2000年上海高考数学理科卷

合集下载

【VIP专享】2000年全国高考理科数学试题及其解析

【VIP专享】2000年全国高考理科数学试题及其解析

B.P Q R
8.以极坐标系中的点 1,1为圆心,1 为半径的圆的方程是
A. 2cos 4
C. 2cos 1
2
9.一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是 ( )
A.
1
2 2
B.
1
4 4
税率
5%
10%
15%

C.1200~1500 元 D.1500~2800 元
C. Q P R
2
B. 2sin 4
2000 年普通高等学校招生全国统一考试
数学(理工农医类)
本试卷分第 I 卷(选择题)和第 II 卷(非选择题)两部分.第 I 卷 1 至 2 页.第 II 卷 3 至 9 页.共 150 分.考试时间 120 分钟.
第Ⅰ卷(选择题共 60 分)
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只 有一项是符合题目要求的 新疆
C. 3 3i
C. 6
3
D. 5
D.3 3i
D. 6
()
()
()
()
()
6.《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过 800 元的部分
不必纳税,超过 800 元的部分为全月应纳税所得额.此项税款按下表分段累进计算:
全月应纳税所得额
不超过 500 元的部分
超过 500 元至 2000 元的部分
超过 2000 元至 5000 元的部分

某人一月份应交纳此项税款 26.78 元,则他的当月工资、薪金所得介于 ( )
A.800~900 元 B.900~1200 元
7.若 a b 1 ,P= lg a lg b ,Q= 1 lg a lg b,R= lg a b ,则

2000年高考数学(理科)真题及答案[全国卷I]

2000年高考数学(理科)真题及答案[全国卷I]

2000年普通高等学校招生全国统一考试数 学(理工农医类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。

第I 卷1至2页。

第II 卷3至9页。

共150分。

考试时间120分钟。

第I 卷(选择题 60分)注意事项:1、答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。

2、每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。

3、考试结束,监考人将本试卷和答题卡一并收回。

选择题:本大题共12小题;第每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)设集合A 和B 都是自然数集合N ,映射f:A →B 把集合A 中的元素n映射到集合B 中的元素2n +n ,则在映射f 下,象20的原象是(A)2 (B)3 (C)4 (D)5i 3对应的向量按顺时针方向旋转3π,i 33+2,3, 6,(4)已知sin α>sin β,那么下列命题成立的是(A)若α、β是第一象限角,则cos α>cos β(B)若α、β是第二象限角,则tg α>tg β(C)若α、β是第三象限角,则cos α>cos β(D)若α、β是第四象限角,则tg α>tg β(5)函数y=-x cos x 的部分图象是(6)《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过 800元的部分不必纳税,超过800元的部分为全月应纳税所得额。

此项税 款按下表分段累进计算:<div align="center"> 全月应纳税所得额 税率不超过500元的部分 5%超过500元至2000元的部分 10%超过2000元至5000元的部分 15%… …</div>某人一月份应交纳此项税款26.78元,则他的当月工资、薪金所得介于800~900元 (B)900~1200元(C)1200~1500元 (D)1500~2800元(7)若a >b >1,)2lg(),lg (lg 21,lg lg ba R Q P +=+=⋅=βαβα,则(A)R<P<Q (B)P<Q< R(C)Q< P<R (D)P< R<Q(8)以极坐标系中的点(1,1)为圆心,1为半径的圆的方程是(A))4cos(2πθ-=p (B))4sin(2πθ-=p (C))1sin(2-=θp (D))1sin(2-=θp(9)一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比 是(A) (B) (C) (D)(10)过原点的直线与圆相切,若切点在第三象限,则该直 线的方程是(A) (B) (C) (D)(11)过抛物线的焦点F 作一条直线交抛物线于P 、Q 两点,若线 段PF 与FQ 的长分别是p 、q ,则等于(A)2a(B)(C)4a(D)(12)如图,OA是圆锥底面中心O到母线的垂线,OA绕轴旋转一周所得曲面将圆锥分成体积相等的两部分,则母线与轴的夹角为2000年普通高等学校招生全国统一考试数学(理工农医类)第II卷(非选择题90分)注意事项:第II卷共7页,用钢笔或圆珠笔直接答在试题卷中。

