2015年上海高考数学理科含答案word版
2015年普通高等学校招生全国统一考试理科数学答案(上海卷)

2015年普通高等学校招生全国统一考试(上海卷)数学(理科)一、填空题:本大题共5小题,每小题5分,共25分.1、设全集U R =.若集合{}1,2,3,4A =,{}23x x B =≤≤,则U A B =ð . 【答案】{}1,4【解析】因为{|32}U C B x x x =><或,所以{4,1}U A C B =【考点定位】集合运算2、若复数z 满足31z z i +=+,其中i 为虚数单位,则z = . 【答案】1142i +【解析】设(,)z a bi a b R =+∈,则113()1412142a bi a bi i ab z i ++-=+⇒==⇒=+且【考点定位】复数相等,共轭复数 3、若线性方程组的增广矩阵为122301c c ⎛⎫ ⎪⎝⎭、解为35x y =⎧⎨=⎩,则12c c -= . 【答案】16【解析】由题意得:121223233521,05,21516.c x y c x y c c =+=⨯+⨯==⋅+=-=-= 【考点定位】线性方程组的增广矩阵4、若正三棱柱的所有棱长均为a ,且其体积为163,则a = . 【答案】4 【解析】2331636444a a a a ⋅=⇒=⇒= 【考点定位】正三棱柱的体积5、抛物线22y px =(0p >)上的动点Q 到焦点的距离的最小值为1,则p = . 【答案】2【考点定位】抛物线定义6、若圆锥的侧面积与过轴的截面面积之比为2π,则其母线与轴的夹角的大小为 .【答案】3π【解析】由题意得:1:(2)222rl h r l h ππ⋅=⇒=⇒母线与轴的夹角为3π 【考点定位】圆锥轴截面7、方程()()1122log 95log 322x x ---=-+的解为 . 【答案】2【考点定位】解指对数不等式8、在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为 (结果用数值表示). 【答案】120【解析】由题意得,去掉选5名女教师情况即可:55961266120.C C -=-= 【考点定位】排列组合9、已知点P 和Q 的横坐标相同,P 的纵坐标是Q 的纵坐标的2倍,P 和Q 的轨迹分别为双曲线1C 和2C .若1C 的渐近线方程为3y x =±,则2C 的渐近线方程为 .【答案】32y x =±【考点定位】双曲线渐近线10、设()1f x -为()222x x f x -=+,[]0,2x ∈的反函数,则()()1y f x f x -=+的最大值为 . 【答案】4【解析】由题意得:2()22x xf x -=+在[0,2]上单调递增,值域为1[,2]4,所以()1f x -在1[,2]4上单调递增,因此()()1y f x f x -=+在1[,2]4上单调递增,其最大值为1(2)(2)22 4.f f -+=+=【考点定位】反函数性质11、在10201511x x ⎛⎫++ ⎪⎝⎭的展开式中,2x 项的系数为 (结果用数值表示). 【答案】45【考点定位】二项展开式12、赌博有陷阱.某种赌博每局的规则是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金(单位:元).若随机变量1ξ和2ξ分别表示赌客在一局赌博中的赌金和奖金,则12ξξE -E =(元). 【答案】0.213、已知函数()sin f x x =.若存在1x ,2x ,⋅⋅⋅,m x 满足1206m x x x π≤<<⋅⋅⋅<≤,且 ()()()()()()1223112n n f x f x f x f x f x f x --+-+⋅⋅⋅+-=(2m ≥,m *∈N ),则m 的最小值 为 . 【答案】8【考点定位】三角函数性质14、在锐角三角形C AB 中,1tan 2A =,D 为边CB 上的点,D ∆AB 与CD ∆A 的面积分别为2和4.过D 作D E ⊥AB 于E ,DFC ⊥A 于F ,则D DF E⋅= . 【答案】1615-【考点定位】向量数量积,解三角形二、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.15、设1z ,2C z ∈,则“1z 、2z 中至少有一个数是虚数”是“12z z -是虚数”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分又非必要条件 【答案】B【考点定位】复数概念,充要关系16、已知点A 的坐标为()43,1,将OA 绕坐标原点O 逆时针旋转3π至OB ,则点B 的纵坐标为( ) A .332 B .532 C .112D .132【答案】D 【解析】133313(cossin )(43)()332222OB OA i i i i ππ=⋅+=+⋅+=+,即点B 的纵坐标为132【考点定位】复数几何意义17、记方程①:2110x a x ++=,方程②:2220x a x ++=,方程③:2340x a x ++=,其中1a ,2a ,3a 是正实数.当1a ,2a ,3a 成等比数列时,下列选项中,能推出方程③无实根的是( )A .方程①有实根,且②有实根B .方程①有实根,且②无实根C .方程①无实根,且②有实根D .方程①无实根,且②无实根 【答案】B【解析】当方程①有实根,且②无实根时,22124,8a a ≥<,从而4222321816,4a a a =<=即方程③:2340x a x ++=无实根,选B.而A,D 由于不等式方向不一致,不可推;C 推出③有实根【考点定位】不等式性质 18、设(),n n n x y P 是直线21nx y n -=+(n *∈N )与圆222x y +=在第一象限的交点,则极限1lim1n n n y x →∞-=-( ) A .1- B .12- C .1 D .2 【答案】A【考点定位】极限三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤。
2015年上海高考数学试卷(理)与答案

2015 年 普 通 高 等 学 校 招 生 全 国 统 一 考 试上海 数学试卷(理工农医类)一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1. 设全集U R =,若集合{}{}1,2,3,4,|23A B x x ==≤≤,则U A B =ð . 【答案】{}1,4;2.若复数z 满足31z z i +=+,其中i 为虚数单位,则z = . 【答案】1142i +; 3.若线性方程组的增广矩阵为122301c c ⎛⎫ ⎪⎝⎭、解为35x y =⎧⎨=⎩,则12c c -= . 【答案】16;4. 若正三棱柱的所有棱长均为a,且其体积为a = . 【答案】4;5.抛物线()220y px p =>上的动点Q 到焦点的距离的最小值为1,则p = . 【答案】2;6.若圆锥的侧面积与过轴的截面积面积之比为2π,则其母线与轴的夹角的大小为 . 【答案】3π; 7.方程()()1122log 95log 322x x ---=-+的解为 .【答案】2;8.在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方法的种数为 .(结果用数值表示) 【答案】120;9.已知点P 和Q 的横坐标相同,P 的纵坐标是Q 的纵坐标的2倍,P 和Q 的轨迹分别为双曲线1C 和2C ,若1C的渐近线方程为y =,则2C 的渐近线方程为 .【答案】y x =; 10.设()1f x -为()[]22,0,22x xf x x -=+∈的反函数,则()()1y f x f x -=+的最大值为 . 【答案】4;11. 在10201511x x ⎛⎫++ ⎪⎝⎭的展开式中,2x 项的系数为 .(结果用数值表示)【答案】45;12.赌博有陷阱.某种赌博每局的规则是:赌客现在标有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将两张卡片上数字之差的绝对值的1.4倍作为其奖金(单位:元).若随机变量1ξ和2ξ分别表示赌客在每一局赌博中的赌金与奖金,则12E E ξξ-= .(元) 【答案】0.2; 13.已知函数()s i n fx x =,若12,,,m x x x 存在满足1206m x x x π≤<<<≤,且()()()()()()()*12231122,m m f x f xf x f x f x f x m m N --+-++-=≥∈,则m 的最小值为 . 【答案】8;14.在锐角ABC ∆中,1tan 2A =,D 为BC 边上的一点,ABD ∆与ACD ∆面积分别为2和4,过D 作DE AB ⊥于E ,DF AC ⊥于F ,则DE DF ⋅【答案】1615-;二、选择题(本大题共有4题,满分20分)考生应在答题纸相应编号位置填涂,每题只有一个正确选项,选对得5分,否则一律得零分.15.设12,z z C ∈,则“12,z z 中至少有一个数是虚数”是“12z z -是虚数”的( ) A.充分非必要条件 B.必要非充分条件 C.充要条件 D.既非充分也非必要条件 【答案】B ;16.已知点A 的坐标为(),将OA 绕坐标原点O 逆时针转3π至OB ,则B 的纵坐标为( ) B.C.112D.132【答案】D ;17.记方程①:2110x a x ++=,方程②:2220x a x ++=,方程③:2340x a x ++=,其中123,,a a a 是正实数.当123,,a a a 成等比数列时,下列选项中,能推出方程③无实根的是( ) A.方程①有实根,且②有实根B.方程①有实根,且②无实根C.方程①无实根,且②有实根D.方程①无实根,且②无实根D【答案】B ;18.设(),n n n P x y 是直线()*21nx y n N n -=∈+与圆222x y +=在第一象限的交点,则极限1lim1n n n y x →∞-=-( ) A. 1-B.12-C.1D.2【答案】A ;三、解答题(本题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤. 