos∠PAC,从而得到∠PAC.【解答】解:∵PO=2,OA=1,OC⊥AB;∴;E为劣弧的中点;∴∠BOE=45°,又∠ACO=45°;∴OE∥AC;∴∠PAC便是异面直线PA和OE所成角;在△ACP中,AC=,;如图,取AC中点H,连接PH,则PH⊥AC,AH=;∴在Rt△PAH中,cos∠PAH=;∴异面直线PA与OE所成角的大小为arccos.【点评】考查圆锥的定义,圆锥的高和母线,等弧所对的圆心角相等,能判断两直线平行,以及异面直线所成角的定义及找法、求法,能用反三角函数表示角.20.(14分)已知函数f(x)=ax2+,其中a为常数(1)根据a的不同取值,判断函数f(x)的奇偶性,并说明理由;(2)若a∈(1,3),判断函数f(x)在[1,2]上的单调性,并说明理由.【分析】(1)根据函数的奇偶性的定义即可判断,需要分类讨论;(2)根据导数和函数的单调性的关系即可判断.【解答】解:(1)当a=0时,f(x)=,显然为奇函数,当a≠0时,f(1)=a+1,f(﹣1)=a﹣1,f(1)≠f(﹣1),且f(1)+f(﹣1)≠0,所以此时f(x)为非奇非偶函数.(2)∵a∈(1,3),f(x)=ax2+,∴f′(x)=2ax﹣=,∵a∈(1,3),x∈[1,2],∴ax>1,∴ax3>1,∴2ax3﹣1>0,∴f′(x)>0,∴函数f(x)在[1,2]上的单调递增.【点评】本题考查了函数的奇偶性和单调性,属于基础题.21.(14分)如图,O,P,Q三地有直道相通,OP=3千米,PQ=4千米,OQ=5千米,现甲、乙两警员同时从O地出发匀速前往Q地,经过t小时,他们之间的距离为f(t)(单位:千米).甲的路线是OQ,速度为5千米/小时,乙的路线是OPQ,速度为8千米/小时,乙到达Q地后在原地等待.设t=t1时乙到达P地,t=t2时乙到达Q地.(1)求t1与f(t1)的值;(2)已知警员的对讲机的有效通话距离是3千米,当t1≤t≤t2时,求f(t)的表达式,并判断f(t)在[t1,t2]上的最大值是否超过3?说明理由.【分析】(1)用OP长度除以乙的速度即可求得t=,当乙到达P点时,可设甲1);到达A点,连接AP,放在△AOP中根据余弦定理即可求得AP,也就得出f(t1=,设t,且t小时后甲到达B地,而乙到达C地,并(2)求出t2连接BC,能够用t表示出BQ,CQ,并且知道cos,这样根据余弦定理即可求出BC,即f(t),然后求该函数的最大值,看是否超过3即可.【解答】解:(1)根据条件知,设此时甲到达A点,并连接AP,如图所示,则OA=;)∴在△OAP中由余弦定理得,f(t1=AP==(千米);(2)可以求得,设t小时后,且,甲到达了B点,乙到达了C 点,如图所示:则BQ=5﹣5t,CQ=7﹣8t;∴在△BCQ中由余弦定理得,f(t)=BC==;即f(t)=,;设g(t)=25t2﹣42t+18,,g(t)的对称轴为t=;且;即g(t)的最大值为,则此时f(t)取最大值;即f(t)在[t1,t2]上的最大值不超过3.【点评】考查余弦定理的应用,以及二次函数在闭区间上最值的求法.22.(16分)已知椭圆x2+2y2=1,过原点的两条直线l1和l2分别与椭圆交于点A、B和C、D,记△AOC的面积为S.(1)设A(x1,y1),C(x2,y2),用A、C的坐标表示点C到直线l1的距离,并证明S=|;(2)设l1:y=kx,,S=,求k的值;(3)设l1与l2的斜率之积为m,求m的值,使得无论l1和l2如何变动,面积S保持不变.【分析】(1)依题意,直线l1的方程为y=x,利用点到直线间的距离公式可求得点C到直线l1的距离d=,再利用|AB|=2|AO|=2,可证得S=|AB|d=|x1y2﹣x2y1|;(2)由(1)得:S=|x1y2﹣x2y1|=×|x1﹣y1|=,进而得到答案;(3)方法一:设直线l1的斜率为k,则直线l1的方程为y=kx,联立方程组,消去y解得x=±,可求得x1、x2、y1、y2,利用S=|x1y2﹣x2y1|=•,设=c(常数),整理得:k4﹣2mk2+m2=c2[2k4+(1+4m2)k2+2m2],由于左右两边恒成立,可得,此时S=;方法二:设直线l1、l2的斜率分别为、,则=m,则mx1x2=﹣y1y2,变形整理,利用A(x1,y1)、C(x2,y2)在椭圆x2+2y2=1上,可求得面积S的值.