2000高考数学全国卷及答案理

2000高考数学全国卷及答案理

2000年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的(1) 设集合A 和B 都是自然数集合N ,映射B A f →:把集合A 中的元素n 映射到集合B 中的元素n n +2,则在映射f 下,象20的原象是( )(A) 2(B) 3(C) 4(D) 5(2) 在复平面内,把复数i 33-对应的向量按顺时针方向旋转3π,所得向量对应的复数是( )(A) 23(B) i 32-(C)i 33- (D) 3i 3+(3) 一个长方体共一顶点的三个面的面积分别是2,3,6,这个长方体对角线的长是( )(A) 23(B) 32(C) 6(D)6(4) 已知βαsin sin >,那么下列命题成立的是 ( )(A) 若α、β是第一象限角,则βαcos cos > (B) 若α、β是第二象限角,则βαtg tg > (C) 若α、β是第三象限角,则βαcos cos > (D) 若α、β是第四象限角,则βαtg tg > (5) 函数x x y cos -=的部分图像是( )(6)《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额.此项税款按下表分段累进计算:某人一月份应交纳此项税款26.78元,则他的当月工资、薪金所得介于 ( )(A) 800~900元(B) 900~1200元(C) 1200~1500元(D) 1500~2800元(7) 若1>>b a ,P =b a lg lg ⋅,Q =()b a lg lg 21+,R =⎪⎭⎫ ⎝⎛+2lg b a ,则( )(A) R <P <Q(B) P <Q <R(C) Q <P <R(D) P <R <Q(8) 以极坐标系中的点()1 , 1为圆心,1为半径的圆的方程是( )(A) ⎪⎭⎫ ⎝⎛-=4cos 2πθρ(B) ⎪⎭⎫ ⎝⎛-=4sin 2πθρ(C) ()1cos 2-=θρ(D) ()1sin 2-=θρ(9) 一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是 ( ) (A)ππ221+ (B)ππ441+ (C)ππ21+ (D)ππ241+ (10) 过原点的直线与圆03422=+++x y x 相切,若切点在第三象限,则该直线的方程是( )(A) x y 3=(B) x y 3-=(C) x y 33=(D) x y 33-= (11) 过抛物线()02>=a ax y 的焦点F 作一直线交抛物线于P 、Q 两点,若线段PF 与FQ 的长分别是p 、q ,则qp 11+等于 ( )(A) a 2(B)a 21 (C) a 4(D)a4 (12) 如图,OA 是圆锥底面中心O 到母线的垂线,OA 绕轴旋转一周所得曲面将圆锥分成体积相等的两部分,则母线与轴的夹角为( )(A) 321arccos(B) 21arccos (C) 21arccos(D) 421arccos第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线.(13) 乒乓球队的10名队员中有3名主力队员,派5名参加比赛.3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有_____种(用数字作答)(14) 椭圆14922=+y x 的焦点为1F 、2F ,点P 为其上的动点,当21PF F ∠为钝角时,点P 横坐标的取值范围是________(15) 设{}n a 是首项为1的正项数列,且()011221=+-+++n n n n a a na a n (n =1,2,3,…),则它的通项公式是n a =_______(16) 如图,E 、F 分别为正方体的面11A ADD 、面11B BCC 的中心,则四边形E BFD 1在该正方体的面上的射影可能是_______.(要求:把可能的图的序号都.填上) 三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤.(17) (本小题满分12分) 已知函数1cos sin 23cos 212++=x x x y ,R ∈x . (I) 当函数y 取得最大值时,求自变量x 的集合;(II) 该函数的图像可由()R ∈=x x y sin 的图像经过怎样的平移和伸缩变换得到? (18) (本小题满分12分)如图,已知平行六面体ABCD -1111D C B A 的底面ABCD 是菱形,且CB C 1∠=CD C 1∠=BCD ∠= 60.(I) 证明:C C 1⊥BD ; (II) 假定CD =2,1CC =23,记面BD C 1为α,面CBD 为β,求二面角 βα--BD 的平面角的余弦值;C 1CDABD 1B 1A 1(III) 当1CC CD的值为多少时,能使⊥C A 1平面BD C 1?请给出证明. (19) (本小题满分12分)设函数()ax x x f -+=12,其中0>a . (I) 解不等式()1≤x f ;(II) 求a 的取值范围,使函数()x f 在区间[)+∞,0上是单调函数. (20) (本小题满分12分)(I) 已知数列{}n c ,其中n n n c 32+=,且数列{}n n pc c -+1为等比数列,求常数p ; (II) 设{}n a 、{}n b 是公比不相等的两个等比数列,n n n b a c +=,证明数列{}n c 不是等比数列.(21) (本小题满分12分)某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示.(Ⅰ) 写出图一表示的市场售价与时间的函数关系式P =()t f ; 写出图二表示的种植成本与时间的函数关系式Q =()t g ;(Ⅱ) 认定市场售价减去种植成本为纯收益,问何时上市的西红柿收益最大? (注:市场售价和种植成本的单位:元/210kg ,时间单位:天) (22) (本小题满分14分)如图,已知梯形ABCD 中CD AB 2=,点E 分有向线段AC 所成的比为λ,双曲线过C 、D 、E 三点,且以A 、B 为焦点.当4332≤≤λ时,求双曲线离心率e 的取值范围.2000年普通高等学校招生全国统一考试数学试题(理工农医类)参考解答及评分标准一.选择题:本题考查基本知识和基本运算,每小题5分,满分60分.(1)C (2)B (3)D (4)D (5)D (6)C (7)B(8)C (9)A (10)C (11)C (12)D 二.填空题:本题考查基本知识和基本运算,每小题4分,满分16分.(13)252 (14)-5353<<x (15)n1(16)②③ 三.解答题(17)本小题主要考查三角函数的图像和性质,考查利用三角公式进行恒等变形的技能以及运算能力.满分12分.解:(Ⅰ) y =21cos 2x +23sin x cos x +1 =41(2cos 2x -1)+41+43(2sin x cos x )+1 =41cos2x +43sin2x +45=21(cos2x ·sin 6π+sin2x ·cos 6π)+45 =21sin(2x +6π)+45——6分 y 取得最大值必须且只需2x +6π=2π+2k π,k ∈Z , 即 x =6π+k π,k ∈Z .所以当函数y 取得最大值时,自变量x 的集合为 {x |x =6π+k π,k ∈Z } ——8分 (Ⅱ)将函数y =sin x 依次进行如下变换:(i)把函数y =sin x 的图像向左平移6π,得到函数y =sin(x +6π)的图像; (ii)把得到的图像上各点横坐标缩短到原来的21倍(纵坐标不变),得到函数y =sin(2x +6π)的图像;(iii)把得到的图像上各点纵坐标缩短到原来的21倍(纵坐标不变),得到函数y =21sin(2x +6π)的图像;(iv)把得到的图像向上平移45个单位长度,得到函数y =21sin(2x +6π)+45的图像;综上得到函数y =21cos 2x +23sin x cos x +1的图像. ——12分 (18)本小题主要考查直线与直线、直线与平面的关系,逻辑推理能力,满分12分. (Ⅰ)证明:连结A 1C 1、AC 、AC 和BD 交于O ,连结C 1O . ∵ 四边形ABCD 是菱形, ∴ AC ⊥BD ,BD =CD .