精选-轴向柱塞泵的结构特点

合集下载

柱 塞 泵

柱 塞 泵

主体部分是由装在中间泵体16内的缸体10和配流盘13等组成, 缸体10与传动轴12通过花键连接,由传动轴带动旋转。在缸体的轴 向柱塞孔内各装有一个柱塞17。为了避免柱塞头部与斜盘直接接触 而产生的易磨损现象,在柱塞的头部装滑履1,用滑履的底平面与 斜盘4接触,而柱塞头部与滑履则用球面配合,外面加以铆合,使 柱塞和滑履既不会脱落,又使配合球面间能相对运动;柱塞中心和
2.斜盘式轴向柱塞泵的排量和流量
=0)。活塞的运动由于液压缸左腔内油液的体积增大而引起的。
当柱塞泵旋转一周时,柱塞移动的距离为L=Dtanδ,故柱塞泵
每转的排量为
流量为:
VP
4
d 2Lzຫໍສະໝຸດ 4d 2Dtanz
qP
4
d 2Dtan
znPPV
实际上,轴向柱塞泵的瞬时流量是脉动的。通过理论计算分 析可以知道,当柱塞数为奇数时,脉动较小,故轴向柱塞数一 般为7或9个。
3.斜盘式轴向柱塞泵的结构特点
=0)。活塞的运动由于液压缸左腔内油液的体积增大而引起的。
如图所示为常用的一种斜盘式轴向柱塞泵的结构,它由两部分 组成:右边的主体部分和左边的变量机构。同一规格不同变量形 式的变量泵,其主体部分是相同的,仅是变量机构不同而已。
(1)主体部分:
=0)。活塞的运动由于液压缸左腔内油液的体积增大而引起的。
2.径向柱塞泵的排量和流量
=0)。活塞的运动由于液压缸左腔内油液的体积增大而引起的。
柱塞的行程为两倍偏心距e,泵的排量为:
VP
4
d 2 2ez
2
d 2ez
泵的实际输出流量为:
qP
2
d 2eznPPV
径向柱塞泵的瞬时流量也是脉动的,与轴向柱塞泵相同,为了 减少脉动,柱塞数通常也取奇数。

简述轴向柱塞泵的结构特点

简述轴向柱塞泵的结构特点

简述轴向柱塞泵的结构特点
轴向柱塞泵是一种常用的液压泵,其结构特点主要表现在以下几个方面:
一、结构简单紧凑
轴向柱塞泵的结构相对简单,只需一个柱塞和一个配合的凹槽就可以实现泵的工作。