【解答】解:(1)依题意,直线l1的方程为y=x,由点到直线间的距离公式得:点C到直线l1的距离d==,因为|AB|=2|AO|=2,所以S=|AB|d=|x1y2﹣x2y1|;(2)由(1)A(x1,y1),C(x2,y2),S=|x1y2﹣x2y1|=×|x1﹣y1|=.所以|x1﹣y1|=,由x12+2y12=1,解得A(,﹣)或(,﹣)或(﹣,)或(﹣,),由k=,得k=﹣1或﹣;(3)方法一:设直线l1的斜率为k,则直线l2的斜率为,直线l1的方程为y=kx,联立方程组,消去y解得x=±,根据对称性,设x1=,则y1=,同理可得x2=,y2=,所以S=|x1y2﹣x2y1|=•,设=c(常数),所以(m﹣k2)2=c2(1+2k2)(k2+2m2),整理得:k4﹣2mk2+m2=c2[2k4+(1+4m2)k2+2m2],由于左右两边恒成立,所以只能是,所以,此时S=,综上所述,m=﹣,S=.方法二:设直线l1、l2的斜率分别为、,则=m,所以mx1x2=y1y2,∴m2==mx1x2y1y2,∵A(x1,y1)、C(x2,y2)在椭圆x2+2y2=1上,∴()()=+4+2(+)=1,即(+4m)x1x2y1y2+2(+)=1,所以+﹣2x1x2y1y2=(x1y2﹣x2y1)2=[1﹣(4m+)x1x2y1y2]﹣2x1x2y1y2=﹣(2m++2)x1x2y1y2,是常数,所以|x1y2﹣x2y1|是常数,所以令2m++2=0即可,所以,m=﹣,S=.综上所述,m=﹣,S=.【点评】本题考查直线与圆锥曲线的综合应用,考查方程思想、等价转化思想与综合运算能力,属于难题.23.(18分)已知数列{an }与{bn}满足an+1﹣an=2(bn+1﹣bn),n∈N*.(1)若bn =3n+5,且a1=1,求{an}的通项公式;(2)设{an }的第n项是最大项,即an0≥an(n∈N*),求证:{bn}的第n项是最大项;(3)设a1=3λ<0,bn=λn(n∈N*),求λ的取值范围,使得对任意m,n∈N*,an≠0,且.【分析】(1)把bn =3n+5代入已知递推式可得an+1﹣an=6,由此得到{an}是等差数列,则an可求;(2)由an =(an﹣an﹣1)+(an﹣1﹣an﹣2)+…+(a2﹣a1)+a1,结合递推式累加得到a n =2bn+a1﹣2b1,求得,进一步得到得答案;(3)由(2)可得,然后分﹣1<λ<0,λ=﹣1,λ<﹣1三种情况求得an的最大值M和最小值m,再由∈()列式求得λ的范围.【解答】(1)解:∵an+1﹣an=2(bn+1﹣bn),bn=3n+5,∴an+1﹣an=2(bn+1﹣bn)=2(3n+8﹣3n﹣5)=6,∴{an }是等差数列,首项为a1=1,公差为6,则an=1+(n﹣1)×6=6n﹣5;(2)∵an =(an﹣an﹣1)+(an﹣1﹣an﹣2)+…+(a2﹣a1)+a1=2(bn ﹣bn﹣1)+2(bn﹣1﹣bn﹣2)+…+2(b2﹣b1)+a1=2bn +a1﹣2b1,∴,∴.∴数列{bn }的第n项是最大项;(3)由(2)可得,①当﹣1<λ<0时,单调递减,有最大值;单调递增,有最小值m=a1=3λ<0,∴的最小值为,最大值为,则,解得.∴λ∈().②当λ=﹣1时,a2n =1,a2n﹣1=﹣3,∴M=3,m=﹣1,不满足条件.③当λ<﹣1时,当n→+∞时,a2n→+∞,无最大值;当n→+∞时,a2n﹣1→﹣∞,无最小值.综上所述,λ∈(﹣,0)时满足条件.【点评】本题考查了数列递推式,考查了等差关系的确定,考查了数列的函数特性,训练了累加法求数列的通项公式,对(3)的求解运用了极限思想方法,是中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年上海高考数学(文科)试题解析版一、填空题(本大题共14小题,每题4分,满分56分) 1、函数()x x f 2sin 31-=的最小正周期为 _________.分析:本题是基础题目,主要考查余弦的二倍角公式,属于常考题目。

