函数的概念教学设计说明
函数的基本理解教案

函数的基本理解教案
教案标题:函数的基本理解教案
教学目标:
1. 理解函数的基本概念和特征
2. 能够识别和描述函数的图像
3. 能够解决与函数相关的简单问题
教学重点和难点:
重点:函数的定义、图像和应用
难点:函数的符号表示和图像的理解
教学准备:
1. 教师准备:熟悉函数的基本概念和特征,准备相关教学素材和案例
2. 学生准备:提前了解函数的基本概念,准备参与课堂讨论和练习
教学过程:
一、导入
教师通过引入一个实际生活中的例子,如投掷一个物体的高度与时间的关系,引出函数的概念,并激发学生的学习兴趣。
二、讲解
1. 函数的定义:教师讲解函数的定义,即对每一个自变量都有唯一的因变量对应的关系。
2. 函数的符号表示:介绍函数的符号表示方法,如y=f(x)或者y=2x+3等。
3. 函数的图像:通过具体的案例,讲解函数图像的绘制方法和特点。
三、练习
1. 个人练习:让学生通过简单的函数表格和图像,练习识别函数和描述函数的特征。
2. 小组讨论:组织学生分组讨论一个与函数相关的问题,并展示他们的讨论结果。
四、总结
教师对本节课的重点内容进行总结,并梳理函数的基本概念和特征,强化学生的学习效果。
五、作业布置
布置相关的练习作业,巩固学生对函数的基本理解和运用。
教学反思:
教师可以通过课后作业和课堂讨论,了解学生对函数概念的理解程度,及时调整教学内容和方法,帮助学生提高函数的基本理解能力。
北师大版八年级数学上册:4.1《函数》教学设计1

北师大版八年级数学上册:4.1《函数》教学设计1一. 教材分析北师大版八年级数学上册4.1《函数》是学生在学习了初中数学基础知识和初步接触到函数概念后,进一步深入研究函数性质和图像的重要章节。
本节内容主要包括函数的定义、函数的性质、函数的图像等,是学生理解函数概念、掌握函数解题方法的关键。
二. 学情分析学生在学习本节内容时,已具备一定的数学基础知识和初步的函数概念,但对于函数的深入理解和灵活运用还有待提高。
因此,在教学过程中,需要关注学生的认知水平,引导学生通过自主学习、合作探讨等方式,逐步理解和掌握函数的相关知识。
三. 教学目标1.理解函数的定义,掌握函数的性质和图像。
2.培养学生运用函数解决实际问题的能力。
3.培养学生的数学思维能力和团队协作能力。
四. 教学重难点1.函数的定义及其性质。
2.函数图像的特点和绘制方法。
五. 教学方法1.情境教学法:通过生活实例引入函数概念,让学生感受函数在实际生活中的应用。
2.启发式教学法:引导学生主动思考、探究函数的性质和图像。
3.合作学习法:学生进行小组讨论,培养学生的团队协作能力。
六. 教学准备1.教学PPT:制作包含函数定义、性质、图像等内容的PPT。
2.教学素材:准备一些与生活相关的函数实例,如温度、身高等。
3.练习题:挑选一些具有代表性的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用PPT展示一些与生活相关的函数实例,如温度随时间的变化、身高与年龄的关系等,引导学生关注函数在实际生活中的应用。
提问:这些实例中有什么共同特点?从而引出函数的定义。
2.呈现(10分钟)通过PPT展示函数的定义、性质和图像,让学生初步了解函数的基本概念。
同时,教师进行讲解,确保学生能够理解函数的相关概念。
3.操练(10分钟)让学生独立完成一些具有代表性的练习题,检验学生对函数概念的理解。
教师在过程中进行个别辅导,帮助学生解决问题。
4.巩固(10分钟)学生进行小组讨论,让学生分享自己的解题心得,互相学习。
高中数学函数概论教案模板

高中数学函数概论教案模板
一、教学目标
1. 理解函数的概念及其特点;
2. 掌握函数的定义、性质和基本性质;
3. 熟练运用函数的相关知识解决实际问题。
二、教学内容及安排
1. 函数的概念
- 什么是函数?