又∵∠BCC 1=∠DCC 1,C 1C= C 1C , ∴ △C 1BC ≌△C 1DC ∴ C 1B =C 1D , ∵ DO =OB∴ C 1O ⊥BD , ——2分 但AC ⊥BD ,AC ∩C 1O =O , ∴ BD ⊥平面AC 1, 又C 1C ⊂平面AC 1∴ C 1C ⊥BD . ——4分 (Ⅱ)解:由(Ⅰ)知AC ⊥BD ,C 1O ⊥BD , ∴ ∠C 1OC 是二面角α—BD —β的平面角.在△C 1BC 中,BC =2,C 1C=23,∠BCC 1=60º, ∴ C 1B 2=22+(23)2-2×2×23×cos60º=413——6分∵ ∠OCB=30º, ∴ OB=21BC=1. ∴C 1O 2= C 1B 2-OB 2=491413=-, ∴ C 1O =23即C 1O = C 1C . 作 C 1H ⊥OC ,垂足为H . ∴ 点H 是OC 的中点,且OH =23, OHGC 1CDA BD 1B 1A 1所以cos ∠C 1OC=O C OH 1=33. ——8分 (Ⅲ)当1CC CD=1时,能使A 1C ⊥平面C 1BD 证明一: ∵1CC CD=1, ∴ BC =CD = C 1C ,又∠BCD=∠C 1CB=∠C 1CD , 由此可推得BD = C 1B = C 1D .∴ 三棱锥C -C 1BD 是正三棱锥. ——10分 设A 1C 与C 1O 相交于G .∵ A 1 C 1∥AC ,且A 1 C 1∶OC =2∶1, ∴ C 1G ∶GO =2∶1.又C 1O 是正三角形C 1BD 的BD 边上的高和中线, ∴ 点G 是正三角形C 1BD 的中心, ∴ CG ⊥平面C 1BD .即A 1C ⊥平面C 1BD . ——12分 证明二:由(Ⅰ)知,BD ⊥平面AC 1,∵ A 1 C 平面AC 1,∴BD ⊥A 1 C . ——10分 当1CC CD=1时,平行六面体的六个面是全等的菱形, 同BD ⊥A 1 C 的证法可得BC 1⊥A 1C , 又BD ⊥BC 1=B ,∴ A 1C ⊥平面C 1BD . ——12分 (19)本小题主要考查不等式的解法、函数的单调性等基本知识,分类讨论的数学思想方法和运算、推理能力.满分12分.解:(Ⅰ)不等式f (x ) ≤1即OHGC 1CDA BD 1B 1A 112+x ≤1+ax ,由此得1≤1+ax ,即ax ≥0,其中常数a >0. 所以,原不等式等价于即⎩⎨⎧≥+-≥.02)1(,02a x a x ——3分 所以,当0<a <1时,所给不等式的解集为{x |0212aax -≤≤}; 当a ≥1时,所给不等式的解集为{x |x ≥0}. ——6分 (Ⅱ)在区间[0,+∞]上任取x 1、x 2,使得x 1<x 2.f (x 1)-f (x 2)=121+x -122+x -a (x 1-x 2)=1122212221+++-x x x x -a (x 1-x 2)=(x 1-x 2)(11222121++++x x x x -a ). ——8分(ⅰ)当a ≥1时 ∵11222121++++x x x x <1∴11222121++++x x x x -a <0,又x 1-x 2<0, ∴ f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2).所以,当a ≥1时,函数f (x )在区间),0[+∞上是单调递减函数. ——10分 (ii)当0<a <1时,在区间),0[+∞上存在两点x 1=0,x 2=212aa-,满足f (x 1)=1,f (x 2)=1,即f (x 1)=f (x 2),所以函数f (x )在区间),0[+∞上不是单调函数.综上,当且仅当a ≤1时,函数f (x )在区间),0[+∞上是单调函数. ——12分 (20)本小题主要考查等比数列的概念和基本性质,推理和运算能力,满分12分. 解:(Ⅰ)因为{c n +1-pc n }是等比数列,故有(c n +1-pc n )2=( c n +2-pc n+1)(c n -pc n -1), 将c n =2n +3n 代入上式,得 [2n +1+3n +1-p (2n +3n )]2=[2n +2+3n +2-p (2n +1+3n +1)]·[2n +3n -p (2n -1+3n -1)], ——3分即[(2-p )2n +(3-p )3n ]2=[(2-p )2n+1+(3-p )3n+1][ (2-p )2n -1+(3-p )3n -1],整理得61(2-p )(3-p )·2n ·3n =0, 解得p =2或p =3. ——6分 (Ⅱ)设{a n }、{b n }的公比分别为p 、q ,p ≠q ,c n =a n +b n .为证{c n }不是等比数列只需证22c ≠c 1·c 3. 事实上,22c =(a 1p +b 1q)2=21a p 2+21b q 2+2a 1b 1pq , c 1·c 3=(a 1+b 1)(a 1 p 2+b 1q 2)= 21a p 2+21b q 2+a 1b 1(p 2+q 2).由于p ≠q ,p 2+q 2>2pq ,又a 1、b 1不为零,因此≠22c c 1·c 3,故{c n }不是等比数列. ——12分 (21)本小题主要考查由函数图像建立函数关系式和求函数最大值的问题,考查运用所学知识解决实际问题的能力,满分12分.解:(Ⅰ)由图一可得市场售价与时间的函数关系为 f (t )=⎩⎨⎧≤<-≤≤-;300200,3002,2000300t t t t ,——2分由图二可得种植成本与时间的函数关系为 g (t )=2001(t -150)2+100,0≤t ≤300. ——4分 (Ⅱ)设t 时刻的纯收益为h (t ),则由题意得 h (t )=f (t )-g (t )即h (t )=⎪⎪⎩⎪⎪⎨⎧≤<-+-≤≤++-3002002102527200120002175********t t t t t t ,, ——6分当0≤t ≤200时,配方整理得h (t )=-2001(t -50)2+100, 所以,当t =50时,h (t )取得区间[0,200]上的最大值100; 当200<t ≤300时,配方整理得 h (t )=-2001(t -350)2+100 所以,当t =300时,h (t )取得区间[200,300]上的最大值87.5. ——10分 综上,由100>87.5可知,h (t )在区间[0,300]上可以取得最大值100,此时t =50,即从二月一日开始的第50天时,上市的西红柿纯收益最大. ——12分(22)本小题主要考查坐标法、定比分点坐标公式、双曲线的概念和性质,推理、运算能力和综合应用数学知识解决问题的能力,满分14分.解:如图,以AB 的垂直平分线为y 轴,直线AB 为x 轴,建立直角坐标系xoy ,则CD ⊥y 轴.因为双曲线经过点C 、D ,且以A 、B 为焦点,由双曲线的对称性知C 、D 关于x 轴对称. ——2分依题意,记A (-c ,0),C (h c ,h ),E (x 0, y 0),其中c=21|AB |为双曲线的半焦距,h 是梯形的高.由定比分点坐标公式得x 0=λλ++-12cc = )1(2)2(+-λλc , λλ+=10h y . 设双曲线的方程为12222=-by a x ,则离心率a c e =.由点C 、E 在双曲线上,将点C 、E 的坐标和ace =代入双曲线方程得 14222=-bh e , ① 1112422222=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+-bh e λλλλ. ② ——7分由①式得 14222-=e bh , ③ 将③式代入②式,整理得()λλ214442+=-e , 故 2312+-=e λ. ——10分 由题设4332≤≤λ得,43231322≤+-≤e . 解得107≤≤e . 所以双曲线的离心率的取值范围为]107[,. ——14分。