19.(本题满分12分)如图,在长方体中1111ABCD A B C D -,11AA =,2AB AD ==,E 、F 分别是棱AB 、BC 的中点,证明1A 、1C 、F 、E 四点共面,并求直线1CD 与平面11A C FE 所成角的大小.【答案】; 【解析】(1)由于E 、F 分别是棱AB 、BC 的中点,所以//EF AC ,又11//AC AC ,所以11//EF AC ,由公理三的推论,可知1A 、1C 、F 、E 四点共面.(2)连接1A F 、1A B 由于11//CD A B ,所以直线1CD 与平面11A C FE 所成角的大小与1A B 与平面11A C FE 所成角的大小相等.设1A B 与平面11A C FE 所成角为θ,点B 到平面1A EF 的距离为d ,则1sin dA Bθ=,在三棱锥1A EFB -中,体积1A EFB B A EF V V --=,所以 111133EFB A EF S AA S d ∆∆⋅=⋅,即11EFBA EF S AA d S ∆∆⋅=,结合题中的数据,可以计算出12EFB S ∆=,1AF A B ==1A F EF =1A F =1A EF S ∆=,所以d =,所以1sin d A B θ==,即θ=,所以直线1CD 与平面11A C FE所成角的大小为.本题亦可采用空间向量解决,不再赘述. 19.(本题满分14分)本题共2个小题,第1小题6分,第2小题8分ABCDEF1A 1B 1C 1D ABCD F1A 1B 1C 1D如图,A 、B 、C 三地有直道相通,5AB =千米,3AC =千米,4BC =千米,现甲、乙两警员同时从A 地出发匀速前往B 地,经过t 小时,他们之间的距离为()f t (单位:千米).甲的路线是AB ,速度是5千米/小时,乙的路线是ACB ,速度为8千米/小时.乙到达B 地后原地等待,设1t t =时,乙到达C 地. (1)求1t 与()1f t 的值;(2)已知警员的对讲机的有效通话距离为3千米.当11t t ≤≤时,求()f t 的表达式,并判断()f t 在[]1,1t 上的最大值是否超过3?说明理由.【答案】(1)138t =,()1f t =(2)()13788755,18t f t tt ≤≤=⎨⎪-<≤⎪⎩;最大值不超过3. 【解析】(1)由题中条件可知138t =小时,此时甲与A 点距离为158千米,由余弦定理可知()2211515336992388564f t ⎛⎫=+-⨯⨯⨯=⎡⎤ ⎪⎣⎦⎝⎭,所以()1f t =; (2)易知,当78t =时乙到达B 位置,所以 ①当3788t ≤≤时,()()()()()2222147855278552542185f t t t t t t t =-+--⋅-⋅-⋅=-+⎡⎤⎣⎦; ②当718t ≤≤时,()55f t t =-;综合①②,()13788755,18t f t t t ≤≤=⎨⎪-<≤⎪⎩当321825t ≤≤时,()f t 单调递减,此时函数的值域为35⎡⎢⎣⎦;当217258t ≤≤时,()f t 单调递增,此时函数的值域为35,58⎡⎤⎢⎥⎣⎦; 当718t ≤≤时,()f t 单调递减,此时函数的值域为50,8⎡⎤⎢⎥⎣⎦; 由此,函数()f t 在[]1,1t 上的值域为0,8⎡⎢⎣⎦,而29<⎝⎭3<, 所以()f t 在[]1,1t 上的最大值没有超过3.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.BC已知椭圆2221x y +=,过原点的两条直线1l 和2l 分别与椭圆交于点A B 、和C D 、,记得到的平行四边形ACBD 的面积为S .(1)设()11,A x y ,()22,C x y .用A C 、坐标表示点C 到直线1l 的距离,并证明12212S x y x y =-;(2)设1l 与2l 的斜率之积为12-,求面积S 的值. 【答案】(1)C 到直线1l(2)S =【解析】(1)由题易知A C 、两点的横坐标不能同时为零,下面分两种情况①当A C 、两点的横坐标有一个为零时,不妨设10x =,20x ≠不失一般性,此时1l 与y 轴重合,C 到直线1l 的距离为2x ,平行四边形ACBD 的面积为212S x y =;②当A C 、两点的横坐标均不为0时,即1l 和2l 的斜率均存在时,设1l 的方程为y kx =,其中11y k x =,由2221y kxx y =⎧⎨+=⎩可得()222110k x +-=,所以弦长AB ===点C 到直线1l的距离d ==所以四边形ACBD 的面积为12212S AB d x y x y =⋅=- 综合①②点C 到直线1lACBD 的面积为12212x y x y -.(2)易知两直线的斜率分别为:111l y k x =,222l y k x =,由1l 与2l 的斜率之积为12-可得: 12122x x y y =-,又221112x y =-,222212x y =-,所以()()2222222121212122124x x y y y y y y =-=-++,即221212y y +=, ()()()()222222222222122112211221211212242412124S x y x y x y x y x y x y y y y y y y ⎡⎤=-=+-=-+-+⎣⎦化简得()2221242S y y =+=22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分已知数列{}n a 与{}n b 满足()*112,N n n n n a a b b n ++-=-∈. (1)若35n b n =+,且11a =,求{}n a 的通项公式;(2)设{}n a 的第0n 项是最大项,即()0*N n n a a n ≥∈,求证:{}n b 的第0n 项是最大项; (3)设()*10,N n n a b n λλ=<=∈,求λ的取值范围,使得{}n a 有最大值M 与最小值m ,且()2,2Mm∈-. 【答案】(1)()*65N n a n n =-∈;(2)证明见解析;(3)1,02⎛⎫- ⎪⎝⎭;【解析】(1)由35n b n =+可得:()()*1126N n n n n a a b b n ++-=-=∈,又11a =,所以数列{}n a 为以1为首项,6为公差的等差数列,即有()*65N n a n n =-∈; (2)由()*112,N n n n n a a b b n ++-=-∈可得:()21212a a b b -=- ()32322a a b b -=-()()1122n n n n a a b b n ---=-≥将上述式子累加可得()()1122n n a a b b n -=-≥,当1n =时,也成立,所以()()*112N n n a a b b n -=-∈,由此可得 111122n n b a b a =+-,由于1112b a -为常数,所以当{}n a 的第0n 项是最大项时,111122n a b a +-最大,即{}n b 的第0n 项是最大项;(3)有(2)可知()()*112N n n a a b b n -=-∈,即1122n n a b a b =+-,结合1,n n a b λλ==可得2n n a λλ=⋅-,分三种情况进行讨论:①当1λ=-时,则n 为偶数时3n a =,n 为奇数时1n a =-,即有3M =,1m =-,此时()32,2Mm=-∉-,由此,此情况不符合条件; ②当()1,0λ∈-时,则n 为偶数时,()nn λλ=-,由于()1,0λ∈-,所以()0,1λ-∈,从而n λ随着n 增大值减小,此时0n λ>,()2maxnλλ=,无最小值(无限靠近0);n 为奇数时,0n λ<,此时()nn λλ=--,由于()1,0λ∈-,所以()0,1λ-∈,从而()nλ-随着n 增大值减小,结合()nn λλ=--,可知随着n 增大n λ值增大,此时()minn λλ=,无最大值(无限靠近0);由此可知数列{}n a 的最大值22M λλ=-,最小值2m λλλ=-=,2221M m λλλλ-==-,又()2,2M m ∈-,所以21221210λλλ-<⎧⎪->-⎨⎪-<<⎩,解之102λ-<<; ③当1λ<-时,则n 为偶数时,()nn λλ=-,由于1λ<-,所以()1,λ-∈+∞,从而n λ随着n增大值增大,此时0n λ>,()2minnλλ=,无最大值(无限靠近+∞);n 为奇数时,0n λ<,此时()nn λλ=--,由于1λ<-,所以1λ->,从而()nλ-随着n 增大值增大,结合()nn λλ=--,可知随着n 增大n λ值减小,此时()maxn λλ=,无最小值(无限靠近-∞);由此可知,在1λ<-条件下,数列{}n a 无最值,显然不符合条件; 综上,符合条件的实数λ的取值范围为1,02⎛⎫- ⎪⎝⎭.23.(本题满分18分)本题共3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.对于定义域为R 的函数()g x ,若存在正常数T ,使得()cos g x 是以T 为周期的函数,则称()g x 为余弦周期函数,且称T 为其余弦周期.已知()f x 是以T 为余弦周期的余弦周期函数,其值域为R ,设()f x 单调递增,()00f =,()4f T π=; (1)验证()sin3xh x x =+是以6π为余弦周期的余弦周期函数; (2)设a b <,证明对任意()(),c f a f b ∈⎡⎤⎣⎦,存在[]0,x a b ∈,使得()0f x c =;(3)证明:“0u 为方程cos ()1f x =在[]0,T 上的解”的充要条件是“0u T +为方程cos ()1f x =在[],2T T 上的解”,并证明对任意[]0,x T ∈都有()()()f x T f x f T +=+. 