- 函数的符号表示:y = f(x)、f: x → y
- 自变量和因变量的概念
2. 函数的性质
- 定义域和值域
- 函数的奇偶性
- 函数的增减性
3. 函数的基本性质
- 函数的连续性
- 函数的周期性
- 函数的单调性
4. 函数的运算
- 函数的相加、相减、相乘、相除
- 函数的复合
5. 实际问题的解决
- 利用函数解决实际问题
- 实际问题的函数建模
三、教学重点与难点
1. 函数的概念及其特点是本节课的重点,学生需要掌握清楚;
2. 函数的运算和实际问题的解决是本节课的难点,需要帮助学生理解和应用。
四、教学方法
1. 讲授与示范结合
2. 分组讨论与合作学习
3. 案例分析与实践应用
五、教学资源
1. 教材
2. 多媒体设备
六、教学评价
1. 课堂练习
2. 作业完成情况
3. 知识掌握程度
七、教学进度安排
第一课:函数的概念
第二课:函数的性质
第三课:函数的基本性质
第四课:函数的运算
第五课:实际问题的解决
八、教学反馈
1. 教师定期对学生学习情况进行诊断和反馈
2. 学生可以提出问题和建议,促进教学质量的提高。
以上为高中数学函数概论教案模板范本,可根据实际教学情况进行调整和修改。
函数概念的教学设计

函数概念的教学设计教学目标:1.了解函数的概念和作用;2.掌握函数的定义和使用;3.能够灵活运用函数解决问题。
教学内容:1.函数的概念和作用;2.函数的定义和调用;3.函数的参数和返回值;4.函数的递归调用;5.函数的作用域和局部变量。
教学步骤:第一步:导入问题引入问题:在日常生活中,我们常常需要将一系列操作封装成一个整体,以便在需要时调用。
那么,你知道如何实现这个功能吗?第二步:引入函数的概念1.通过实例引入函数的概念:比如,在日常生活中,我们常常会使用机器来完成一些操作,比如洗衣机用来洗衣服,电视遥控器用来控制电视,那么这些机器和遥控器其实就是函数的概念。
2.定义函数:引导学生定义函数,即封装一系列操作的代码块,以便在需要时调用。
第三步:函数的定义和调用1.函数的定义:通过示范将一个简单的操作封装成一个函数的示例,如求两个数的和。
2.函数的调用:通过示范调用已定义的函数来实现封装的功能。
第四步:函数的参数和返回值1.函数的参数:引导学生通过例子,引入函数参数的概念,并进行函数定义和调用。
2.函数的返回值:通过例子引导学生理解函数的返回值,并进行函数定义和调用。
第五步:函数的递归调用1.引导学生理解递归的概念和原理;2.通过实例展示函数的递归调用,并指导学生进行实践。
第六步:函数的作用域和局部变量1.通过示例引导学生理解变量的作用域;2.通过函数和外部变量的示例引导学生理解函数的作用域和局部变量。
第七步:综合练习与巩固结合实际问题和练习题进行实践,巩固学生对函数概念和使用的理解。
第八步:总结与扩展1.总结函数的概念和作用、定义与调用、参数和返回值、递归调用、作用域与局部变量;2.引导学生思考函数的扩展应用,并引入匿名函数等扩展内容。
教学评价:在教学过程中,可以通过让学生进行问题解决和程序设计的实践,评价学生对函数概念的掌握程度以及能否熟练地使用函数解决问题。
可以通过课堂练习和作业、小组讨论等方式进行评价,确保学生掌握函数的概念和使用。
3.1.1函数概念(第1课时)教学设计.docx

3.1.1函数的概念(第一课时)(人教A版普通高中教科书数学必修第一册第三章)一、教材地位本节课是普通高中课程标准实验教科书人教A版第三章第一节第一课时(第60~64页).1.概念本身角度:函数是高中数学最抽象的概念,初中曾用运动变化的观点给出函数的描述性定义,并把函数看作两个变量间的依赖关系,但这一定义有一定的阶段性和局限性.2.学科角度:函数是高中数学的核心概念,是整个高中函数知识体系的基石,它不仅将函数概念由“对应论”发展到“集合论”,更承上启下,为后继研究基本初等函数,比如指数函数、对数函数、幂函数、三角函数以及函数的性质等提供研究方法和理论依据,让我们体会到重要概念对数学发展和数学学习的巨大作用;同时,函数的基础知识在日常生活、社会经济、以及等其他学科也有着广泛应用.3.