同时,由于其紧凑的结构,可以在较小的空间内完成较大的功率转换。

二、传动效率高
轴向柱塞泵内部的转换件很少,且没有复杂的部件,因此传动效率非常高,能够实现较高的功率输出。

三、压力稳定
轴向柱塞泵的结构使得它具有良好的压力稳定性。

由于柱塞与配合凹槽的密封性很好,泵的输出压力非常稳定,不容易产生脉动。

四、流量稳定
轴向柱塞泵在工作过程中,柱塞的运动速度和行程都是非常稳定的,因此能够实现流量的稳定输出。

这是在保证工作效率的同时,也能够对液压系统进行较好的保护。

综上所述,轴向柱塞泵具有结构简单、传动效率高、压力稳定、流量稳定等特点。

在工业和农业生产中,轴向柱塞泵作为一种重要的液压泵,被广泛应用于各种场合,发挥着重要作用。

柱塞泵_精品文档

柱塞泵_精品文档
以后可达16MPa;齿轮泵压力2.5MPa, 高压化以后可达21MPa。
▪ 工作环境 齿轮泵的抗污染能力最好。 ▪ 噪声指标 低噪声泵有内啮合齿轮泵、双作用叶片泵和螺杆
泵, 双作用叶片泵和螺杆泵的瞬时流量均匀。
▪ 效率 轴向柱塞泵的总效率最高;同一结构的泵, 排量大的
泵总效率高;同一排量的泵在额定工况下总效率最高。
柱塞泵配流方式
• 柱塞泵的配流方式: • 1、阀配流:缸体不动 • 2、轴配流:缸体转动的径向泵 • 3.配流盘配流:缸体转动的轴向泵
3.5 液压泵的性能比较与选用
液压泵的选用原则
▪ 是否要求变量 径向柱塞泵、轴向柱塞泵、单作用叶片泵是
变量泵。
▪ 工作压力 柱塞泵压力31.5MPa;叶片泵压力6.3MPa, 高压化
4
q
1 4
d
2 zD
tan
nV
4.轴向柱塞泵的流量脉动率
由于柱塞在缸体孔中的运动速度不均 匀,所以轴向柱塞泵的流量也是脉动的。
柱塞数越多且为奇数时,流量脉动率 越小,所以一般轴向柱塞泵的柱塞数常取 奇数(如7、9或11)。
5.斜盘式轴向柱塞泵的结构特点
• 三对磨擦副:柱塞与缸体柱塞孔,缸体与配流盘,滑履与
• 轴向式
径向式
一、斜盘式轴向柱塞泵
1.典型结构
轴向柱塞泵
缸 体 配 流 盘
2.工作原理
轴向柱塞泵
▪ 工作动画 ▪ 缸体
均布Z 个柱 塞孔, 分布圆 直径为D
▪ 柱塞滑履组
柱塞直径为d
▪ 斜盘
相对传动轴 倾角为γ
▪ 配流盘 ▪ 传动轴
3.轴向柱塞泵的排量与流量计算
V 1 d 2zD tan
• 柱塞头部装有滑履, 滑履与定子内圆为面接触, 接触面比