【答案】(1)见解析;(2)见解析;(3)见解析;【解析】(1)证明:()cosh cos sin 3x x x ⎛⎫=+ ⎪⎝⎭,()()6cosh 6cos 6sin cos 6sin cos sin cosh 333x x x x x x x x ππππ+⎛⎫⎛⎫⎛⎫+=++=++=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以()sin3xh x x =+是以6π为余弦周期的余弦周期函数; (2)当()c f a =或者()c f b =时,由于()f x 单调递增,所以存在0x a =或0x b =使得()0f x c =成立;当()()(),c f a f b ∈,构造函数()()p x f x c =-,则()0p a <,()0p b >,从而()()0p a p b ⋅<,所以存在()0,x a b ∈,使得()00p x =,即存在[]0,x a b ∈,使得()0f x c =成立,证毕.(3)先证必要性0u 为方程cos ()1f x =在[]0,T 上的解,即0cos ()1f u =,由[]00,u T ∈可得[]0,2u T T T +∈,由于函数()f x 是以T 为余弦周期的余弦周期函数,所以00()cos cos ()1f u T f u +==,即0u T +为方程cos ()1f x =在[],2T T 上的解; 再证充分性0u T +为方程cos ()1f x =在[],2T T 上的解,即0c 1s ()o f u T +=,由[]0,2u T T T +∈可得[]00,u T ∈,由于函数()f x 是以T 为余弦周期的余弦周期函数,所以00cos cos ()()1f u f u T =+=,即0u 为方程cos ()1f x =在[]0,T 上的解;下证:对任意[]0,x T ∈都有()()()f x T f x f T +=+.由于函数()f x 是以T 为余弦周期的余弦周期函数,所以cos ()cos ()f x f x T =+,即有 cos ()cos ()0f x f x T -+=,所以()()()()2sinsin022f x f x T f x f x T ++-+-=,即()()2f x f x T k π++=或()()()Z 2f x f x T k k π-+=∈所以()()2f x T f x k π++=或()()()2Z f x T k f x k π+=+∈ ①若()()2f x T f x k π++=,由()00f =,()4f T π=,可得2k =. 所以()()4f x T f x π++=,这与函数()f x 为增函数矛盾,舍去;②若()()()2Z f x T k f x k π+=+∈,由()00f =,()4f T π=,可得2k =, 所以()()4f x T f x π+=+,即()()()f x T f x f T +=+.由此,对任意[]0,x T ∈都有()()()f x T f x f T +=+.。
2015年上海市高考数学试卷(理科)解析

2015年上海市高考数学试卷(理科)一、填空题(本大题共有14题,满分48分.)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对4分,否则一律得零分.1.(4分)(2015•上海)设全集U=R.若集合Α={1,2,3,4},Β={x|2≤x≤3},则Α∩∁UΒ=.2.(4分)(2015•上海)若复数z满足3z+=1+i,其中i是虚数单位,则z=.3.(4分)(2015•上海)若线性方程组的增广矩阵为解为,则c1﹣c2=.4.(4分)(2015•上海)若正三棱柱的所有棱长均为a,且其体积为16,则a=.5.(4分)(2015•上海)抛物线y2=2px(p>0)上的动点Q到焦点的距离的最小值为1,则p=.6.(4分)(2015•上海)若圆锥的侧面积与过轴的截面面积之比为2π,则其母线与轴的夹角的大小为.7.(4分)(2015•上海)方程log2(9x﹣1﹣5)=log2(3x﹣1﹣2)+2的解为.8.(4分)(2015•上海)在报名的3名男老师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为(结果用数值表示).9.(2015•上海)已知点P和Q的横坐标相同,P的纵坐标是Q的纵坐标的2倍,P和Q的轨迹分别为双曲线C1和C2.若C1的渐近线方程为y=±x,则C2的渐近线方程为.10.(4分)(2015•上海)设f﹣1(x)为f(x)=2x﹣2+,x∈[0,2]的反函数,则y=f(x)+f﹣1(x)的最大值为.11.(4分)(2015•上海)在(1+x+)10的展开式中,x2项的系数为(结果用数值表示).12.(4分)(2015•上海)赌博有陷阱.某种赌博每局的规则是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金(单位:元).若随机变量ξ1和ξ2分别表示赌客在一局赌博中的赌金和奖金,则 E ξ1﹣E ξ2= (元).13.(4分)(2015•上海)已知函数f (x )=sinx .若存在x 1,x 2,…,x m 满足0≤x 1<x 2<…<x m ≤6π,且|f (x 1)﹣f (x 2)|+|f(x 2)﹣f(x 3)|+…+|f(x m ﹣1)﹣f (x m )|=12(m ≥12,m ∈N *),则m 的最小值为 .14.(2015•上海)在锐角三角形 A BC 中,tanA=,D 为边 BC 上的点,△A BD 与△ACD 的面积分别为2和4.过D 作D E ⊥A B 于 E ,DF ⊥AC 于F ,则•= .二、选择题(本大题共有4题,满分15分.)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.(5分)(2015•上海)设z 1,z 2∈C ,则“z 1、z 2中至少有一个数是虚数"是“z 1﹣z 2是虚数”的( )A . 充分非必要条件B . 必要非充分条件C . 充要条件D . 既非充分又非必要条件16.(5分)(2015•上海)已知点A 的坐标为(4,1),将OA 绕坐标原点O 逆时针旋转至OB ,则点B 的纵坐标为( )A .B .C .D .17.(2015•上海)记方程①:x 2+a 1x+1=0,方程②:x 2+a 2x+2=0,方程③:x 2+a 3x+4=0,其中a 1,a 2,a 3是正实数.当a 1,a 2,a 3成等比数列时,下列选项中,能推出方程③无实根的是( )A . 方程①有实根,且②有实根B . 方程①有实根,且②无实根C . 方程①无实根,且②有实根D . 方程①无实根,且②无实根18.(5分)(2015•上海)设 P n (x n ,y n )是直线2x ﹣y=(n ∈N *)与圆x 2+y 2=2在第一象限的交点,则极限=( ) A . ﹣1B . ﹣C . 1D . 2三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(12分)(2015•上海)如图,在长方体ABCD﹣A1B1C1D1中,AA1=1,AB=AD=2,E、F 分别是AB、BC的中点,证明A1、C1、F、E四点共面,并求直线CD1与平面A1C1FE所成的角的大小.20.(14分)(2015•上海)如图,A,B,C三地有直道相通,AB=5千米,AC=3千米,BC=4千米.现甲、乙两警员同时从A地出发匀速前往B地,经过t小时,他们之间的距离为f (t)(单位:千米).甲的路线是AB,速度为5千米/小时,乙的路线是ACB,速度为8千米/小时.乙到达B地后原地等待.设t=t1时乙到达C地.(1)求t1与f(t1)的值;(2)已知警员的对讲机的有效通话距离是3千米.当t1≤t≤1时,求f(t)的表达式,并判断f(t)在[t1,1]上的最大值是否超过3?说明理由.21.(14分)(2015•上海)已知椭圆x2+2y2=1,过原点的两条直线l1和l2分别于椭圆交于A、B和C、D,记得到的平行四边形ABCD的面积为S.(1)设A(x1,y1),C(x2,y2),用A、C的坐标表示点C到直线l1的距离,并证明S=2|x1y2﹣x2y1|;(2)设l1与l2的斜率之积为﹣,求面积S的值.22.(16分)(2015•上海)已知数列{a n}与{b n}满足a n+1﹣a n=2(b n+1﹣b n),n∈N*.(1)若b n=3n+5,且a1=1,求数列{a n}的通项公式;(2)设{a n}的第n0项是最大项,即a≥a n(n∈N*),求证:数列{b n}的第n0项是最大项;(3)设a1=λ<0,b n=λn(n∈N*),求λ的取值范围,使得{a n}有最大值M与最小值m,且∈(﹣2,2).23.(18分)(2015•上海)对于定义域为R的函数g(x),若存在正常数T,使得cosg(x)是以T为周期的函数,则称g(x)为余弦周期函数,且称T为其余弦周期.已知f(x)是以T 为余弦周期的余弦周期函数,其值域为R.设f(x)单调递增,f(0)=0,f(T)=4π.(1)验证g(x)=x+sin是以6π为周期的余弦周期函数;(2)设a<b,证明对任意c∈[f(a),f(b)],存在x0∈[a,b],使得f(x0)=c;(3)证明:“u0为方程cosf(x)=1在[0,T]上得解,"的充分条件是“u0+T为方程cosf(x)=1在区间[T,2T]上的解”,并证明对任意x∈[0,T],都有f(x+T)=f(x)+f(T).2015年上海市高考数学试卷(理科)参考答案与试题解析一、填空题(本大题共有14题,满分48分.)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对4分,否则一律得零分.1.(4分)(2015•上海)设全集U=R.若集合Α={1,2,3,4},Β={x|2≤x≤3},则Α∩∁UΒ={1,4}.考点:交、并、补集的混合运算.专题:集合.分析:本题考查集合的运算,由于两个集合已经化简,故直接运算得出答案即可.解答:解:∵全集U=R,集合Α={1,2,3,4},Β={x|2≤x≤3},∴(∁U B)={x|x>3或x<2},∴A∩(∁U B)={1,4},故答案为:{1,4}.点评:本题考查集合的交、并、补的混合运算,熟练掌握集合的交并补的运算规则是解本题的关键.本题考查了推理判断的能力.2.