高考角度:函数是高考数学的热点,函数图象性质、函数与代数式方程不等式数列三角解析几何导数的结合问题常考常新,从基础题、中档题到压轴题,每年高考都是绝对重点,高考所考察的五大数学思想中的数形结合思想、函数与方程思想贯穿高中数学学习的全过程.有人说,“得函数者得数学,得数学者得高考”,更是形象的道出了函数在高考中的重要地位.二、学情分析1.从学生知识层面看:通过初中函数相关知识的学习,学生具备了一定的知识经验和基础;通过必修一第一章“集合”的学习,对集合思想的认识也日渐提高,为重新定义函数、从根本上揭示函数的本质提供了知识保证.2.从学生能力层面看:学生已有一定的分析、推理和概括能力,初步具备了运用数形结合思想解决问题的能力,但数形结合的意识和思维的深刻性还有待进一步加强.3.从学生情感培养方面看:多数学生对教学新内容的学习有很高学习兴趣和积极性,但探究能力以及合作交流等能力仍需要通过课堂主渠道加以培养和提高.三、教学目标1.知识与技能:会用集合与对应的语言来刻画函数,理解函数的概念;理解函数符号y=f(x)的含义;了解函数的三要素;会求一些简单函数的定义域.(重点)2.过程与方法:让学生亲身经历函数概念的形成过程,经历从具体到抽象、从特殊到一般、从感性到理性的认知过程,培养学生抽象概括能力,让学生学会数学表达和交流,激发数学学习兴趣,发展数学应用意识.(难点)3.情感、态度与价值观:培养学生细心观察、认真分析、严谨表达的良好思维习惯,养成用函数模型描述和解决现实世界中蕴含的规律,培养学生提出问题的能力,培养创新意识.四、教学重点用集合语言和对应关系刻画函数的概念.五、教学难点对函数概念的理解.六、教学过程1.函数概念的形成1.1创设情境,引发思考思考1:(1)若正方形的边长为1,则其周长l= ;(2)若正方形的边长为2,则其周长l= ; (3)若正方形的边长为x ,则其周长l= ;【预设答案】(1)4(2)8(3)4x【设计意图】通过具体的例子复习函数的概念,让学生再次体会函数高度“抽象”的作用.思考2:初中学习的函数的概念是什么?【预设答案】设在一个变化过程中有两个变量x 和y ,如果对于x 的每一个值,y 都有唯一的值与它对应,那么就说y 是x 的函数.其中x 叫自变量,y 叫因变量.【设计意图】复习初中函数概念,强调函数是一种特殊的对应.思考3:请同学们考虑以下两个问题【设计意图】从初中的概念来看,这两组中的两个函数没什么不同,但我们有感觉它们是不同函数.让学生体会初中函数概念不够精确,从而有些问题解决不了.1.2探究典例,形成概念问题1: 某“复兴号”高速列车到350km/h 后保持匀速运行半小时.这段时间内,列车行进的路程S (单位:km )与运行时间t (单位:h )的关系可以表示为 S=350t.思考:根据对应关系S=350t ,这趟列车加速到350km/h 后,运行1h 就前进了350km ,这个说法正确吗?44y x l x ==(1)与周长是同一函数吗?22x y x y x==()与是同一函数吗?【预设答案】不正确.对应关系应为S=350t ,其中 }1750|{},5.00|{11≤≤=∈≤≤=∈s s B s t t A t .问题2 :某电气维修告诉要求工人每周工作至少1天,至多不超过6天.如果公司确定的工资标准是每人每天350元,而且每周付一次工资,那么你认为该怎样确定一个工人每周的工资?一个工人的工资w (单位:元)是他工作天数d 的函数吗?【预设答案】是函数,对应关系为w=350d,其中},6,5,4,3,2,1{2=∈A d}2100,1750,1400,1050,700,350{2=∈B w .思考:在问题1和问题2中的函数有相同的对应关系,你认为它们是同一个函数吗?为什么?【预设答案】不是.自变量的取值范围不一样.问题3 :如图,是北京市2016年11月23日的空气质量指数变化图.如何根据该图确定这一天内任一时刻th 的空气质量指数的值I ?你认为这里的I 是t 的函数吗?【预设答案】是,t 的变化范围是}240|{A 3≤≤=t t ,I 的范围是}1500|{I B 3<<=I .问题4: 国际上常用恩格尔系数)总支出金额食物支出金额=r r ( 反映一个地区人民生活质量的高低,恩格尔系数越低,生活质量越高.上表是我国某省城镇居民恩格尔系数变化情况,从表中可以看出,该省城镇居民的生活质量越来越高.