浅析柱塞泵的分类结构原理及特点

浅析柱塞泵的分类结构原理及特点

浅析柱塞泵的分类结构原理及特点柱塞泵是一种重要的液压泵,其主要用途是输送高压液体。

柱塞泵按照结构分类有多种,本文将从分类、结构、原理和特点方面进行介绍。

一、分类1、结构分类柱塞泵主要分为斜盘柱塞泵、轴向柱塞泵和径向柱塞泵三类。

2、传动分类柱塞泵又可以按照传动分类分为机械式、液压式、电动式、气动式、燃气式等类型。

二、结构1、斜盘柱塞泵斜盘柱塞泵由两个斜盘和几个柱塞组成,每个柱塞都是独立运动的。

当斜盘旋转时,每个柱塞依次压缩、推压和吸入油液,从而实现输送油液的功能。

2、轴向柱塞泵轴向柱塞泵主要由柱塞、缸体、驱动轴等组成。

当驱动轴旋转时,柱塞在缸体内做往复运动,从而实现油液的输送。

三、原理柱塞泵的原理是利用柱塞在缸体内往复运动实现液压输送。

在柱塞泵运行中,柱塞在缸体内做往复运动,压缩和推压油液,从而形成高压油液,最后由出口处流出,以达到输送油液的目的。

四、特点1、体积紧凑、重量轻柱塞泵体积紧凑,重量轻,可以轻松安装在各种设备中。

2、高安全性柱塞泵工作稳定,使用寿命长,具有较高的安全性。

3、高压力输送柱塞泵在运行过程中能够产生较高的压力,使得油液能够顺畅地输送到需要的地方。

4、精度高由于柱塞泵在运行时能够控制压力和流量,因此其精度高,能够满足各种对油液输送流量和压力的需要。

5、可靠性高柱塞泵运行时可以控制压力和流量,具有高可靠性,大大减少了设备的故障发生率。

总之,柱塞泵是一种非常实用的液压泵,广泛应用于各个领域。

其紧凑、轻便、高压力、高精度和高可靠性等特点,使得其成为未来液压输送的不可或缺的一部分。

图文细说:柱塞泵

图文细说:柱塞泵

图文细说:柱塞泵01柱塞泵的分类与特点柱塞泵是通过柱塞在柱塞孔内往复运动时密封工作容积的变化来实现吸油和排油的。

按柱塞的排列方向不同,分为轴向柱塞泵和径向柱塞泵两大类。

1.轴向柱塞泵的特点轴向柱塞泵的柱塞是轴向安装,因而结构紧凑、径向尺寸小、转动惯量也小;容积效率高,能在高速和高压下工作,因此广泛地应用于高压系统中;通过变量机构改变柱塞泵斜盘倾角γ的大小和方向,控制柱塞往复行程的大小,从而改变泵的输出流量和吸排油方向;泵的轴向尺寸大,轴向作用力也大。

2.径向柱塞泵的特点柱塞在转子内是径向排列的,所以径向尺寸大,旋转惯性大,结构复杂;柱塞与定子为点接触,接触应力高;配油轴受到径向不平衡力作用,易磨损,磨损后间隙不能补偿,泄漏大,故这种泵的工作压力、容积效率和泵的转速都比轴向柱塞泵低;定子与转子偏心安装,改变偏心距的大小可改变泵的排量,因此径向柱塞泵可做变量泵使用,有的径向柱塞泵的偏心距可从正值变到负值,改变偏心的方向,泵的吸油方向和排油方向也发生变化,成为双向径向柱塞变量泵;由其特点所决定,径向柱塞泵广泛地用于低速、高压、大功率的拉床、插床和刨床的液压传动的主运动中。

02轴向柱塞泵轴向柱塞泵可分为斜盘式和斜轴式两类。

1.斜盘式轴向柱塞泵1.1 斜盘式轴向柱塞泵的工作原理如图,斜盘1和配油盘4不动,传动轴5带动缸体3、柱塞2一起转动。

传动轴旋转时,柱塞2在其沿斜盘自下而上回转的半周内逐渐向缸体外伸出,使缸体孔内密封工作腔容积不断增加,油液经配油盘4上的配油窗口6吸入。

柱塞在其自上而下回转的半周内又逐渐向里推入,使密封工作腔容积不断减小,将油液从配油盘窗口7向外排出。

缸体每转一转,每个柱塞往复运动一次,完成一次吸油动作。

改变斜盘的倾角γ,就可以改变密封工作容积的有效变化量,实现泵的变量。

1.2 斜盘式轴向柱塞泵的排量和流量计算实际上,柱塞泵的排量是转角的函数,其输出流量是脉动的。

就柱塞数而言,柱塞数为奇数时的脉动率比偶数柱塞小,且柱塞数越多,脉动越小,故柱塞泵的柱塞数一般都为奇数,常取Z=7或Z=9。

柱塞泵的工作原理与结构特点及安装选型注意点

柱塞泵的工作原理与结构特点及安装选型注意点

柱塞泵的工作原理与结构特点及安装选型注意点(文章来源阳光泵业)柱塞泵工作原理柱塞泵是液压系统的一个重要装置。

它依靠柱塞在缸体中往复运动,使密封工作容腔的容积发生变化来实现吸油、压油。

柱塞泵具有额定压力高、结构紧凑、效率高和流量调节方便等优点,被广泛应用于高压、大流量和流量需要调节的场合,诸如液压机、工程机械和船舶中。

柱塞泵是往复泵的一种,属于体积泵,其柱塞靠泵轴的偏心转动驱动,往复运动,其吸入和排出阀都是单向阀。

当柱塞外拉时,工作室内压力降低,出口阀关闭,低于进口压力时,进口阀打开,液体进入;柱塞内推时,工作室压力升高,进口阀关闭,高于出口压力时,出口阀打开,液体排出。

当传动轴带动缸体旋转时,斜盘将柱塞从缸体中拉出或推回,完成吸排油过程。

柱塞与缸孔组成的工作容腔中的油液通过配油盘分别与泵的吸、排油腔相通。

变量机构用来改变斜盘的倾角,通过调节斜盘的倾角可改变泵的排量。

柱塞泵结构形式:柱塞泵分为轴向柱塞泵和径向柱塞泵两种代表性的结构形式;由于径向柱塞泵属于一种新型的技术含量比较高的高效泵,随着不断加快,径向柱塞泵必然会成为柱塞泵应用领域的重要组成部分.柱塞泵的维护:斜盘式轴向柱塞泵一般采用缸体转动、端面配流的形式。