(4分)(2015•上海)若复数z满足3z+=1+i,其中i是虚数单位,则z=.考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:设z=a+bi,则=a﹣bi(a,b∈R),利用复数的运算法则、复数相等即可得出.解答:解:设z=a+bi,则=a﹣bi(a,b∈R),又3z+=1+i,∴3(a+bi)+(a﹣bi)=1+i,化为4a+2bi=1+i,∴4a=1,2b=1,解得a=,b=.∴z=.故答案为:.点评:本题考查了复数的运算法则、复数相等,属于基础题.3.(4分)(2015•上海)若线性方程组的增广矩阵为解为,则c1﹣c2=16.考点: 二阶行列式与逆矩阵.专题:矩阵和变换.分析:根据增广矩阵的定义得到,是方程组的解,解方程组即可.解答:解:由题意知,是方程组的解,即,则c1﹣c2=21﹣5=16,故答案为:16.点评:本题主要考查增广矩阵的求解,根据条件建立方程组关系是解决本题的关键.4.(4分)(2015•上海)若正三棱柱的所有棱长均为a,且其体积为16,则a=4.考点:棱锥的结构特征.专题: 空间位置关系与距离.分析:由题意可得(•a•a•sin60°)•a=16,由此求得a的值.解答:解:由题意可得,正棱柱的底面是变长等于a的等边三角形,面积为•a•a•sin60°,正棱柱的高为a,∴(•a•a•sin60°)•a=16,∴a=4,故答案为:4.点评:本题主要考查正棱柱的定义以及体积公式,属于基础题.5.(4分)(2015•上海)抛物线y2=2px(p>0)上的动点Q到焦点的距离的最小值为1,则p= 2.考点:抛物线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:利用抛物线的顶点到焦点的距离最小,即可得出结论.解答:解:因为抛物线y2=2px(p>0)上的动点Q到焦点的距离的最小值为1,所以=1,所以p=2.故答案为:2.点评:本题考查抛物线的方程与性质,考查学生的计算能力,比较基础.6.(4分)(2015•上海)若圆锥的侧面积与过轴的截面面积之比为2π,则其母线与轴的夹角的大小为.考点: 旋转体(圆柱、圆锥、圆台).专题: 空间位置关系与距离.分析:设圆锥的底面半径为r,高为h,母线长为l,由已知中圆锥的侧面积与过轴的截面面积之比为2π,可得l=2h,进而可得其母线与轴的夹角的余弦值,进而得到答案.解答:解:设圆锥的底面半径为r,高为h,母线长为l,则圆锥的侧面积为:πrl,过轴的截面面积为:rh,∵圆锥的侧面积与过轴的截面面积之比为2π,∴l=2h,设母线与轴的夹角为θ,则cosθ==,故θ=,故答案为:.点评:本题考查的知识点是旋转体,其中根据已知求出圆锥的母线与轴的夹角的余弦值,是解答的关键.7.(4分)(2015•上海)方程log2(9x﹣1﹣5)=log2(3x﹣1﹣2)+2的解为2.考点:对数的运算性质.专题:函数的性质及应用.分析:利用对数的运算性质化为指数类型方程,解出并验证即可.解答:解:∵log2(9x﹣1﹣5)=log2(3x﹣1﹣2)+2,∴log2(9x﹣1﹣5)=log2[4×(3x﹣1﹣2)],∴9x﹣1﹣5=4(3x﹣1﹣2),化为(3x)2﹣12•3x+27=0,因式分解为:(3x﹣3)(3x﹣9)=0,∴3x=3,3x=9,解得x=1或2.经过验证:x=1不满足条件,舍去.∴x=2.故答案为:2.点评:本题考查了对数的运算性质及指数运算性质及其方程的解法,考查了计算能力,属于基础题.8.(4分)(2015•上海)在报名的3名男老师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为120(结果用数值表示).考点:排列、组合的实际应用.专题:计算题;排列组合.分析:根据题意,运用排除法分析,先在9名老师中选取5人,参加义务献血,由组合数公式可得其选法数目,再排除其中只有女教师的情况;即可得答案.解答:解:根据题意,报名的有3名男老师和6名女教师,共9名老师,在9名老师中选取5人,参加义务献血,有C95=126种;其中只有女教师的有C65=6种情况;则男、女教师都有的选取方式的种数为126﹣6=120种;故答案为:120.点评:本题考查排列、组合的运用,本题适宜用排除法(间接法),可以避免分类讨论,简化计算.9.(2015•上海)已知点P和Q的横坐标相同,P的纵坐标是Q的纵坐标的2倍,P和Q的轨迹分别为双曲线C1和C2.若C1的渐近线方程为y=±x,则C2的渐近线方程为.考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:设C1的方程为y2﹣3x2=λ,利用坐标间的关系,求出Q的轨迹方程,即可求出C2的渐近线方程.解答:解:设C1的方程为y2﹣3x2=λ,设Q(x,y),则P(x,2y),代入y2﹣3x2=λ,可得4y2﹣3x2=λ,∴C2的渐近线方程为4y2﹣3x2=0,即.故答案为:.点评:本题考查双曲线的方程与性质,考查学生的计算能力,比较基础.10.(4分)(2015•上海)设f﹣1(x)为f(x)=2x﹣2+,x∈[0,2]的反函数,则y=f(x)+f﹣1(x)的最大值为4.考点:反函数.专题:函数的性质及应用.分析:由f(x)=2x﹣2+在x∈[0,2]上为增函数可得其值域,得到y=f﹣1(x)在[]上为增函数,由函数的单调性求得y=f(x)+f﹣1(x)的最大值.解答:解:由f(x)=2x﹣2+在x∈[0,2]上为增函数,得其值域为[],可得y=f﹣1(x)在[]上为增函数,因此y=f(x)+f﹣1(x)在[]上为增函数,∴y=f(x)+f﹣1(x)的最大值为f(2)+f﹣1(2)=1+1+2=4.故答案为:4.点评:本题考查了互为反函数的两个函数图象间的关系,考查了函数的单调性,属中档题.11.(4分)(2015•上海)在(1+x+)10的展开式中,x2项的系数为45(结果用数值表示).考点:二项式系数的性质.专题:二项式定理.分析:先把原式前两项结合展开,分析可知仅有展开后的第一项含有x2项,然后写出第一项二项展开式的通项,由x的指数为2求得r值,则答案可求.解答:解:∵(1+x+)1=,∴仅在第一部分中出现x2项的系数.再由,令r=2,可得,x2项的系数为.故答案为:45.点评:本题考查了二项式系数的性质,关键是对二项展开式通项的记忆与运用,是基础题.12.(4分)(2015•上海)赌博有陷阱.某种赌博每局的规则是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金(单位:元).若随机变量ξ1和ξ2分别表示赌客在一局赌博中的赌金和奖金,则Eξ1﹣Eξ2=0.2(元).考点:离散型随机变量的期望与方差.专题: 概率与统计.分析:分别求出赌金的分布列和奖金的分布列,计算出对应的均值,即可得到结论.解答:解:赌金的分布列为P所以Eξ1=(1+2+3+4+5)=3,奖金的分布列为P所以Eξ2=1.4×(×1+×2+×3+×4)=2。
15年高考真题——理科数学(上海卷)

2015年普通高等学校招生全国统一考试(上海)卷数学(理科)一.填空题:共14小题,每小题4分,共56分。
1.设全集U R =,若集合{}1,2,3,4A =,{}23B x x =≤≤,则UAB =_________。
2.若复数z 满足31z z i +=+,其中i 为虚数单位,则z =_________。
3.若线性方程组的增广矩阵为122301c c ⎛⎫⎪⎝⎭,解为35x y =⎧⎨=⎩,则12c c -=__________。
4.若正三棱柱的所有棱长均为a,且其体积为a =__________。
5.抛物线22y px =(0p >)上的动点Q 到焦点的距离的最小值为1,则p =_______。
6.若圆锥的侧面积与过轴的截面面积之比为2π,则其母线与轴的夹角的大小为_______。
7.方程()()1122log 95log 322x x ---=-+的解为___________。
28.在报名的3名男教师和6名女教师中,选取5参加义务献血,要求男、女教师都有,则不同的选取方式的种数为________(结果用数值表示)。
9.已知点P 和Q 的横坐标相同,P 的纵坐标是Q 的纵坐标的2倍,P 和Q 的轨迹分别为双曲线1C 和2C 。
若1C的渐近线方程为y =,则2C 的渐近线方程为__________。
10.设()1fx -为()222x x f x -=+,[]0,2x ∈的反函数,则()()1y f x f x -=+的最大值为_________。
11.在10201511x x ⎛⎫++ ⎪⎝⎭的展开式中,2x 项的系数为________(结果用数值表示)。
12.赌博有陷阱.某种赌博每局的规则是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金(单位:元)。
15年高考真题——理科数学(上海卷)

2015年普通高等学校招生全国统一考试(上海)卷数学(理科)一.填空题:共14小题,每小题4分,共56分。
1.设全集U R =,若集合{}1,2,3,4A =,{}23B x x =≤≤,则U AB =ð_________。
2.若复数z 满足31z z i +=+,其中i 为虚数单位,则z =_________。
3.若线性方程组的增广矩阵为122301c c ⎛⎫⎪⎝⎭,解为35x y =⎧⎨=⎩,则12c c -=__________。
4.若正三棱柱的所有棱长均为a,且其体积为a =__________。
5.抛物线22y px =(0p >)上的动点Q 到焦点的距离的最小值为1,则p =_______。
6.若圆锥的侧面积与过轴的截面面积之比为2π,则其母线与轴的夹角的大小为_______。
7.方程()()1122log 95log 322x x ---=-+的解为___________。
28.在报名的3名男教师和6名女教师中,选取5参加义务献血,要求男、女教师都有,则不同的选取方式的种数为________(结果用数值表示)。
9.已知点P 和Q 的横坐标相同,P 的纵坐标是Q 的纵坐标的2倍,P 和Q 的轨迹分别为双曲线1C 和2C 。