2000高考数学全国卷及答案理-推荐下载

2000高考数学全国卷及答案理-推荐下载

(3) 一个长方体共一顶点的三个面的面积分别是 2 , 3 , 6 ,这个长方体对角线
(A) 2 3
(B) 3 2
(4) 已知 sin sin ,那么下列命题成立的是
(A) 若 、 是第一象限角,则 cos cos
(B) 若 、 是第二象限角,则 tg tg
(C) 若 、 是第三象限角,则 cos cos
(C) Q P R
(B) 2sin 4
(D) 2sin 1
(C)
(C) y
1 2
3

3 x
2
税率
5%
10%
15%

(D) P R Q ()
(D)
1 4 2
(D) y
3
()
()
()
()
3 x
(11) 过抛物线 y ax2 a 0的焦点 F 作一直线交抛物线于 P、Q 两点,若线段 PF
王新敞 奎屯
(1) 设集合 A 和 B 都是自然数集合 N,映射 f : A B 把集合 A 中的元素 n 映射到集合
B 中的元素 2n n ,则在映射 f 下,象 20 的原象是
数是
的长是
(A) 2
(2)
在复平面内,把复数 3
(A) 2 3
(B) 3
(B) 2 3i
(C) 4
3i 对应的向量按顺时针方向旋转 ,所得向量对应的复
2000 年普通高等学校招生全国统一考试
数学(理工农医类)
本试卷分第 I 卷(选择题)和第 II 卷(非选择题)两部分.第 I 卷 1 至 2 页.第 II 卷 3 至 9 页.共 150 分.考试时间 120 分钟.