你认为该表给出的对应关系,恩格尔系数r 是年份y 的函数吗?思考:上述问题1到问题4中的函数有哪些共同点和不同点?【预设答案】共同点有:(1)都包含两个非空数集,用A ,B 来表示;(2)都有一个对应关系不同点有:(1)(2)是通过解析式表示对应关系,(3)是通过图象,(4)是通过表格【设计意图】通过四个具体的例子,发现要在集合的基础上定义函数会比较准确,同时让学生体会函数对应关系的3种表示形式.函数概念:一般地,设A , B 是非空的实数集,如果对于集合A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A B →为从集合A 到集合B 的一个函数,记作y =f (x ),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{}()f x x A |∈叫做函数的值域.函数的三个要素:定义域,对应关系,值域.常见函数的三要素:正比例函数:y kx =的定义域是R ,值域也是R .对应关系f 把R 中的任意一个数x ,对应到R 中唯一确定的数(0)ax b a +≠.一次函数:(0)y ax b a =+≠的定义域是R ,值域也是R .对应关系f 把R 中的任意一个数x ,对应到R 中唯一确定的数(0)ax b a +≠.二次函数:2(0)y ax bx c a =++≠的定义域是R ,值域是B .当a >0时,244ac b B y y a ⎧⎫-⎪⎪=≥⎨⎬⎪⎪⎩⎭;当a <0时,244ac b B y y a ⎧⎫-⎪⎪=≤⎨⎬⎪⎪⎩⎭.对应关系f 把R 中的任意一个数x ,对应到B 中唯一确定的数2(0)ax bx c a ++≠. 反比例函数:(0)k y k x =≠的定义域为{}0x x ≠,对应关系为“倒数的k 倍”,值域为{}0y y ≠.反比例函数用函数定义叙述为:对于非空数集{}0A x x =≠中的任意一个x 值,按照对应关系f :“倒数(0)k k ≠倍”,在集合{}0B y y =≠中都有唯一确定的数k x 和它对应,那么此时f :A B →就是集合A 到集合B 的一个函数,记作()(0),.k f x k x A x=≠∉2.例题讲解,理解概念例1.判断下列对应是否是函数【预设答案】(1)是(2)是(3)不是【设计意图】让学生体会函数只能是“一对一”或“多对一”,不能“一对多”.例2. 判断下列图象能表示函数图象的是()【预设答案】D【设计意图】让学生体会概念中的“唯一”二字例3 .你能构建一个问题情景,使其中函数的对应关系为y=x(10-x)吗?【预设答案】长方形的周长为20,设一边长为x,面积为y,那么y=x(10-x),其中x的取值范围是A={x|0<x<10},y的取值范围是B={y|0<y≤25}.对应关系f把每一个长方形的边长x,对应到唯一确定的面积x(10-x)【设计意图】让学生体会数学建模,数学应用思想,同时巩固函数概念是建立在集合基础上的.3.课堂练习,巩固新知练习1.若函数y=f(x)的定义域为{x|−3≤x≤8,x≠5},值域为{y|−1≤y≤2,y≠0},则y=f(x)的图象可能是()A. B.C. D.【答案】B练习2.已知函数f(x),g(x)分别由下表给出.则g(f(5))=;f(g(2))=.【答案】4 3练习3.集合A,B与对应关系f,如图所示,f:A→B是否为从集合A到集合B的函数?如果是,那么定义值域与对应关系各是什么?【答案】由图知A中的任意一个数,B中都有唯一确定数,与之对应,所以f:A→B 是从A 到B的函数定义域是A={1,2,3,4,5},值域C={2,3,4,5}4.构建一个问题情景,使其中的变量关系能用解析式y=√x来描述.【答案】正方形的面积为x,其边长为y,则y=√x,其中x的取值范围是A={x|0<x},y的取值范围是B={y|0<y}4.课堂小结,思想升华本节课主要是在集合的基础上重新定义了函数,让函数的概念更加清晰准确.。
全国青年数学教师优质课获奖教学设计:函数的概念1 Word版含答案