若1C的渐近线方程为y =,则2C 的渐近线方程为__________。
10.设()1fx -为()222x xf x -=+,[]0,2x ∈的反函数,则()()1y f x f x -=+的最大值为_________。
11.在10201511x x ⎛⎫++ ⎪⎝⎭的展开式中,2x 项的系数为________(结果用数值表示)。
12.赌博有陷阱.某种赌博每局的规则是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金(单位:元)。
2015年高考理科数学上海卷(含答案解析)

数学试卷 第1页(共18页) 数学试卷 第2页(共18页) 数学试卷 第3页(共18页)绝密★启用前2015年普通高等学校招生全国统一考试(上海卷)理科数学注意事项:1.本试卷共6页,23道试题,满分150分.考试时间120分钟.2.本考试分设试卷和答题纸.试卷包括试题与答题要求.作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.3.答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号,并将核对后的条形码贴在指定位置上.一、填空题:本大题共有14题,满分56分.直接填写结果,每个空格填对得4分,否则一律得零分.1.设全集=U R .若集合={1,2,3,4}A ,{23}B x x ≤≤=,则U AB =ð .2.若复数z 满足31i z z +=+,其中i 为虚数单位,则z = .3.若线性方程组的增广矩阵为122301c c ⎛⎫ ⎪⎝⎭、解为35x y ,,=⎧⎨=⎩则12c c -= . 4.若正三棱柱的所有棱长均为a,且其体积为,则a = .5.抛物线22(0)y px p =>上的动点Q 到焦点的距离的最小值为1,则p = . 6.若圆锥的侧面积与过轴的截面面积之比为2π,则其母线与轴的夹角的大小为 . 7.方程1122log (95)log (32)2x x ---=-+的解为 .8.在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为 (结果用数值表示).9.已知点P 和Q 的横坐标相同,P 的纵坐标是Q 的纵坐标的2倍,P 和Q 的轨迹分别为双曲线1C 和2C .若1C的渐近线方程为y =,则2C 的渐近线方程为 . 10.设1()f x -为2()22x xf x -=+,[0,2]x ∈的反函数,则1()()y f x f x -=+的最大值为 . 11.在1020151(1)x x++的展开式中,2x 项的系数为 (结果用数值表示). 12.赌博有陷阱.某种赌博每局的规则是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金(单位:元).若随机变量1ξ和2ξ分别表示赌客在一局赌博中的赌金和奖金,则12E E ξξ-= 元.13.已知函数()sin f x x =.若存在12,,m x x x 满足1206πm x x x ≤<<<≤,且1|f x ()223-1|||++||=122,m m f x f x f x f x f x m m *N ()()()()()(≥)-+--∈,则m 的最小值为 .14.在锐角三角形ABC 中,1tan 2A =,D 为边BC 上的点,ABD △与ACD △的面积分别为2和4.过D 作DE AB ⊥于E ,DF AC ⊥于F ,则 DE DF = . 二、选择题:本大题共有4题,满分20分.每题有且只有一个正确答案,将正确答案填在题后括号内,选对得5分,否则一律得零分.15.设12,z z C ∈,则“12z z ,中至少有一个数是虚数”是“12z z -是虚数”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件16.已知点A的坐标为(),将OA 绕坐标原点O 逆时针旋转π3至OB ,则点B 的纵坐标为( )ABC .112D .13217.记方程①:2110x a x ++=,方程②:2220x a x ++=,方程③:2340x a x ++=,其中1a ,2a ,3a 是正实数.当1a ,2a ,3a 成等比数列时,下列选项中,能推出方程③无实数根的是( )A .方程①有实根,且②有实根B .方程①有实根,且②无实根C .方程①无实根,且②有实根D .方程①无实根,且②无实根18.设(),n n n P x y 是直线2()1nx y n n *N -=∈+与圆222x y +=在第一象限的交点,则极限 1lim 1n n ny x →∞-=-( ) A .1- B .12- C .1D .2三、解答题:本大题共有5题,满分74分.解答应写出必要的文字说明、证明过程或演算步骤.19.(本小题满分12分)如图,在长方体1111ABCD A B C D -中,11AA =,2AB AD ==,E ,F 分别是棱AB ,BC 的中点.证明:11A C F E ,,,四点共面,并求直线1CD 与平面11A C FE 所成的角的大小.20.(本小题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.如图,A ,B ,C 三地有直道相通,5AB =千米,3AC =千米,4BC =千米.现甲、乙两警员同时从A 地出发匀速前往B 地,经过t 小时,他们之间的距离为f t ()(单位:千米).甲的路线是AB ,速度为5千米/小时,乙的路线是ACB ,速度为8千米/小时.乙到达B 地后在原地等待.设1=t t 时,乙到达C 地. (Ⅰ)求1t 与1f t ()的值;(Ⅱ)已知警员的对讲机的有效通话距离是3千米.当11t t ≤≤时,求f t ()的表达式,并判断f t ()在1[,1]t 上的最大值是否超过3?说明理由.21.(本小题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第4页(共18页) 数学试卷 第5页(共18页) 数学试卷 第6页(共18页)已知椭圆1222=+y x ,过原点的两条直线1l 和2l 分别与椭圆交于点A ,B 和C ,D .记得到的平行四边形ACBD 的面积为S .(Ⅰ)设11(,)A x y ,22(,)C x y .用A ,C 的坐标表示点C 到直线1l 的距离,并证明12212||S x y x y =-;(Ⅱ)设1l 与2l 的斜率之积为21-,求面积S 的值.22.(本小题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知数列{}n a 与{}n b 满足112()n n n n a a b b ++-=-,n *N ∈. (Ⅰ)若35n b n =+,且11a =,求{}n a 的通项公式;(Ⅱ)设{}n a 的第0n 项是最大项,即0()n n a a n *N ≥∈.求证:{}n b 的第0n 项是最大项; (Ⅲ)设10a <λ=,()n n b n *N λ=∈.求λ的取值范围,使得{}n a 有最大值M 和最小值m ,且使得(2,2)Mm∈-.23.(本小题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.对于定义域为R 的函数()g x ,若存在正常数T ,使得cos ()g x 是以T 为周期的函数,则称()g x 为余弦周期函数,且称T 为其余弦周期.已知()f x 是以T 为余弦周期的余弦周期函数,其值域为R ,设()f x 单调递增,(0)0f =,()4πf T =. (Ⅰ)验证()sin3xh x x =+是以6π为余弦周期的余弦周期函数; (Ⅱ)设a b <.证明对任意[(),()]c f a f b ∈,存在0[,]x a b ∈,使得0()f x c =; (Ⅲ)证明:“0u 为方程cos ()1f x =在[0,]T 上的解”的充要条件是“0+u T 为方程cos ()1f x =在[,2]T T 上的解”,并证明对任意[0,]x T ∈都有()()()f x T f x f T +=+.数学试卷 第7页(共18页) 数学试卷 第8页(共18页) 数学试卷 第9页(共18页)1sin602a a ︒,1sin 601632a a a ⎫︒=⎪⎭1sin 601632a a a ⎫︒=⎪⎭【考点】棱锥的结构特征123270x+=011019102015201511(1)C x x x ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭,项的系数.数学试卷 第10页(共18页) 数学试卷 第11页(共18页) 数学试卷 第12页(共18页)【解析】对任意的i x ,j x ,max min |()()|()()2i j f x f x f x f x -≤-=, 欲使m 取最小值,尽可能多的让(1,2,,)i x i m =取最值点,考虑到1206πm x x x ≤<<<≤,*12231|()()||()()||()()|12(2,)m m f x f x f x f x f x f x m m N --+-++-=≥∈,按照下图所示取值可以满足条件,所以m的最小值为8.