答案:π2、设全集U R =,若集合{}4,3,2,1=A ,{}32|≤≤=x x B ,则=B C A U _________. 分析:本题考查了学生的集合运算,属于基础题目和常考题目 。

答案:{1,4}3、若复数z 满足i z z +=+13_,其中i 为虚数单位,则z =___________. 分析:考查复数基本形式及共轭复数的概念,属于基础题目和常规题目。

答案:1142i + 4、设()x f 1-为()12+=x xx f 的反函数,则()=-21f ___________.分析:考查了反函数的知识点,较为基础。

答案:23-5、若线性方程组的增广矩阵为⎪⎪⎭⎫⎝⎛211302c c ,解为⎩⎨⎧==53yx ,则=-21c c ___________.分析:考查了二元一次方程组增广矩阵的概念,属于基础知识,但考前这个小知识点被遗漏的学校较多。

答案:166、若正三棱柱的所有棱长均为a ,且其体积为316,则=a ___________.分析:首先考查了学生对于正三棱柱的认识,其次考查了棱柱的体积公式,题型和知识点较为常规。

答案:47、抛物线()022>=p px y 上的动点Q 到其焦点距离的最小值为1,则=p ___________.分析:考查了抛物线上的点到焦点的距离问题,可以通过第一定义,将到焦点的距离转化成到准线的距离,这样题目就非常容易解决掉。

答案:28、方程()()223log 59log 1212+-=---x x 的解为___________.分析:考查了对数方程的知识点,通过对数运算,去掉对数符号,解出方程的根,易错点为根的验证。

答案:29、若y x ,满足⎪⎩⎪⎨⎧≥≤+≥-020y y x y x ,则目标函数()y x x f 2+=的最大值为___________.分析:本题是线性规划的知识点,属于文科拓展的内容,问题比较直接,并没有拐弯难为学生。

答案:310、在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为 (结果用数值表示)分析:排列组合知识点出现在第十题这个位置,相比较模拟卷和往年高考卷,难度不算大,可以用容易来形容。

答案:12011、在6212⎪⎭⎫ ⎝⎛+x x 的二项展开式中,常数项等于 (结果用数值表示).分析:考察了二项式定理的通项公式,知识点比较简单,本题的指数不算大,很多同学可以把二项式展开做;数理统计的内容在考卷中连续出现两题,而且较为简单,往年高考中很少见到。

答案:24012、已知双曲线1C 、2C 的顶点重合,1C 的方程为1422=-y x ,若2C 的一条渐近线的斜率是1C 的一条渐近线的斜率的2倍,则2C 的方程为___________.分析:考察了共渐近线的双曲线方程求法,根据顶点相同,可进一步确定双曲线方程;如果本题“斜率的2倍”改成“倾斜角的2倍”,所考查的知识点就多一些,本题相对简单,尤其是出现在12题的位置。