2000年普通高等学校招生全国统一考试数学试卷上海卷理

2000年普通高等学校招生全国统一考试数学试卷上海卷理

2000年普通高等学校招生全国统一考试(上海卷)数学(理工农医类)第Ⅰ卷一、填空题(本大题满分为48分)本大题共有12题,只要求直接填写结果,每个空格填对得4分,否则一律得零分。

(1)已知向量OA (-1,2)、OB =(3,m),若OA ┴OB ,则m= 。

(2)函数,x x y --=312log 2的定义域为 。

(3)圆锥曲线⎩⎨⎧=+=θθtg y x 31sec 4的焦点坐标是 。

(4)计算:nn n )2(lim += 。

(5)已知b x f x+=2)(的反函数为)(),(11x fy x f --=若的图象经过点)2,5(Q ,则b = 。

(6)根据上海市人大十一届三次会议上的市政府工作报告,1999年上海市完成GDP(GDP 是指国内生产总值)4035亿元,2000年上海市GDP 预期增长9%,市委、市府提出本市常住人口每年的自然增长率将控制在0.08%,若GDP 与人口均按这样的速度增长,则要使本市年人均GDP 达到或超过1999年的2倍,至少需 年。

(按:1999年本市常住人口总数约1300)(7)命题A :底面为正三角形,且顶点在底面的射影为底面中心的三棱锥是正三棱锥, 命题A 的等价题B 可以是:底面为正三角形,且 的三棱锥是正三棱锥 (8)设函数)(x f y =是最小正周期为2的偶函数,它在区间[0,1]上的图象为如图所示的线段AB ,则在区间[1,2]上)(x f = 。

(9)在二项式11)1(-x 的展开式中,系数最小的项的系数为 ,(结果用数值表示)(10)有红、黄、蓝三种颜色的旗帜各3面,在每种颜色的3面旗帜上分别标上号码1、2和3,现任取出3面,它们的颜色与号码均不相同的概率是 。

(11)在极坐标系中,若过点(3,0)且与极轴垂直的直线交曲线B A ,cos 4于θρ=两点,则=AB 。

(12)在等差数列{}n a 中,若=n a ,则有等式),19(192121N n n a a a a a a n n ∈+++=+++ 成立,类比上述性质,相就夺:在等此数列{}n b 中,若1=b ,则有等式 成立。

2000年全国普通高等学校招生统一考试(上海卷)

2000年全国普通高等学校招生统一考试(上海卷)

2000年年全国普通高等学校招生统一考试上海 物理试卷考生注意:1.全卷共8页,24题,在120分钟内完成。

2.第21、22、23、24题要求写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案,而未写出主要演算过程的,不能得分,有数字计算的问题,答案中必须明确写出数值和单位。

一、(50分)选择题,本大题共10小题,每小题5分,每小题给出的四个答案中,至少有一个是正确的,把正确的答案全选出来,并将正确答案前面的字母填写在题后的方括号内,每一小题全选对的得5分;选对但不全的,得部分分;有选错或不答的,得0分,填写在方括号外的字母,不作为选出的答案。

1.下列关于光的说法中正确的是(A )在真空中红光波长比紫光波长短。

(B )红光光子能量比紫光光子能量小。

(C )红光和紫光相遇时能产生干涉现象(D )红光照射某金属时有电子向外发射,紫光照射该金属时一定也有电子向外发射。

[ ]2.关于α、β、γ三种射线,下列说法中正确的是(A )α射线是原子核自发放射出的氦核,它的穿透能力最强。

(B )β射线是原子核外电子电离形成的电子流,它具有中等的穿透能力。

(C )γ射线一般们随着α或β射线产生,它的穿透能力量强。

(D )γ射线是电磁波,它的穿透能力最弱。

[ ]3.一小球用轻绳悬挂在某固定点,现将轻绳水平拉直,然后由静止开始释放小球,考虑小球由静止开始运动到最低位置的过程。

(A )小球在水平方向的速度逐渐增大。

(B )小球在竖直方向的速度逐渐增大。

(C )到达最低位置时小球线速度最大。

(D )到达最低位置时绳中的位力等于小球重力。

4.如图所示,两根平行放置的长直导线a 和b 载有大小相同方向相反的电流,a 受到的磁场力大小为1F ,当加入一与导线所在平面垂直的匀强磁场后,a 受到的磁场力大小变为2F ,则此时b 受到的磁场力大小变为(A )2F , (B )21F F -, (C )21F F + (D )212F F -[ ]5.行驶中的汽车制动后滑行一段距离,最后停下;流星在夜空中坠落并发出明亮的光焰;降落伞在空中匀速下降;条形磁铁在下落过程中穿过闭合线圈,线圈中产生电流,上述不同现象中所包含的相同的物理过程是(A )物体克服阻力做功。