【提示】对任意的i x ,j x ,|()()|2i j f x f x -=,让i x 取最值点,考虑到1206πm x x x ≤<<<≤,12231|()()||()()||()()|12m m f x f x f x f x f x f x --+-++-=,【解析】解:如图,ABD △与ACD △的面积分别为2和4||||22AB DE =,||||4AC DF =,可得4||||DE AB =,8||||DF AC =,32||||||||DE DF AB AC =.1tan 2A =,∴sin 1cos 2A A =,联立||||sin 2AB AC A ||||12AB AC =85||||15DE DF =8||||||||cos ,DE DF DE DF DE DF ==故答案为:1615-.85||||15DE DF =数学试卷 第13页(共18页) 数学试卷 第14页(共18页) 数学试卷 第15页(共18页)为坐标原点,、DC 、DD 分别为xyz 轴,建立空间直角坐标系,易求得(0,2,D C =,11(2,2,0)A C =-,(0,1,A E =设平面11AC EF 的法向量为(,y,)n x z =11100n A C n A E ⎧=⎪⎨=⎪⎩,所以,,)(2,2,0)0,)(0,1,1)x y z y z -=-=2-⎧所以(1,1,1)n =,111|||(1,1,1)(0,2,1)||cos ,|||||35n D C n D C n D C -===1CD 与平面11A C FE 所成的角的大小arcsincos AC AP A =上的Q 点,设甲在cos QB PB B22(78)(5t --cos AC AP A ,代值计算可得;由已知数据和余弦定理可得3数学试卷 第16页(共18页) 数学试卷 第17页(共18页) 数学试卷 第18页(共18页)2(a a +-+2112()b b a +++-112)b a +-2(a a +-+1(22n a b +)n x <<;则1()f x T +,2()f x T +,…,()n f x T +为方程c o s ()f x c =在[,2]T T 上的解;又()(4π8π)f x T +∈,;而1()4πf x +,2()4πf x +,…,()4π(4π,8π)n f x +∈为方程cos ()f x c =在[,2]T T 上的解; ∴()()4π()()i i i f x T f x f x f T +=+=+;∴综上对任意,[]0x T ∈,都有()()()f x T f x f T +=+.【提示】(Ⅰ)根据余弦周期函数的定义,判断(6π)cosg x +是否等于cos ()g x 即可; (Ⅱ)根据()f x 的值域为R ,便可得到存在0x ,使得0()f x c =,而根据()f x 在R 上单调递增即可说明0,[]x a b ∈,从而完成证明;(Ⅲ)只需证明0u T +为方程cos ()1f x =在区间[2]T T ,上的解得出0u 为方程cos ()1f x =在[0]T ,上的解,是否为方程的解,带入方程,使方程成立便是方程的解.证明对任意,[]0x T ∈,都有()()()f x T f x f T +=+,可讨论0x =,x T =,(0)x T ∈,三种情况:0x =时是显然成立的;x T =时,可得出cos (2)1f T =,从而得到1(2)2πf T k =,1k ∈Z ,根据()f x 单调递增便能得到12k >,然后根据()f x 的单调性及方程cos ()1f x =在[],2T T 和它在[0]T ,上解的个数的情况说明13k =,和15k ≥是不存在的,而14k =时结论成立,这便说明x T =时结论成立;而对于(0)x T ∈,时,通过考查c o s ()f x c =的解得到()()()f x T f x f T +=+,综合以上的三种情况,最后得出结论即可.【考点】函数与方程的综合运用。
2015年高考理科数学上海卷(含详细答案)

数学试卷 第1页(共42页) 数学试卷 第2页(共42页) 数学试卷 第3页(共42页)绝密★启用前2015年普通高等学校招生全国统一考试(上海卷)理科数学注意事项:1.本试卷共6页,23道试题,满分150分.考试时间120分钟.2.本考试分设试卷和答题纸.试卷包括试题与答题要求.作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.3.答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号,并将核对后的条形码贴在指定位置上.一、填空题:本大题共有14题,满分56分.直接填写结果,每个空格填对得4分,否则一律得零分.1.设全集=U R .若集合={1,2,3,4}A ,{23}B x x ≤≤=,则U A B =ð . 2.若复数z 满足31i z z +=+,其中i 为虚数单位,则z = .3.若线性方程组的增广矩阵为122301c c ⎛⎫ ⎪⎝⎭、解为35x y ,,=⎧⎨=⎩则12c c -= . 4.若正三棱柱的所有棱长均为a ,且其体积为163,则a = .5.抛物线22(0)y px p =>上的动点Q 到焦点的距离的最小值为1,则p = . 6.若圆锥的侧面积与过轴的截面面积之比为2π,则其母线与轴的夹角的大小为 . 7.方程1122log (95)log (32)2x x ---=-+的解为 .8.在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为 (结果用数值表示).9.已知点P 和Q 的横坐标相同,P 的纵坐标是Q 的纵坐标的2倍,P 和Q 的轨迹分别为双曲线1C 和2C .若1C 的渐近线方程为3y x =±,则2C 的渐近线方程为 .10.设1()f x -为2()22x xf x -=+,[0,2]x ∈的反函数,则1()()y f x f x -=+的最大值为 . 11.在1020151(1)x x++的展开式中,2x 项的系数为 (结果用数值表示). 12.赌博有陷阱.某种赌博每局的规则是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金(单位:元).若随机变量1ξ和2ξ分别表示赌客在一局赌博中的赌金和奖金,则12E E ξξ-= 元.13.已知函数()sin f x x =.若存在12,,m x x x 满足1206πm x x x ≤<<<≤,且1|f x ()223-1|||++||=122,m m f x f x f x f x f x m m *N ()()()()()(≥)-+--∈,则m 的最小值为 .14.在锐角三角形ABC 中,1tan 2A =,D 为边BC 上的点,ABD △与ACD △的面积分别为2和4.过D 作DE AB ⊥于E ,DF AC ⊥于F ,则 DE DF = . 二、选择题:本大题共有4题,满分20分.每题有且只有一个正确答案,将正确答案填在题后括号内,选对得5分,否则一律得零分.15.设12,z z C ∈,则“12z z ,中至少有一个数是虚数”是“12z z -是虚数”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件16.已知点A 的坐标为43,1(),将OA 绕坐标原点O 逆时针旋转π3至OB ,则点B 的纵坐标为( )A .33 B .53C .112D .13217.记方程①:2110x a x ++=,方程②:2220x a x ++=,方程③:2340x a x ++=,其中1a ,2a ,3a 是正实数.当1a ,2a ,3a 成等比数列时,下列选项中,能推出方程③无实数根的是( )A .方程①有实根,且②有实根B .方程①有实根,且②无实根C .方程①无实根,且②有实根D .方程①无实根,且②无实根18.设(),n n n P x y 是直线2()1nx y n n *N -=∈+与圆222x y +=在第一象限的交点,则极限 1lim 1n n ny x →∞-=-( ) A .1- B .12- C .1D .2三、解答题:本大题共有5题,满分74分.解答应写出必要的文字说明、证明过程或演算步骤.19.(本小题满分12分)如图,在长方体1111ABCD A B C D -中,11AA =,2AB AD ==,E ,F 分别是棱AB ,BC 的中点.证明:11A C F E ,,,四点共面,并求直线1CD 与平面11A C FE 所成的角的大小.20.(本小题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.如图,A ,B ,C 三地有直道相通,5AB =千米,3AC =千米,4BC =千米.现甲、乙两警员同时从A 地出发匀速前往B 地,经过t 小时,他们之间的距离为f t ()(单位:千米).甲的路线是AB ,速度为5千米/小时,乙的路线是ACB ,速度为8千米/小时.乙到达B 地后在原地等待.设1=t t 时,乙到达C 地. (Ⅰ)求1t 与1f t ()的值;(Ⅱ)已知警员的对讲机的有效通话距离是3千米.当11t t ≤≤时,求f t ()的表达式,并判断f t ()在1[,1]t 上的最大值是否超过3?说明理由.21.(本小题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第4页(共42页) 数学试卷 第5页(共42页) 数学试卷 第6页(共42页)已知椭圆1222=+y x ,过原点的两条直线1l 和2l 分别与椭圆交于点A ,B 和C ,D .记得到的平行四边形ACBD 的面积为S .(Ⅰ)设11(,)A x y ,22(,)C x y .用A ,C 的坐标表示点C 到直线1l 的距离,并证明12212||S x y x y =-;(Ⅱ)设1l 与2l 的斜率之积为21-,求面积S 的值.22.(本小题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知数列{}n a 与{}n b 满足112()n n n n a a b b ++-=-,n *N ∈. (Ⅰ)若35n b n =+,且11a =,求{}n a 的通项公式;(Ⅱ)设{}n a 的第0n 项是最大项,即0()n n a a n *N ≥∈.求证:{}n b 的第0n 项是最大项; (Ⅲ)设10a <λ=,()n n b n *N λ=∈.求λ的取值范围,使得{}n a 有最大值M 和最小值m ,且使得(2,2)Mm∈-.23.(本小题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.对于定义域为R 的函数()g x ,若存在正常数T ,使得cos ()g x 是以T 为周期的函数,则称()g x 为余弦周期函数,且称T 为其余弦周期.已知()f x 是以T 为余弦周期的余弦周期函数,其值域为R ,设()f x 单调递增,(0)0f =,()4πf T =. (Ⅰ)验证()sin 3x h x x =+是以6π为余弦周期的余弦周期函数;(Ⅱ)设a b <.