答案:224x y -=13、已知平面向量c b a ,,满足b a ⊥,且{}{}3,2,1,,=c b a ,则c b a ++的最大值为___________.分析:首先考查了集合元素的互异性,可能很多同学会填9;解决本题的最好方法就是数形结合,因为已知a 和b 之间的关系,在通过向量平行且同向时相加模最大,就能够很容易解决本题目。

答案:35+14、已知函数()xx f sin =,存在mx x x ,,21,满足π6021≤<<<≤m x x x ,且()()()()()()()*-∈≥=-++-+-N m m x f x f x f x f x f x f m m ,2,1213221 ,则m 的最小值为____.分析:本题属于压轴的填空题,难度比前面的十三道题都提升了很大一个档次,首先考查了正弦函数的知识点,其次是要理解绝对值的含义,因为要求m 得最小值,所以要尽可能的使得每个绝对值的值尽可能的大,所以会利用正弦函数的最大值和最小值。

答案:8二、选择题(本大题共4小题,每题5分,满分20分)15、设C z z ∈21,,则“21z 、z 均为实数”是“21z z -为实数”的( )A 、充分非必要条件B 、必要非充分条件C 、充要条件下D 、既不充分也不必要条件 分析:基础题目,考查了条件与命题和复数的定义。

答案:A16、下列不等式中,与不等式23282<+++x x x 解集相同的是( )A 、()()23282<+++x x x B 、 ()()32282++<+x x xC 、823212+<++x x x D 、218322>+++x x x 分析:考查了学生对于分式不等式解法的步骤或者等价性,属于基础题目。

答案:B17、已知点A 的坐标为()1,34,将OA 坐标原点O 逆时针方向旋转3π至OB ,则B 点的纵坐标为( ) A 、233 B 、235 C 、211 D 、213分析:考查了任意角的三角比的概念及正弦的两角和公式,属于中等题目,但与往年的模拟考中的一道题只是换了一下数据。

答案:D18、设()n n n y x P ,是直线()*∈+=-N n n ny x 12与圆222=+y x 在第一象限的交点,则极限=--∞→11lim n nn x y ( ) A 、1- B 、21-C 、1D 、2 分析:本题的知识点属于极限的求法,但实际上在解题时会先取极限再求值;因为()n n n y x P ,的极限位置为(1,1)点,而题目中所要求的是()n n n y x P ,与(1,1)构成的斜率的极限,由于两点都在圆上,而且无线逼近,可以得到斜率的极限为过(1,1)与圆相切时的斜率。

答案:A三、解答题(本题共5大题,满分74分)19、(本题满分12分)如图,圆锥的顶点为P ,底面圆心为O ,底面的一条直径为AB ,C 为半圆弧AB 的中点,E 为劣弧BC 的中点,已知2PO =,1OA =,求三棱锥P AOC -的体积,并求异面直线PA 与OE 所成角。

分析:本题考查了圆锥的体积公式和异面直线夹角的求法,属于比较基础的题目,几何法主要通过中位线,把已知直线平移到同一个平面内即可,因为垂直关系比较容易找到,从而线段的长度也就容易计算了。

答案:13,10arccos1020、(本题满分14分)已知函数()xax x f 12+=,其中a 为常数, (1)根据a 的不同取值,判断()x f 的奇偶性,并说明理由; (2)若()3,1∈a ,判断()x f 在[1,2]上的单调性,并说明理由。

分析:比较简单的一类奇偶性的判断和证明,首先要注意本题要求先判断,所以解题时要把结论写在前面,然后再去证明;第二问考查了函数单调性的一般步骤,及时含有参数,也比较容易能够判别符号。