缸体端面上镶有一块由双金属板与钢配油盘组成的摩擦副,而且大多数是采用平面配流的方法,所以维修比较方便。

配油盘是轴向柱塞泵的关键部件之一,泵工作时,一方面工作腔的高压油把缸体推向配油盘,另一方面配油盘和缸体间的油膜压力形成对缸体的液压反推力使缸体背离配油盘。

缸体对配油盘的设计液压压紧力Fn略大于配油盘对缸体的液压反推力Ff,即Fn/Ff=1.05~1.1,使泵工作正常并保持较高的容积效率。

柱塞泵的安装:轴向柱塞泵的基本形式均为法兰安装式,若采用电动机驱动时,则需要制造一个"安装体",如图1-8所示,采用这种连接方法可消除驱动机轴与柱塞泵轴的两个轴的同轴度误差,小端法兰与柱塞泵法兰连接,大法兰则与Y系列B5或B35电动机前法兰连接,两轴之间应留有3mm间隙,可用弹性联轴器、梅花联轴器、齿轮联轴器连接。

轴向柱塞泵——精选推荐

轴向柱塞泵——精选推荐

第五章 轴向柱塞泵柱塞式液压泵(简称柱塞泵)是靠柱塞在缸孔内的往复运动改变柱塞缸内的容积来实现吸液和压液的柱塞泵。

与其他容积式泵相比,它具有一下有点:1) 工作参数高。

常用压力达a 40~20MP ,超高压泵可达70MPa 以上;常用排量为每转几毫升到500Ml,大排量泵每转可达数千毫升;常用柱塞泵的驱动功率在200kW 以下,大功率柱塞泵500kW 以上。