2000年全国高考理科数学试题及其解析范文

2000年全国高考理科数学试题及其解析范文

2000年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的1. 设集合A 和B 都是自然数集合N ,映射B A f →:把集合A 中的元素n 映射到 集合B 中的元素n n +2,则在映射f 下,象20的原象是 ( ) A .2B .3C . 4D . 52. 在复平面内,把复数i 33-对应的向量按顺时针方向旋转3π,所得向量对应的 复数是 ( ) A .23B .i 32-C .i 33-D .3i 3+3. 一个长方体共一顶点的三个面的面积分别是2、3、6,这个长方体对角 线的长是 ( ) A .23B .32C . 6D .64.已知βαsin sin >,那么下列命题成立的是 ( )A .若α、β是第一象限角,则βαcos cos >B .若α、β是第二象限角,则βαtg tg >C .若α、β是第三象限角,则βαcos cos >D .若α、β是第四象限角,则βαtg tg >5.函数x x y cos -=的部分图像是 ( )6.《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额.此项税款按下表分段累进计算:某人一月份应交纳此项税款26.78元,则他的当月工资、薪金所得介于 ( ) A .800~900元B .900~1200元C .1200~1500元D .1500~2800元7.若1>>b a ,P=b a lg lg ⋅,Q=()b a lg lg 21+,R=⎪⎭⎫ ⎝⎛+2lg b a ,则 ( )A .R <P <QB .P <Q <RC . Q <P <RD . P <R <Q 8.以极坐标系中的点()1 , 1为圆心,1为半径的圆的方程是( )A .⎪⎭⎫ ⎝⎛-=4cos 2πθρB .⎪⎭⎫ ⎝⎛-=4sin 2πθρC . ()1cos 2-=θρD . ()1sin 2-=θρ9.一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是 ( )A .ππ221+ B .ππ441+ C .ππ21+ D .ππ241+ 10.过原点的直线与圆03422=+++x y x 相切,若切点在第三象限,则该直线的方程是( )A .x y 3=B .x y 3-=C . x y 33=D . x y 33-= 11.过抛物线()02>=a ax y 的焦点F 作一直线交抛物线于P 、Q 两点,若线段PF 与 FQ 的长分别是p 、q ,则qp 11+等于 ( )A .a 2B .a 21C . a 4D .a412.如图,OA 是圆锥底面中心O 到母线的垂线,OA 绕轴旋转一周所得曲面将圆锥分成体积相等的两部分,则母线与轴的夹角为 ( ) A .321arccosB .21arccosC . 21arccos D . 421arccos第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线.13. 乒乓球队的10名队员中有3名主力队员,派5名参加比赛.3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有_____种(用数字作答)14. 椭圆14922=+y x 的焦点为1F 、2F ,点P 为其上的动点,当21PF F ∠为钝角时,点P横坐标的取值范围是________15. 设{}n a 是首项为1的正项数列,且()011221=+-+++n n n n a a na a n (n =1,2,3,…),则它的通项公式是n a =_______16. 如图,E 、F 分别为正方体的面11A ADD 、面11B BCC 的中心,则四边形E BFD 1在该正方体的面上的射影可能是_______.(要求:把可能的图的序号都.填上)三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤. 17. (本小题满分12分)已知函数1cos sin 23cos 212++=x x x y ,R ∈x . (I) 当函数y 取得最大值时,求自变量x 的集合;(II) 该函数的图像可由()R ∈=x x y sin 的图像经过怎样的平移和伸缩变换得到?18. (本小题满分12分)如图,已知平行六面体ABCD-1111D C B A 的底面ABCD 是菱形,且CB C 1∠=CD C 1∠=BCD ∠= 60.(I) 证明:C C 1⊥BD ; (II) 假定CD=2,1CC =23,记面BD C 1为α,面CBD 为β,求二面角 βα--BD 的平面角的余弦值; (III) 当1CC CD的值为多少时,能使⊥C A 1平面BD C 1?请给出证明.19. (本小题满分12分)设函数()ax x x f -+=12,其中0>a . (I) 解不等式()1≤x f ;(II) 求a 的取值范围,使函数()x f 在区间[)+∞,0上是单调函数.20. (本小题满分12分)(I) 已知数列{}n c ,其中n n n c 32+=,且数列{}n n pc c -+1为等比数列,求常数p ;(II) 设{}n a 、{}n b 是公比不相等的两个等比数列,n n n b a c +=,证明数列{}n c 不是等比数列.21. (本小题满分12分)某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示.(Ⅰ) 写出图一表示的市场售价与时间的函数关系式P=()t f ;写出图二表示的种植成本与时间的函数关系式Q=()t g ;(Ⅱ) 认定市场售价减去种植成本为纯收益,问何时上市的西红柿收益最大?(注:市场售价和种植成本的单位:元/210kg ,时间单位:天)22. (本小题满分14分)如图,已知梯形ABCD 中CD AB 2=,点E 分有向线段AC 所成的比为λ,双曲线过C 、D 、E 三点,且以A 、B 为焦点.当4332≤≤λ时,求双曲线离心率e 的取值范围.2000年普通高等学校招生全国统一考试数学试题(理工农医类)参考解答及评分标准一.选择题:本题考查基本知识和基本运算,每小题5分,满分60分.(1)C (2)B (3)D (4)D (5)D (6)C (7)B (8)C (9)A (10)C (11)C (12)D 二.填空题:本题考查基本知识和基本运算,每小题4分,满分16分.(13)252 (14)-5353<<x (15)n1(16)②③ 三.解答题(17)本小题主要考查三角函数的图像和性质,考查利用三角公式进行恒等变形的技能以及运算能力.满分12分.解:(Ⅰ) y=21cos 2x +23sinxcosx +1=41(2cos 2x -1)+41+43(2sinxcosx)+1=41cos2x +43sin2x +45=21(cos2x·sin 6π+sin2x·cos 6π)+45=21sin(2x +6π)+45 ——6分 y 取得最大值必须且只需2x +6π=2π+2k π,k ∈Z , 即 x=6π+k π,k ∈Z .所以当函数y 取得最大值时,自变量x 的集合为 {x|x=6π+kπ,k ∈Z } ——8分 (Ⅱ)将函数y=sinx 依次进行如下变换: (i)把函数y=sinx 的图像向左平移6π,得到函数y=sin(x +6π)的图像;(ii)把得到的图像上各点横坐标缩短到原来的21倍(纵坐标不变),得到函数y=sin(2x +6π)的图像;(iii)把得到的图像上各点纵坐标缩短到原来的21倍(纵坐标不变),得到函数y=21sin(2x +6π)的图像; (iv)把得到的图像向上平移45个单位长度,得到函数y=21sin(2x +6π)+45的图像;综上得到函数y=21cos 2x +23sinxcosx +1的图像. ——12分(18)本小题主要考查直线与直线、直线与平面的关系,逻辑推理能力,满分12分. (Ⅰ)证明:连结A 1C 1、AC 、AC 和BD 交于O ,连结C 1O .∵ 四边形ABCD 是菱形, ∴ AC ⊥BD ,BD=CD .又∵∠BCC 1=∠DCC 1,C 1C= C 1C , ∴ △C 1BC ≌△C 1DC ∴ C 1B=C 1D , ∵ DO=OB∴ C 1O ⊥BD , ——2分 但AC ⊥BD ,AC∩C 1O=O , ∴ BD ⊥平面AC 1, 又C 1C ⊂平面AC 1∴ C 1C ⊥BD . ——4分 (Ⅱ)解:由(Ⅰ)知AC ⊥BD ,C 1O ⊥BD , ∴ ∠C 1OC 是二面角α—BD —β的平面角.在△C 1BC 中,BC=2,C 1C=23,∠BCC 1=60º, ∴ C 1B 2=22+(23)2-2×2×23×cos60º=413——6分∵ ∠OCB=30º, ∴ OB=21BC=1. OHGC 1CDA BD 1B 1A 1∴C 1O 2= C 1B 2-OB 2=491413=-, ∴ C 1O=23即C 1O= C 1C . 作 C 1H ⊥OC ,垂足为H . ∴ 点H 是OC 的中点,且OH=23, 所以cos ∠C 1OC=O C OH 1=33. ——8分 (Ⅲ)当1CC CD=1时,能使A 1C ⊥平面C 1BD 证明一: ∵1CC CD=1, ∴ BC=CD= C 1C ,又∠BCD=∠C 1CB=∠C 1CD , 由此可推得BD= C 1B = C 1D .∴ 三棱锥C -C 1BD 是正三棱锥. ——10分 设A 1C 与C 1O 相交于G .∵ A 1 C 1∥AC ,且A 1 C 1∶OC=2∶1, ∴ C 1G ∶GO=2∶1.又C 1O 是正三角形C 1BD 的BD 边上的高和中线, ∴ 点G 是正三角形C 1BD 的中心, ∴ CG ⊥平面C 1BD .即A 1C ⊥平面C 1BD . ——12分 证明二:由(Ⅰ)知,BD ⊥平面AC 1,∵ A 1 C ⊂平面AC 1,∴BD ⊥A 1 C . ——10分 当1CC CD=1时,平行六面体的六个面是全等的菱形, 同BD ⊥A 1 C 的证法可得BC 1⊥A 1C ,OHGC 1CDA BD 1B 1A 1又BD ⊥BC 1=B ,∴ A 1C ⊥平面C 1BD . ——12分 (19)本小题主要考查不等式的解法、函数的单调性等基本知识,分类讨论的数学思想方法和运算、推理能力.满分12分.解:(Ⅰ)不等式f(x) ≤1即12+x ≤1+ax ,由此得1≤1+ax ,即ax ≥0,其中常数a >0. 所以,原不等式等价于⎩⎨⎧≥+≤+.0,)1(122x ax x 即⎩⎨⎧≥+-≥.02)1(,02a x a x ——3分 所以,当0<a <1时,所给不等式的解集为{x|0212aax -≤≤}; 当a ≥1时,所给不等式的解集为{x|x ≥0}. ——6分 (Ⅱ)在区间[0,+∞]上任取x 1、x 2,使得x 1<x 2. f(x 1)-f(x 2)=121+x -122+x -a(x 1-x 2) =1122212221+++-x x x x -a(x 1-x 2)=(x 1-x 2)(11222121++++x x x x -a). ——8分(ⅰ)当a ≥1时 ∵11222121++++x x x x <1∴11222121++++x x x x -a<0,又x 1-x 2<0, ∴ f(x 1)-f(x 2)>0, 即f(x 1)>f(x 2).所以,当a ≥1时,函数f(x)在区间),0[+∞上是单调递减函数. ——10分 (ii)当0<a<1时,在区间),0[+∞上存在两点x 1=0,x 2=212aa-,满足f(x 1)=1,f(x 2)=1,即f(x 1)=f(x 2),所以函数f(x)在区间),0[+∞上不是单调函数.综上,当且仅当a ≥1时,函数f(x)在区间),0[+∞上是单调函数. ——12分 (20)本小题主要考查等比数列的概念和基本性质,推理和运算能力,满分12分. 解:(Ⅰ)因为{c n+1-pc n }是等比数列,故有 (c n+1-pc n )2=( c n+2-pc n+1)(c n -pc n -1), 将c n =2n +3n 代入上式,得 [2n +1+3n +1-p(2n +3n )]2=[2n +2+3n +2-p(2n+1+3n+1)]·[2n +3n -p(2n -1+3n -1)], ——3分 即[(2-p)2n +(3-p)3n ]2=[(2-p)2n+1+(3-p)3n+1][ (2-p)2n -1+(3-p)3n -1], 整理得61(2-p)(3-p)·2n ·3n =0, 解得p=2或p=3. ——6分 (Ⅱ)设{a n }、{b n }的公比分别为p 、q ,p ≠q ,c n =a n +b n . 为证{c n }不是等比数列只需证22c ≠c 1·c 3.事实上,22c =(a 1p +b 1q)2=21a p 2+21b q 2+2a 1b 1pq , c 1·c 3=(a 1+b 1)(a 1 p 2+b 1q 2)= 21a p 2+21b q 2+a 1b 1(p 2+q 2). 由于p ≠q ,p 2+q 2>2pq ,又a 1、b 1不为零,因此≠22c c 1·c 3,故{c n }不是等比数列. ——12分 (21)本小题主要考查由函数图像建立函数关系式和求函数最大值的问题,考查运用所学知识解决实际问题的能力,满分12分.解:(Ⅰ)由图一可得市场售价与时间的函数关系为f(t)=⎩⎨⎧≤<-≤≤-;300200,3002,2000300t t t t , ——2分由图二可得种植成本与时间的函数关系为g(t)=2001(t -150)2+100,0≤t ≤300. ——4分 (Ⅱ)设t 时刻的纯收益为h(t),则由题意得h(t)=f(t)-g(t)即h(t)=⎪⎪⎩⎪⎪⎨⎧≤<-+-≤≤++-300200210252720012000217521200122t t t t t t ,, ——6分 当0≤t ≤200时,配方整理得h(t)=-2001(t -50)2+100, 所以,当t=50时,h(t)取得区间[0,200]上的最大值100;当200<t ≤300时,配方整理得h(t)=-2001(t -350)2+100 所以,当t=300时,h(t)取得区间[200,300]上的最大值87.5. ——10分 综上,由100>87.5可知,h(t)在区间[0,300]上可以取得最大值100,此时t=50,即从二月一日开始的第50天时,上市的西红柿纯收益最大. ——12分(22)本小题主要考查坐标法、定比分点坐标公式、双曲线的概念和性质,推理、运算能力和综合应用数学知识解决问题的能力,满分14分.解:如图,以AB 的垂直平分线为y 轴,直线AB 为x 轴,建立直角坐标系xoy ,则CD ⊥y 轴.因为双曲线经过点C 、D ,且以A 、B 为焦点,由双曲线的对称性知C 、D 关于x 轴对称. ——2分依题意,记A(-c ,0),C(h c ,h),E(x 0, y 0),其中c=21|AB|为双曲线的半焦距,h 是梯形的高.由定比分点坐标公式得 x 0=λλ++-12c c = )1(2)2(+-λλc , λλ+=10h y .设双曲线的方程为12222=-b y a x ,则离心率ac e =. 由点C 、E 在双曲线上,将点C 、E 的坐标和ac e =代入双曲线方程得 14222=-b h e , ①1112422222=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+-b he λλλλ. ②——7分 由①式得 14222-=e b h , ③将③式代入②式,整理得()λλ214442+=-e ,故 2312+-=e λ.——10分 由题设4332≤≤λ得,43231322≤+-≤e . 解得107≤≤e . 所以双曲线的离心率的取值范围为]107[,. ——14分。