总体来说本题考查的知识点偏基础。

答案:(1)0a =时,()f x 为奇函数;0a ≠时,()f x 非奇非偶。

(2)单调递增。

21、(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. 如图,A ,B ,C 三地有直道相通,5AB =千米,3AC =千米,4BC =千米.现甲、乙两警员同时从A 地出发匀速前往B 地,经过t 小时,他们之间的距离为()f t (单位:千米).甲的路线是AB ,速度为5千米/小时,乙的路线是ACB ,速度为8千米/小时.乙到达B 地后在原地等待.设1t t =时,乙到达C 地.(1)求1t 与1()f t 的值;(2)已知警员的对讲机的有效通话距离是3千米.当11t t ≤≤时,求()f t 的表达式,并判断()f t 在1[,1]t 上的最大值是否超过3? 说明理由.分析:本题是解三角形与函数最值综合的一道应用题,虽然牵扯到分段函数,但并不是很难,主要考察学生的基础知识——余弦定理的应用及二次函数求最值求法. 答案:(1)13=8AC t h v =乙,设此时甲运动到P 点,则115=8AP v t km =甲,在APC V 中,()1f t PC ==223412cos 8AC AP AC AP A +-⋅=(2)当178t t ≤≤时,乙在CB 上,设为Q 点,设此时甲在P 点,则:878QB A C C B t t =+-=-,55PB AB AP t =-=-∴222()2cos 254218f t PQ QB PB QB PB B t t ==+-⋅=-+,当718t <≤时,乙在B 点不动,设此时甲在P 点,则:()55f t PB AB AP t ==-=-, ∴237254218,88()755,18t t t f t t t ⎧-+≤≤⎪⎪=⎨⎪-<≤⎪⎩∴当318t ≤≤时,341()[0,]8f t ∈,且34138>∴()f t 的最大值超过了3km . 22、(本题满分16分)本题共有2个小题.第1小题满分4分,第2小题满分6分,第3小题满分6分.已知椭圆2221x y +=,过原点的两条直线1l 和2l 分别与椭圆交于点A 、B 和C 、D ,记得到的平行四边形ACBD 的面积为S .(1)设11(,)A x y ,22(,)C x y ,用A 、C 的坐标表示点C 到直线1l 的距离,并证明12212S x y x y =-; (2)设1l :kx y =,⎪⎪⎭⎫⎝⎛33,33C ,31=S ,求k 的值; (3)设直线1l 和2l 的斜率之积为m ,求m 的值,使得无论1l 和2l 如何变动,面积S 保持不变。

分析:本题属于中等偏易的题目.考察了学生直线方程求法和点到直线的距离公式,题目中语言的叙述和问题的提出具有引导作用,很有层次感,只是在整个运算过程中多为字母运算,提升了运算的难度,侧面也反应出计算能力的提升为考试的主要趋势。

第一问面积的求法,在2013年闸北二模卷中出现过类似的题目,当时是文科填空第二题,主要是考察利用矩阵求三角形面积;第二问只需联立直线与椭圆的方程,解出11(,)A x y 然后再带入第一问的公式即可求出k ;第三问考查了一个恒成立问题,直线1l 和2l 的斜率无论怎么变化S 始终不变,所以只需得出的等式中,将斜率作为未知量,其余作为已知量,然后未知量的系数为0即可。

解:(1)直线1l 的方程为:11y y x x =, 则点C 到直线1l 的距离为:1221212112221111(,)1y x y y x x y x d C l x yy x --==+⎛⎫+ ⎪⎝⎭,(方法1)又221122AB AO x y ==+,∴1(,)S AB d C l =⋅12212x y x y =-.(方法2)11111121122112111221221121221x y S x y x y x y x y x y x y x y x y x y x y =⋅--=-+-+-+=-(2)15-或1-(3)12m =-23、(本题满分16分)本题共3小题.第1小题4分,第2小题6分,第3小题6分.已知数列{}n a 与{}n b 满足112()n n n n a a b b ++-=-,n N *∈.(1)若35n b n =+,且11a =,求数列{}n a 的通项公式;(2)设{}n a 的第0n 项是最大项,即0n n a a ≥()n N *∈,求证:数列{}n b 的第0n 项是最大项;(3)设130a λ=<,()n n b λn N *=∈,求λ的取值范围,使得对任意的m 、n ,0n a ≠,且1(,6)6m n a a ∈。

相关文档
最新文档