2) 效率高。

其容积效率可达95%以上,总效率可达90%以上。

3) 变量方便,变量形式较多。

利用变量柱塞泵可较易实现液压系统的 功率调节和无级变速。

4) 使用寿命长。

柱塞泵内轴承的设计寿命一般为2000~5000h ,柱塞泵的使用寿命可达10000h 以上。

5) 可以使用不同的工作介质。

6) 单位功率的质量比较轻。

柱塞泵主要有以下缺点:1) 结构较复杂,零件数量多。

2) 制造工艺要求高,价格较贵。

3) 除阀配流柱塞泵外,一般对液压介质的污染比较敏感,因此,对使用和维护的技术水平要求较高。

较复杂,径向尺寸大,自吸能力差,并且配流轴受液压不平衡力的影响,易于磨损,限制了其转速和工作压力的提高,因此在许多场合已逐渐被轴向柱塞泵所代替。

但低俗大转矩液压马达主要采取径向柱塞泵(见第六章)。

本章主要介绍轴向柱塞泵。

在高压、大流量、大功率的系统中以及流量需要调节的场合,轴向柱塞泵得到了广泛应用。

第一节 轴向柱塞泵的工作原理及结构特点轴向柱塞泵按其配流方式可分为端面配流(即配流盘配流)和阀式配流两类。

配流盘配流的轴向柱塞泵又可按其结构特点分为斜盘式(又称直轴式)和斜轴式(又称摆缸式)两类。

斜盘式泵又有点接触型和带滑靴型之分,还有非通轴(半轴)型和通轴型之分。

一、阀配流轴向柱塞泵图5-1所示为阀配流轴向柱塞泵的工作原理图。

斜盘1的旋转迫使柱塞2作轴向往复运动。

当柱塞2在行程终点改变运动方向时,单向阀4和5会随吸入过程泵腔中压力的降低和排除过程泵腔中压力的升高而自动的开启和关闭,实现配流。

浅析柱塞泵的分类结构原理及特点

浅析柱塞泵的分类结构原理及特点

浅析柱塞泵的分类结构原理及特点
柱塞泵是一种常用的液压传动元件,其应用范围涵盖了工业生产、挖掘机械、建筑机械、农业机械等领域。

它主要由泵体、柱塞、连杆、曲轴、排油阀等组成,通过柱塞在泵体内的往复运动来实现液体的输送和压力的增加。

根据不同的工作原理和结构特点,柱塞泵可以分为柱塞式柱塞泵和柱塞式轴向柱塞泵两种。

下面将从分类结构、工作原理及特点等方面对柱塞泵进行浅析。

一、柱塞泵的分类结构
1.柱塞式柱塞泵
柱塞式柱塞泵由泵体、柱塞、柱塞套、进油阀、排油阀、曲轴等组成。

泵体内设有多个柱塞孔,每个柱塞孔内安装有一根柱塞,柱塞与曲轴相连,曲轴通过传动机构与发动机相连。

当曲轴转动时,柱塞便沿着柱塞孔进行往复运动,通过柱塞在泵体内的往复运动来吸入和排出液体。

二、柱塞泵的工作原理
当曲轴转动时,通过传动机构带动柱塞在泵体内进行往复运动。

当柱塞向上运动时,泵体内形成负压,吸入液体;当柱塞向下运动时,泵体内形成正压,排出液体。

通过连续的往复运动,液体不断地被吸入和排出,从而形成连续的液压力。

三、柱塞泵的特点
1.工作压力高
柱塞泵的工作压力一般较高,能够满足工程机械、农业机械等大功率设备的需求。

2.输送稳定
柱塞泵通过柱塞的往复运动来实现液体的输送,输送过程稳定、可靠。

3.结构紧凑
柱塞泵的结构紧凑,体积小,便于安装和维护。

4.适应性强
柱塞泵适应性强,能够适用于各种不同工况的要求。

5.寿命长
由于柱塞泵的工作部件经过特殊材料和热处理,使用寿命长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a)柱塞和滑履――柱塞数量通常为奇数,取7,9,11。
――油室,为了减小滑履与斜盘的接触应力。
b)配流盘――具有阻尼孔,卸压槽
c)回程装置――回程弹簧,回程盘,钢球
①手动变量机构
转动手轮,使丝杠转动,带动变量活塞作用轴向移动,通过轴销使斜盘倾角改变,达到变量的目的。这种变量机构结构简单,但操纵不轻便,且不能在工作过程中变量。
制动性能
液压马达的容积效率直接影响马达的制动性能,若容积效率低,泄漏大,马达的制动性能就差。(因泄漏不可避免,常设其他制动装置)。
最低稳定转速
最低稳定转速是指液压马达在额定负载下,不出现爬行现象的最低转速。爬行-油液中渗入空气的积聚使马达运转不平稳的现象。
要求马达"起动扭矩要大","稳定速度要低"(一般希望最低稳定速度越小越好)。