1.2.1 函数的概念 教学设计一、教材分析:本节内容为《1.2.1函数的概念》 ,是人教A 版高中《数学》必修一《1.2函数及其表示》的第一课.函数是中学数学最重要的基本概念之一,在初中,学生已经学习过函数的概念,它是从运动变化的观点出发,把函数看成是变量之间的依赖关系.从历史上看,初中给出的定义来源于物理公式,最初的函数概念几乎等同于解析式.后来,人们逐渐意识到定义域与值域的重要性,而要说清楚变量以及两个变量间变化的依赖关系,往往先要弄清各个变量的物理意义,这就使研究受到了一定的限制.如果只根据变量观点,那么有些函数就很难进行深入研究.例如:对这个函数,如果用变量观点来解释,会显得十分勉强,也说不出x 的物理意义是什么.但用集合、对应的观点来解释,就十分自然.函数思想也是整个高中数学最重要的数学思想之一,而函数概念是函数思想的基础,它不仅对前面学习的集合作了巩固和发展,而且它是学好后继知识的基础和工具.函数与代数式、方程、不等式、数列、三角函数、解析几何、导数等内容的联系也非常密切,函数的基础知识在现实生活、社会、经济及其他学科中有着广泛的应用.本节课用集合与对应的语言进一步描述函数的概念,让学生感受建立函数模型的过程和方法.二、学情分析:在学习用集合与对应的语言刻画函数之前,学生已经会把函数看成变量之间的依赖关系,同时,虽然函数比较抽象,但是函数现象大量存在于学生的周围,教科书选用了运动、自然界、经济生活中的实际例子进行分析,从实例中抽象概括出用集合与对应的语言来定义函数概念,对学生的抽象、归纳能力要求比较高,能很好的锻炼学生的抽象思维能力以及加深对函数概念的理解.三、教学目标:(一)知识与技能理解函数的定义,能用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的三要素. (二)过程与方法通过三个实例共性的分析到函数概念的形成,再对三个实例进行拓展,让学生对函数概念进行辨析,体现从特殊到一般,再从一般到特殊的思想方法,渗透了归纳推理,实现了感性认识到理性认识的升华. (三)情感、态度与价值观通过从实际问题中抽象概括函数的概念,培养学生的抽象概括能力,体会函数是描述变量之间依赖关系的重要数学模型,在此基础上学会用集合与对应的语言来刻画函数,感受数学的抽象性和简洁美.⎩⎨⎧=.01)(是无理数时,当是有理数时,,当x x x f四、教学重点与难点:(一)教学重点体会函数是描述变量之间的依赖关系的重要数学模型,并能用集合与对应的语言来刻画函数.(二)教学难点函数概念的理解及符号“)(x f y ”的含义.五、教学策略:首先,通过魔术表演,体现函数在实际生活中的运用,激发学生进一步学习函数的积极性;其次,在学生习惯用解析式表示函数的基础上借助教科书实例,从解析法、图象法、列表法等不同的方式,结合函数的数与形两个方面给学生充分的认识,为学生用集合与对应的语言刻画函数打下感性基础;再次,分析讲解函数概念中的关键点时,对于对应关系f 、函数关系中多对一的情况、值域是集合B 的子集等较为抽象问题的理解采取放乒乓球的实验,让抽象问题具体化;最后,通过对三个实例进行拓展让学生抛开物理运动背景,用集合与对应的语言来分析函数并强调函数关系中对应关系的方向.六、教学基本流程:七、教学情景设计:。
八年级数学下册《函数的概念》教案、教学设计

-设计一系列具有实际背景的问题,如最佳投资方案、最短路径问题等,引导学生运用函数知识构建模型,解决实际问题。
2.针对教学难点,我计划采取以下措施:
-采用“从特殊到一般”的教学方法,先通过具体的一次函数、二次函数等案例,让学生感知函数的单调性、奇偶性等性质,再推广到一般函数。
4.针对不同学生的学习特点,教师应采用差异化教学策略,关注学生的个体差异,激发学生的学习潜能,使他们在函数学习中获得成就感。
5.注重培养学生的合作意识和团队精神,通过小组合作、讨论交流等形式,引导学生相互学习、共同进步。
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握函数的定义,能从实际问题中抽象出函数关系,识别函数的三种表示方法(解析式、表格、图象)。
请同学们按时完成作业,并在作业中体现出自己的思考过程。在完成作业的过程中,如遇到问题,可随时与同学、老师交流,共同解决。期待大家在作业中展现出对本节课知识的深刻理解和运用能力!