证明对任意[(),()]c f a f b ∈,存在0[,]x a b ∈,使得0()f x c =; (Ⅲ)证明:“0u 为方程cos ()1f x =在[0,]T 上的解”的充要条件是“0+u T 为方程cos ()1f x =在[,2]T T 上的解”,并证明对任意[0,]x T ∈都有()()()f x T f x f T +=+.3 / 141sin602a a ︒,正棱柱的高1sin 601632a a a ⎫︒=⎪⎭【提示】由题意可得1sin 601632a a a ⎛⎫︒=⎪⎭【考点】棱锥的结构特征数学试卷 第10页(共42页)数学试卷 第11页(共42页) 数学试卷 第12页(共42页)123270x +=5 / 14011019102015201511(1)C x x x ⎛⎫⎛⎫+++⎪ ⎪⎝⎭⎝⎭,项的系数.数学试卷 第17页(共42页) 数学试卷 第18页(共42页)【解析】对任意的i x ,j x ,max min |()()|()()2i j f x f x f x f x -≤-=, 欲使m 取最小值,尽可能多的让(1,2,,)i x i m =取最值点,考虑到1206πm x x x ≤<<<≤,*12231|()()||()()||()()|12(2,)m m f x f x f x f x f x f x m m N --+-++-=≥∈,6m x <<≤|(m f x -++的最小值.7 / 14【解析】解:如图,||||2AB DE =,||||4AC DF =,可得4||||DE AB =,8||||DF AC =,32||||||||DE DF AB AC =.1tan 2A =,∴sin 1cos 2A A =,联立||||sin 2AB AC A ||||12AB AC =85||||15DE DF =8||||||||cos ,DE DF DE DF DE DF ==故答案为:1615-. 85||||15DE DF =数学试卷第22页(共42页)数学试卷第23页(共42页)数学试卷第24页(共42页)9 / 14易求得(0,2,D C =,(2,2,0)AC =-,(0,1,A E =11AC EF 的法向量为(,y,)n x z =11100n A C n A E ⎧=⎪⎨=⎪⎩,所以,)(2,2,0),)(0,1,1)z z -=-=,所以(1,1,1)n =,所以111|||(1,1,1)(0,2,1)||cos ,|||||35n D C n D C n D C -===CD 与平面11A C FE 所成的角的大小arcsincos AC AP A =数学试卷 第28页(共42页)数学试卷 第29页(共42页) 数学试卷 第30页(共42页)cos QB PB B22(78)(5t --cos AC AP A ,代3数学试卷 第34页(共42页)2(a a +-+2112()b b a +++-2)b a +-2(a +-+1(2a b +(Ⅱ)∵()f x 的值域为R ;∴存在0x ,使0()f x c =;又(),)]([c f a f b ∈;∴0()()()f a f x f b ≤≤,而()f x 为增函数;∴0a x b ≤≤;即存在0,[]x a b ∈,使0()f x c =;(Ⅲ)证明:若0u T +为方程cos ()1f x =在区间[],2T T 上的解;则:0cos ()1f u T +=,02T u T T +≤≤;∴0cos ()1f u =,且00u T ≤≤;∴0u 为方程cos ()1f x =在[0]T ,上的解;∴“0u 为方程cos ()1f x =在[0]T ,上得解”的充分条件是“0u T +为方程cos ()1f x =在区间[],2T T 上的解”;下面证明对任意,[]0x T ∈,都有()()()f x T f x f T +=+:①当0x =时,(0)0f =,∴显然成立;②当x T =时,cos (2)cos ()1f T f T ==;∴11(2)2,()f T k k Z π=∈,()4πf T =,且12π4πk >,∴12k >;1)若13k =,(2)6πf T =,由(Ⅱ)知存在0(0,)x T ∈,使0()2πf x =;0002cos ()cos ()1()2πf x T f x f x T k +==⇒+=,2k ∈Z ;∴0()()(2)f T f x T f T <+<;∴24π2π6πk <<;∴223k <<4,无解;2)若15k ≥,(2)10πf T ≥,则存在122T x x T <<<,使得1()6πf x =,2()8πf x =;则T ,1x ,2x ,2T 为cos ()1f x =在[],2T T 上的4个解;但方程cos ()1f x =在[0]2T ,上只有()0f x =,2π,4π,3个解,矛盾; 3)当14k =时,(2)8π()()f T f T f T ==+,结论成立;③当(0)x T ∈,时,()(04π)f x ∈,,考查方程cos ()f x c =在(0)T ,上的解; 设其解为1()f x ,2()f x ,…,()n f x ,12()n x x x <<<;则1()f x T +,2()f x T +,…,()n f x T +为方程cos ()f x c =在[,2]T T 上的解;又()(4π8π)f x T +∈,; 而1()4πf x +,2()4πf x +,…,()4π(4π,8π)n f x +∈为方程cos ()f x c =在[,2]T T 上的解;∴()()4π()()i i i f x T f x f x f T +=+=+;数学试卷 第40页(共42页)∴综上对任意,[]0x T ∈,都有()()()f x T f x f T +=+.【提示】(Ⅰ)根据余弦周期函数的定义,判断(6π)cosg x +是否等于cos ()g x 即可;(Ⅱ)根据()f x 的值域为R ,便可得到存在0x ,使得0()f x c =,而根据()f x 在R 上单调递增即可说明0,[]x a b ∈,从而完成证明;(Ⅲ)只需证明0u T +为方程cos ()1f x =在区间[2]T T ,上的解得出0u 为方程cos ()1f x =在[0]T ,上的解,是否为方程的解,带入方程,使方程成立便是方程的解.证明对任意,[]0x T ∈,都有()()()f x T f x f T +=+,可讨论0x =,x T =,(0)x T ∈,三种情况:0x =时是显然成立的;x T =时,可得出cos (2)1f T =,从而得到1(2)2πf T k =,1k ∈Z ,根据()f x 单调递增便能得到12k >,然后根据()f x 的单调性及方程cos ()1f x =在[],2T T 和它在[0]T ,上解的个数的情况说明13k =,和15k ≥是不存在的,而14k =时结论成立,这便说明x T =时结论成立;而对于(0)x T ∈,时,通过考查cos ()f x c =的解得到()()()f x T f x f T +=+,综合以上的三种情况,最后得出结论即可.【考点】函数与方程的综合运用。
15年高考真题——理科数学(上海卷)

2015年普通高等学校招生全国统一考试(上海)卷数学(理科)一.填空题:共14小题,每小题4分,共56分。
1.设全集U R =,若集合{}1,2,3,4A =,{}23B x x =≤≤,则U A B = ð_________。
2.若复数z 满足31z z i +=+,其中i 为虚数单位,则z =_________。
3.若线性方程组的增广矩阵为122301c c ⎛⎫⎪⎝⎭,解为35x y =⎧⎨=⎩,则12c c -=__________。
4.若正三棱柱的所有棱长均为a,且其体积为a =__________。
5.抛物线22y px =(0p >)上的动点Q 到焦点的距离的最小值为1,则p =_______。
6.若圆锥的侧面积与过轴的截面面积之比为2π,则其母线与轴的夹角的大小为_______。
7.方程()()1122log 95log 322x x ---=-+的解为___________。
28.在报名的3名男教师和6名女教师中,选取5参加义务献血,要求男、女教师都有,则不同的选取方式的种数为________(结果用数值表示)。
9.已知点P 和Q 的横坐标相同,P 的纵坐标是Q 的纵坐标的2倍,P 和Q 的轨迹分别为双曲线1C 和2C 。
若1C的渐近线方程为y =,则2C 的渐近线方程为__________。
10.设()1fx -为()222x xf x -=+,[]0,2x ∈的反函数,则()()1y f x f x -=+的最大值为_________。
11.在10201511x x ⎛⎫++ ⎪⎝⎭的展开式中,2x 项的系数为________(结果用数值表示)。