2000年高考数学(理科)真题及答案[全国卷I]

2000年高考数学(理科)真题及答案[全国卷I]

2000年普通高等学校招生全国统一考试数 学(理工农医类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。

第I 卷1至2页。

第II 卷3至9页。

共150分。

考试时间120分钟。

第I 卷(选择题 60分)注意事项:1、答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。

2、每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。

3、考试结束,监考人将本试卷和答题卡一并收回。

选择题:本大题共12小题;第每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)设集合A 和B 都是自然数集合N ,映射f:A →B 把集合A 中的元素n映射到集合B 中的元素2n +n ,则在映射f 下,象20的原象是(A)2 (B)3 (C)4 (D)5i 3对应的向量按顺时针方向旋转3π,i 33+2,3, 6,(4)已知sin α>sin β,那么下列命题成立的是(A)若α、β是第一象限角,则cos α>cos β(B)若α、β是第二象限角,则tg α>tg β(C)若α、β是第三象限角,则cos α>cos β(D)若α、β是第四象限角,则tg α>tg β(5)函数y=-x cos x 的部分图象是(6)《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过 800元的部分不必纳税,超过800元的部分为全月应纳税所得额。

此项税 款按下表分段累进计算:<div align="center"> 全月应纳税所得额 税率不超过500元的部分 5%超过500元至2000元的部分 10%超过2000元至5000元的部分 15%… …</div>某人一月份应交纳此项税款26.78元,则他的当月工资、薪金所得介于800~900元 (B)900~1200元(C)1200~1500元 (D)1500~2800元(7)若a >b >1,)2lg(),lg (lg 21,lg lg ba R Q P +=+=⋅=βαβα,则(A)R<P<Q (B)P<Q< R(C)Q< P<R (D)P< R<Q(8)以极坐标系中的点(1,1)为圆心,1为半径的圆的方程是(A))4cos(2πθ-=p (B))4sin(2πθ-=p (C))1sin(2-=θp (D))1sin(2-=θp(9)一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比 是(A) (B) (C) (D)(10)过原点的直线与圆相切,若切点在第三象限,则该直 线的方程是(A) (B) (C) (D)(11)过抛物线的焦点F 作一条直线交抛物线于P 、Q 两点,若线 段PF 与FQ 的长分别是p 、q ,则等于(A)2a(B)(C)4a(D)(12)如图,OA是圆锥底面中心O到母线的垂线,OA绕轴旋转一周所得曲面将圆锥分成体积相等的两部分,则母线与轴的夹角为2000年普通高等学校招生全国统一考试数学(理工农医类)第II卷(非选择题90分)注意事项:第II卷共7页,用钢笔或圆珠笔直接答在试题卷中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2000年上海高考数学理科卷2000年全国普通高等学校招生统一考试上海 数学试卷(理工农医类)考生注意:本试卷共有22道试题,满分150分一、填空题(本大题满分为48分)本大题共有12题,只要求直接填写结果,每个空格填对得4分,否则一律得零分。

1.已知向量OA (-1,2)、OB =(3,m),若OA ┴OB ,则m= 。

2.函数,x x y --=312log2的定义域为 。

3.圆锥曲线⎩⎨⎧=+=θθtg y x 31sec 4的焦点坐标是 。

4.计算:lim()2n n n n →∞+= 。

5.已知b x f x +=2)(的反函数为)(),(11x f y x f --=若的图象经过点)2,5(Q ,则b = 。

6.根据上海市人大十一届三次会议上的市政府工作报告,1999年上海市完成GDP(GDP 是指国内生产总值)4035亿元,2000年上海市GDP 预期增长9%,市委、市府提出本市常住人口每年的自然增长率将控制在0.08%,若GDP 与人口均按这样的速度增长,则要使本市年人均GDP 达到或超过1999年的2倍,至少需 年。

(按:1999年本市常住人口总数约1300)7.命题A :底面为正三角形,且顶点在底面的射影为底面中心的三棱锥是正三棱锥,命题A 的等价题B 可以是:底面为正三角形,且 的三棱锥是正三棱锥。

8.设函数)(x f y =是最小正周期为2的偶函数,它在区间[0,1]上的图象为如图所示的线段AB ,则在区间[1,2]上)(x f = 。

9.在二项式11)1(-x 的展开式中,系数最小的项的系数为 ,(结果用数值表示)10.有红、黄、蓝三种颜色的旗帜各3面,在每种颜色的3面旗帜上分别标上号码1、2和3,现任取出3面,它们的颜色与号码均不相同的概率是 。

11.在极坐标系中,若过点(3,0)且与极轴垂直的直线交曲线B A ,cos 4于θρ=两点,则=AB 。

12.在等差数列{}n a 中,若0=z a ,则有等式),19(192121N n n a a a a a a n n ∈+++=+++πΛΛ成立,类比上述性质,相就夺:在等此数列{}n b 中,若10=b ,则有等式成立。

二、选择题(本大题满分16分)本大题共有4题,每题都给出代号为A 、B 、C 、D 的四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,选对得4分,不选、选错或者选出的代号超过一个(不论是否都写在圆括号内),一律得零分。

13.复数的三角形式是是虚数单位))(5sin 5(cos 3i i z ππ--= ).56sin 56(cos 3)( ),54sin 54(cos 3)().5sin 5(cos 3)( )],5sin()5[cos(3)(ππππππππi D i C i B i A -++-+-[答]( )14.设有不同的直线a 、b 和不同的平面a 、β、γ,给出下列三个命题:(1)若a a //,a b //,则b a //。

(2)若a a //,β//a ,则β//a 。

(3)若γΛa ,γβΛ,则β//a 。

其中正确的个数是(A )0. (B )1. (C )2. (D )3.[答]( )15.若集合{}{}T s R x x y y T R x y y S x I 则.,1| ..3|2∈-==∈==是:(D) (C) T. (B) S. )(有限集φA .[答]( )16.下列命题中正确的命题是(A )若点)0)(2,(≠a a a P 为角a 终边上一点,则552sin =a 。

(B )同时满足23cos ,21sin ==a a 的角a 有且只有一个。

(C )当{}1πa 时,)(arcsin a tg 的值恒正。

(D )三角方程3)3(=+πx tg 的解集为{}Z k k x x ∈=,|π。

[答]( )三、解答题(本大题满分86分)本大题共有6题,解答下列各题必须写出必要的步骤。

17.(本题满分12分)已知椭圆C 的焦点分别为)0,22()0,22(21F F 和-,长轴长为6,设直2+=x y 交椭圆C 于A 、B 两点,求线段AB 的中点坐标。