2.函数图象的分析和识别,特别是对于不同类型函数图象的特点和性质的理解。
3.运用函数知识解决实际问题,特别是将现实问题转化为函数模型的能力。
4.函数单调性、奇偶性等性质的深入理解及其应用。
(二)教学设想
1.对于教学重点的突破,我设想采用以下策略:
-通过引入生活中的实例,如气温变化、物体运动等,让学生感受函数的实际意义,从而加深对函数定义的理解。
2.根据课堂所学的一次函数、二次函数等基本初等函数的性质,分析以下问题:
a.一次函数图象的特点及其在现实生活中的应用。
b.二次函数图象的开口方向、顶点、对称轴等性质,并举例说明。
初中《函数》教案设计

初中《函数》教案设计教学目标:1. 理解函数的概念,能够识别函数的各个组成部分。
2. 掌握函数的表示方法,包括解析式和表格法。
3. 能够运用函数解决实际问题,提高解决问题的能力。
教学重点:1. 函数的概念及组成部分。
2. 函数的表示方法。
教学难点:1. 函数概念的理解。
2. 函数表示方法的运用。
教学准备:1. 教学课件或黑板。
2. 函数相关例题和练习题。
教学过程:一、导入(5分钟)1. 引导学生回顾之前学过的数学知识,如变量、自变量、因变量等。
2. 提问:同学们,你们认为什么是函数呢?函数有哪些组成部分?二、新课讲解(15分钟)1. 讲解函数的概念,引导学生理解函数的定义。
2. 解释函数的各个组成部分,如定义域、值域、对应关系等。
3. 举例说明函数的表示方法,包括解析式和表格法。
4. 引导学生通过实例理解函数的实际应用。
三、课堂练习(10分钟)1. 布置一些简单的函数题目,让学生独立完成。
2. 选取部分学生的作业进行讲解和点评。
四、巩固知识(10分钟)1. 通过课件或黑板,展示一些常见的函数图像,如正比例函数、一次函数、二次函数等。
2. 引导学生观察图像,分析函数的特点和性质。
五、拓展提高(10分钟)1. 引导学生思考:函数在实际生活中有哪些应用?2. 举例说明函数在生活中的应用,如温度与海拔的关系、商品价格与数量的关系等。
六、总结(5分钟)1. 回顾本节课所学的内容,让学生总结函数的概念和表示方法。
2. 强调函数在实际生活中的重要性。
教学反思:本节课通过讲解、练习、巩固和拓展等环节,帮助学生理解和掌握函数的基本概念和表示方法。
在教学过程中,要注意关注学生的学习情况,及时解答学生的疑问,提高学生的学习兴趣和积极性。
同时,结合实际生活中的例子,让学生感受函数的应用价值,提高学生的数学素养。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年河南省高中数学优质课评选
《函数的概念》教学设计说明
商丘市实验中学
路亚芳
《函数的概念》教学设计说明
一、函数概念的本质、地位、作用分析
函数是中学数学最重要的基本概念之一,其核心内涵为非空数集到非空数集的一个对应;函数思想也是整个高中数学最重要的数学思想之一,而函数概念是函数思想的基础;它不仅对前面学习的集合作了巩固和发展,而且它是学好后继知识的基础和工具.函数与代数式﹑方程﹑不等式﹑数列、三角函数、解析几何、导数等内容的联系也非常密切,函数的基础知识在现实生活、社会、经济及其他学科中有着广泛的应用;函数概念及其反映出的数学思想方法已广泛渗透到数学的各个领域,是进一步学习数学的重要基础.本节课用集合与对应的语言进一步描述函数的概念,让学生感受建立函数模型的过程和方法,初步运用函数思想理解和处理生活、社会中的简单问题.
二、教学目标分析
本堂课的教学目标是有梯度的,由浅入深:首先要通过丰富实例让学生了解函数是非空数集到非空数集的一个对应,了解构成函数的三要素;然后让学生理解函数概念的本质,抽象的
函数符号f(x)的意义;并且让学生经历函数概念的形成过程,函数概念的辨析过程,在过程中渗透归纳推理、发展学生的抽象思维能力;通过经历以上过程,让学生体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学会用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用,体验函数思想;函数的概念比较抽象,但函数现象大量存在于学生周围,让学生通过观察分析,去发现生活中函数的例子,从而更好的理解函数的概念,熟练的去应用概念解决问题. 通过师生互动、生生互动,让学生在民主、和谐的课堂氛围中,感受数学的抽象性和f(x)的简洁美,培养和提高学生学习数学的兴趣和观察问题、分析问题、解决问题的能力.