12.赌博有陷阱.某种赌博每局的规则是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金(单位:元)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年上海高考数学理科含答案word版2015年上海高等学校招生数学试卷(理工农医类)一. 填空题(本大题共有14题,每题4分,满分56分)1.设全集U=R ,若集合{}A=12,3,4,,{}23B x x =≤≤,则U A C B =I ;2.若复数z 满足31z z i +=+,其中i 为虚数单位,则z =;3.若线性方程组的增广矩阵为122301c c ⎛⎫⎪⎝⎭,解为35x y =⎧⎨=⎩ ,则12c c -= ;4.若正三棱柱的所有棱长均为a ,且其体积为3a = ;5.抛物线22(p 0)ypx =>上的动点Q 到焦点的距离的最小值为1,则p = ;6.若圆锥的侧面积与过轴的截面面积之比为2π,则其母线与轴的夹角大小为 ; 7.方程()()1122log 95log 322x x ---=-+的解为 ;8.在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为 ;(结果用数值表示)9.已知点P 和Q 的横坐标相同,P 的纵坐标是Q 的纵坐标的2倍,P 和Q 的轨迹分别为1C 和2C ,若1C 的渐近线方程为3y x=,则2C 的渐近线方程为 ; 10.设()1f x -为()222x xf x -=+,[]0,2x ∈的反函数,则()()1y f x f x -=+的最大值为 ;11.在10201511x x ⎛⎫++ ⎪⎝⎭的展开式中,2x 项的系数为 ;(结果用数值表示)12.赌博有陷阱,某种赌博每局的规则是:赌客先在标记有1、2、3、4、5的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金(单位:元);若随机变量1ξ和2ξ分别表示赌客在一局赌博中的赌金和奖金,则12E E ξξ-= 元;13.已知函数()sin f x x=,若存在12,,mx x x L 满足1206m x x x π≤<<<≤L ,且()()()()()()()*12231++=122,m m f x f x f x f x f x f x m m N --+--≥∈L ,则m的最小值为 ;14.在锐角三角形ABC 中,1tan 2A =,D 为边BC 上的点,ABD V 与ACD V 的面积分别为2和4,过D 作DE AB ⊥于E ,DF AC ⊥于F ,则DE DF =u u u r u u u r g ;二. 选择题(本大题共有4题,每题5分,满分20分) 15.设12z zC∈、,则“12z z 、中至少有一个数是虚数”是“12z z -是虚数”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件 16.已知点A 的坐标为()43,1,将OA 绕坐标原点O 逆时针旋转3π至OB ,则点B 的纵坐标为( ) A. 332 B. 532 C. 112D. 13217.记方程①:2110x a x ++= ;方程②:2210xa x ++=;③:2310xa x ++=;其中123a a a 、、是正实数,当123a a a 、、成等比数列时,下列选项中,能推出方程③无实数根的是( )A. 方程①有实根,且②有实根B. 方程①有实根,且②无实根C. 方程①无实根,且②有实根D. 方程①无实根,且②无实根18.设(),n n nP x y 是直线()*21n x y n N n -=∈+与圆222xy +=在第一象限的交点,则极限1lim 1nx nyx→∞-=-( )A. 1-B. 12-C. 1D. 2三. 解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤。
19. (本题满分12分)如图,在长方体1111ABCD A B C D -中,11,2,AA AB AD E F===、分别是棱AB BC 、的中点.证明11A C F E 、、、四点共面,并求直线1CD 与平面11AC FE 所成的角的大小.20. (本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.如图,A B C 、、三地有直道相通,5AB =千米,3AC =,4BC =千米,现甲乙两警员同时从A 地出发匀速前往B 地,经过t 小时,他们之间的距离为()t f (单位:千米).甲的路线是AB ,速度为5千米/小时,乙的路线是ACB ,速度为8千米/小时. 乙到达B 地后在原地等待. 设1=t t 时,乙到达C 地.(1)求1t 与()1f t 的值;(2)已知警员的对讲机的有效通话距离是3千米. 当11≤≤t t时,求()t f 的表达式,并判断()t f 在[]1,1t 上的最大值是否超过3?说明理由.21. (本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. 已知椭圆1222=+y x,过原点的两条直线1l 和2l 分别与椭圆交于点A B 、和C D 、记得到的平行四边形ABCD 的面积为S .(1)设()()1122,,C ,y A x y x . 用A C 、的坐标表示C 到直线1l的距离,并证明12212y x yx S -=;(2)设1l 与2l 的斜率之积为21-,求面积S 的值.22. (本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分, 第3小题满分6分.已知数列{}na 与{}nb 满足112(),*n n n n aa b b n N ++-=-∈. (1)若35,nbn =+且11a=,求{}na 的通项公式;(2)设{}na 的第0n 项是最大项,即0(*)n n a a n N ≥∈,求证:{}nb 的第0n 项是最大项;(3)设10a λ=<,(*)n nbn N λ=∈,求λ的取值范围,使得{}na 有最大值M 和最小值m ,且使得(2,2).M m∈-23. (本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分, 第3小题满分8分.对于定义域为R 的函数()g x ,若存在正常数T ,使得cos ()g x 是以T 为周期的函数,则称()g x 为余弦周期函数,且称T 为其余弦周期,已知()f x 是以T 为余弦周期的余弦周期函数,其值域为R ,设()f x 单调递增,(0)0,()4.f f T π==(1)验证()sin 3xh x x =+是以6π为余弦周期的余弦周期函数;(2)设a b <,证明对任意[(),()]c f a f b ∈,存在0[,]x a b ∈,使得0()f x c =;(3)证明:“0u 为方程cos ()1f x =在[0,]T 上的解”的充要条件是“0+u T 为方程cos ()1f x =在[,2]T T 上的解”,并证明对任意[0,]+=+。
f x T f x f T∈都有()()()x T参考答案一. 填空题. 题号 123 4 5 67答案 {}1,41142i +16 4 2 3π2x =题号 8 910 111213 14答案 12032y x =±4 45 0.281615-二. 选择题.15. B ;16. D ;17. D ;18. A三. 解答题19.(1)证明:连结AC ,111111111111AA =CC AAC C A C //AC AA //CC EF //AC A C E F AE BE EF //A C BF CF ⎫⎫⇒⇒⎬⎪⎪⎭⇒⇒⎬=⎫⎪⇒⎬⎪=⎭⎭为平行四边形、、、四点共面(2)以D 为坐标原点,DA 为x 轴,DC 为y 轴,1DD 为z轴建立空间直角坐标系,()()()()()()()()()()1111111112,0,1,0,2,0,0,0,1,2,1,0,1,2,01,1,0,0,1,1,,001,1,1cos ,1502,111A C D E F EF A E AC FE n a b c a+b=0n EF n A E=b-c=0n n CD CD =-CD AC FE ⎫⇒=-=-⎪⎬=⎪⎭-⎧=⇒⎨⎩⎫⇒⎪⇒=⎬⎪⎭⇒u u u r u u u rr r u u u r r u u u r g g rr u u u u r u u u u r 设平面的一个法向量为且的一个值为而,与平面1515arcsin所成的角的大小为20. 解:(1)133,cos 85tA ==,由余弦定理得:()()()221111122211158258cos 325648053418f t t t t t At t t =+-=+-=g g g g(2)37,88t B F E ≤<当时,乙尚未到达地,设此时乙位于,甲位于则 47855cos 5BF=-t BE=-t B=,,,由余弦定理得:()()()()()222785527855cos 254218f t t t t t B t t =-+----=-+g g ()()321217373413825258888f t t t t f t ⎡⎤⎡⎫∈∈≤<≤<⎪⎢⎥⎢⎣⎦⎣⎭在,单调递减,在,单调递增,故时,()()75155,388t B f t t f t ≤≤=-≤<当时,乙已到达地,单调递减,()2372542188875518t t t f t t t ⎧-+≤<⎪⎪=⎨⎪-≤≤⎪⎩,()3f t 的最大值小于.21. (1)证明:22111110,l y x x y AB=2x y -=+的方程为:,()1212221112122211,0y x x y C x y y x x y d S=AB d=2x y y x x y--==⇒⋅-+到直线的距离为:(2)解:1l y=kx l x=-ky 2设:,则直线:2,将直线方程分别代入椭圆方程可得:22221212222122,212121k k x x x x k k k ==⇒=+++2121212121212222222x x k S=x y y x =kx x x x k k+⇒-+=⋅=22.(1)nna a =6n-5为等差数列, (2)()()()()0000000000000001112121122202n n n n n n n n n n k n n k n k n k n k n ka ab b a a b b aa b b a a b b ---------+--+-⎫-=-⎪⎪-=-⎪⇒-=-≥⎬⎪⎪-=-⎪⎭L同理:()00020n n k n n k aa b b ++-=-≥综上所述,0n b 为{}nb 的最大项(3)()()()()1112122121222,222122n n n n n n n n n n a a n a a a n a a λλλλλλλλ------⎫⎪-=-⎪⎪≥-=-⇒=-=⎬⎪⎪⎪-=-⎭L 时时也成立①21211,3,k k =a a λ--=-=当时,不满足题意②()1,0λλλ∈-当时,偶数项递减且均大于-,奇数项递增且均小于-()221221212,2,022M=a M m m a λλλλλλλλ⎧=--⎛⎫⇒⇒==-∈-⇒∈-⎨ ⎪==⎝⎭⎩③(),1λλλ∈-∞-当时,偶数项递增且均大于-,奇数项递减且均小于-,无最值。