[解]18.(本题满分12分)如图所示四面体ABCD 中,AB 、BC 、BD两两互相垂直,且AB=BC=2,E 是AC 中点,异面直线AD 与BE 所成的角的大小为1010arccos ,求四面体ABCD 的体积。

[解]19.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分。

已知函数],1[,2)(2+∞∈++=x x a x x x f 。

(1)当21=a 时,求函数)(x f 的最小值:(2)若对任意0)(],,1[φx f x +∞∈恒成立,试求实数a 的取值范围。

[解](1)[解](2)20.(本题满分14分)本题共有2个小题,第1小题满分4分,第2小题满分10分。

根据指令),(θr )180180,0(οοπ≤-≥θr ,机器人在平面上能完成下列动作:先原地旋转角度θ(θ为正时,按逆时针方向旋转θ,θ为负时,按顺时针方向旋转-θ),再朝其面对的方向沿直线行走距离r 。

(1)现机器人在直角坐标系的坐标原点,且面对x 轴正方向,试给机器人下一个指令,使其移动到点(4,4)。

(2)机器人在完成该指令后,发现在点(17,0)处有一小球正向坐标原点作匀速直线滚动,已知小球滚动的速度为机器人直线行走速度的2倍,若忽略机器人原地旋转所需的时间,问机器人最快可在何处截住小球?并给出机器人截住小球所需的指令(结果精确到小数点后两位)。

[解](1)[解](2)21.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分。

在XOY 平面上有一点列,),,(,),,(),,(222111ΛΛnn n b a P b a P b a P 对每个自然数n ,点P ,位于函数x a y ⎪⎭⎫ ⎝⎛⋅=102000(100<<a )的图象上,且点n P ,点)0.1()0,(+n n 与点构成一个以n P 为顶点的等腰三角形。

(1)求点n P 的纵坐标nb 的表达式。

(2)若对每个自然数n ,以n b ,21,++n n b b 为边长能构成一个三角形,求a 取值范围。

(3)设().21N n b b b B n n ∈=Λ,若a 取(2)中确定的范围内的最小整数,求数列{}n B 的最大项的项数。

[解](1)[解](2)[解](3)22.(本小题满分18分)本题共有3个小题,第1小题满分5分,第2小题满分5分,第3小题满分8分。

已知复数y x y x i y x w yi x z m mi z '''+'=+=-=,,,,),0(10其中和φ均为实数,i 为虚数单位,且对于任意复数||2||,,0z w z zw z =⋅=有。

(1)试求m 的值,并分别写出x '和y '用x 、y 表示的关系式; (2)将(x 、y )作为点P 的坐标,(x '、y ')作为点Q 的坐标,上述关系可以看作是坐标平面上点的一个变换:它将平面上的点P 变到这一平面上的点Q ,当点P 在直线1+=x y 上移动时,试求点P 经该变换后得到的点Q 的轨迹方程;(3)是否存在这样的直线:它上面的任一点经上述变换后得到的点仍在该直线上?若存在,试求出所有这些直线;若不存在,则说明理由。

[解](1)[解](2)[解](3)2000年全国普通高等学校招生统一考试上海数学试卷(理工农医类)答案要点及评分标准说明1.本解答列出试题的一种或几种解法,如果考生的解法与所列解法不同,可参照解答中评分标准的精神进行评分。

2.评阅试卷,应坚持每题评阅以底,不要因为考生的解称中出现错误而中断对该题的评阅,当考生的解答在某一步出现错误,影响了后继部分,但该步以后的解答未改变这一题的内容和难度时,可视影响程度决定后面部分的给分,这时原则上不应超过后面部分应给分数之半,如果有较严重的概念性错误,就不给分。

3.第17至第22题中右端所注的分数,表示考生正确做到这一步应得的该题的累加分数,给分或扣分均以1分为单位。

解答一、(第1题至第12题)每一题正确的给4分,否则一律得零分。

1.4. 2.)3,21( 3.(-4,0),(6,0)。

4.2-e 。

5.1. 6.9. 7.侧棱相等/侧棱与底面所成角相等/…… 8.X . 9.-462。

10.141 11.32 12.),17(172121N n n b b b b b b n n ∈=-πΛΛ二、(第13题至第16题)第一题正确的给4分。

代号C A A D三、(第17题至第22题) 17.[解]设椭圆C 的方程为)(2 12222分Λ=+by a x由题意1,22,3===b c a 于是)(4 1922分的方程为椭圆Λ=+∴y x C⎪⎩⎪⎨⎧=++=++=,0273610192222x x y x x y 得由因为该二次方程的判别式△>0,所以直线与椭圆有两个不同交点, …(8分)设)(12 )51,59(,518),,(),,(212211分的中点坐标为故线段则设Λ--=+AB x xy x B y x A18.[解法一]如图建立空间直角坐标系 …(2分) 由题意,有A(0,2,0),C(2,0,0),E(1,1,0)。

设D 点的坐标为(0,0,z))0(φz ,则{}{})10( ,4,4,10142cos ,1010arccos ,2cos 42,BE )(6 ,,2,0,0,1,1222分的长度是故得所成的角的大小为与且则所成的角为与设分ΛΛBD z zBE AD z BE AD AD z AD BE ==+=∴+⋅=⋅-==θθθ又)(4 ,38,61分的体积是因此四面体ΛABCD BD BC AB V ABCD ⨯⨯=[解法二]过A 引BE 的平行线,交与CB 的延长线于F ,∠DAF 是异面直线BE 与AD 所成的角, ∴∠DAF=1010arccos …(4分)∵E 是AC 的中点,∴B 是CF 的中点, AF=2BE=22。

…(6分)又BF ,BA 分别是DF ,DA 的射影,且BF=BC=BA 。

∴DF=DA 。

…(8分)三角形ADF 是等腰三角形,20cos 12=∠⋅=DAFAF AD ,故422=-=AB AD BD ,…(10分) 又BD BC AB V ABCD⨯⨯=61,因此四面体ABCD的体积是38, …(12分)19.[解](1)当221)(,21++==xx x f a 时, )(x f Θ在区间),1(+∞上为增函数, …(3分))(x f Θ地区间),1(+∞上最小值为27)1(=f , …(6分)(2)[解法一]在区让),1(+∞上,202)(22φφa x x xa x x x f ++⇔++=恒成立恒成立, …(8分)设),1(,22+∞∈++=x a x xy ,1)1(222-++=++=a x a x x y 递增,∴当1=x 时,ay +=3min , …(12分) 于是当且仅当03minφa y +=时,函数0)(φx f 恒成立,故3-φa 。

相关文档
最新文档