三、教学问题诊断
从学生知识层面看:学生在初中初步探讨了函数的相关知识,有一定的基础;通过集合的学习,对集合思想的认识也日渐提高,为重新定义函数,从根本上揭示函数的本质提供了知识保证.从学生能力层面看:通过以前的学习,学生已有一定的分析、推理和概括能力,初步具备了学习函数概念的基本能力.在学习的过程中学生主要存在以下困惑、困难:
1.对“为什么要重新定义函数”存在困惑.
学生在预习之前可能一直都有疑问:我们已经定义过函数了,为什么又要重新定义函数?学生可能认为自己学得很好了,再学习函数的定义有重复之嫌.
2.学生由实例抽象概括出函数的概念时存在困难.
教学中由实例抽象归纳出函数概念时,要求学生必须通过自己的努力探索才能得出,对学生的能力要求比较高.在通过“观察、分析、比较、归纳、概括”得出函数的概念时,学生在其中的任意一个环节出了问题都可能得不出函数的概念.
3.对抽象符号f(x)的理解存在困难.
四、本节课的教法特点以及预期效果分析
本堂课的特点是概念教学,根据学生的心理特征和认知规律,我采取问题式教学法;以问题串为主线,通过设置几个具体问题情景,发现问题中两个变量的关系,让学生归纳、概括出函数概念的本质,这也符合建构主义的教学理论.
本节课对几个重要环节的处理方法是:
(1)为了让学生抽象概括出函数的概念,首先以三个实际问题引入,让学生认识到生活中充满着变量间的依赖关系,先建立起函数的背景,为学生理解函数概念打下感性基础. 在三个不同的实例中,通过对关键词的强调和引导,给学生思考、探索的空间,让学生发现、概括出它们的共同特征. 进而引导学生从实际问题中抽象概括出函数的概念,培养了学生的抽象概括能力. 教学中让学生体验数学发现和创造的历程,提高分析问题,解决问题的能力. 高一的学生是以感性思维为主的年龄阶段,在第一个例子中,通过动画演示炮弹的发射过程,和几个递进的问题来引导学生用集合与对应的语言来刻画函数关系.让学生更清晰直观的感知:对于集合A中每一个时间t,在集合B中都有唯一确定的高度h与它对应. 这样设计符合他们的认知规律,化抽象为直观,学生更容易理解. 第二、三个例子,让学生仿照前例,尝试用集合与对应的语言去描述两个变量之间的依赖关系,学会数学表达和交流.由学生抽象概括出函数的概念,其间经历了直观感知、观察分析、归纳类比、抽象概括等思维过程,进一步提高了学生的数学思维能力;教学中注重培养学生积极主动,勇于探索的学习方式. 本节课选自运动、自然界、经济生活中用三种不同方法表示的函数,既可以让学生感受到函数在许多方面的广泛应用,又可以使学生意识到对应关系不仅可以是明确的解析式,也可以是形象直观的曲线和表格,为下一节函数的表示方法描下伏笔.
(2)为了使学生正确理解函数的概念,首先让学生讨论初中已学函数的三要素,使学生加深理解函数的本质及构成函数的基本要素. 其次通过思考辨析,由学生讨论、列举出函数的例子,再次加深对函数概念的理解,同时也培养了学生的数学应用意识. 最后启发学生对本
节课学习的内容进行总结,提醒学生重视研究问题的方法和过程.
爱因斯坦说过:“单纯的专业知识灌输只能产生机器,而不可能造就一个和谐发展的人才”,因此,数学学习的核心是思考,没有思考就没有真正的数学. 在本节课的教学中,我以学生作为活动的主体, 总是创设恰当的问题情境,引导学生积极思考,大胆探索,最大限度地调动学生积极参与教学活动,在教学难点处适当放慢节奏,给学生充分的时间进行思考与讨论,适时地给予适当的思维点拨,必要时进行大面积提问,让学生做课堂的主人,充分发表自己的意见.这样既有利于化解难点、突出重点,也有利于充分发挥学生的主体作用,使课堂气氛更加活跃,让学生在生生互动、师生互动中掌握知识,提升能力.教学过程中既注重锻炼学生独立解决问题的能力,又注重对学生交流合作意识和创新意识的培养.通过本节课的教学,希望对学生的思维品质的培养﹑数学思想的建立﹑心理品质的优化起到良好的作用.
以上是我本人对于本节课设计的一些做法和想法,由于水平有限,难免有许多的不足之处,恳请各位专家批评指正!
谢谢!。