轴向柱塞泵的结构特点
3.轴向柱塞泵的结构特点
以斜盘式轴向柱塞泵为例说明,它由主体部分和变量机构两部分组成。
⑴典型主体结构
主体结构主要由斜盘、柱塞、缸体、配油盘和传动轴等组成。
柱塞泵在高速、高压下工作,所以由滑履和斜盘、柱塞和缸体孔、缸体和配流盘所形成的摩擦副,是影响柱塞泵工作性能和寿命的主要因素。它们既要保证密封性,又要尽量减少磨损。
叶片式液压马达的典型结构
双作用叶片马达的结构如图所示,其结构特点如下:
转子两侧面开有环形槽,其间放置燕式弹簧5。弹簧套在销子4上,并将叶片压向定子的内表面,防止起动时高、低压腔互相串通,保证马达有足够的起动扭矩输出。
为了保证马达正、反转变换进、出油口时,叶片底部总是通高压油,以保证叶片与定子紧密接触,用了一组特殊结构的单向阀(梭阀),单向阀由钢球2和阀座1、3组成,图中,右下方为其工作原理图。
泵和马达的不同点
泵是能源装置,马达是执行元件。
泵的吸油腔一般为真空(为改善吸油性和抗气蚀耐力),通常进口尺寸大于出口,马达排油腔的压力稍高于大气压力,没有特殊要求,可以进出油口尺寸相同。
泵的结构需保证自吸能力,而马达无此要求。
马达需要正反转(内部结构需对称),泵一般是单向旋转。
马达的轴承结构,润滑形式需保证在很宽的速度范围内使用,而泵的转速虽相对比较高,但变化小,,故无此苛刻要求。
马达也有定量变量之分,它与泵的区别是:在向马达定量供油的情况下,其输出的转速能够调节的马达,称为变量油马达。反之称为定量油马达。
马达工作时存在泄漏,如果输入的压力小于额定压力且不为零的情况下,则额定流量>进口流量>理论流量。原因:马达在额定压力下工作泄漏损失最大,所以额定压力下所需的输入流量为最大。工作时输入压力的大小(即工作压力)取决于负载(即马达的输出转矩)。
2.径向柱塞泵的流量计算
径向柱塞泵的排量为:
液压泵的选用
选择液压泵的原则是:根据主机工况、功率大小和系统对工作性能的要求,首先确定液压泵的类型,然后按系统所要求的压力、流量大小确定其规格和型号。
1.液压泵的类型选择
2.液压泵的工作压力
3.液压泵的流量
第一节液压马达
液压马达的分类及特点
高速液压马达:额定转速高于500r/min的属于高速液压马达;
理论输出功率 等于其输入功率 ,即
(4-4)
容积效率
马达内部各间隙的泄漏所引起的损失称为容积损失,用 表示。为保证马达的转速满足要求,输入马达的实际流量应为
液压马达的理论输入流量 与实际输入流量之比成为容积效率,即
(4-5)
液压马达的使用性能
起动性能
马达的起动性能主要用起动扭矩和起动效率来描述。如果起动效率低,起动扭矩就小,马达的起动性能就差。起动扭矩和起动机械效率的大小,除了与摩擦力矩有关外,还受扭矩脉动性的影响。
液压马达的容积效率比泵低,通常泵的转速高。而马达输出较低的转速。
液压泵是连续运转的,油温变化相对较小,经常空转或停转,受频繁的温度冲击。
泵与原动机装在一起,主轴不受额外的径向负载。而马达直接装在轮子上或与皮带、链轮、齿轮相连接时,主轴将受较高的径向负载。
二、工作参数及使用性能
液压马达的相关概念
流量-理论流量是指无泄漏的情况下,单位时间内吸入油液的体积。
叶片沿转子体径向布置,进、出油口大小相同,叶片顶部呈对称圆弧型,以适应正、反转要求。
叶片马达优点:体积小,转动惯量小,因此动作灵敏。允许频繁换向(甚至可以在千分之几秒内换向)。缺点:泄漏较大,不能在低转速下工作。所以叶片式马达一般用于高转速、低扭矩以及动作要求灵敏的场合。
②手动伺服变量机构
1).变量活塞对于壳体来说是活塞,对伺服阀来说是阀体。
2).拉杆向什么方向移动则变量活塞也向什么方向跟踪移动,而且移动距离相同。
3).液压放大器
第六节 径向柱塞泵
1.径向柱塞泵的工作原理
由于径向柱塞泵径向尺寸大,结构复杂,自吸限制了它的转速和压力的提高。
马达起动时需克服较大的静摩擦力,,因此要求起动扭矩大,扭矩脉动小,内部摩擦小(如齿轮马达的齿数不能象齿轮泵那样少)。
泵-希望容积效率高;马达-希望机械效率高。
叶片泵的叶片倾斜安装,叶片马达的叶片则径向安装(考虑正反转)。
叶片马达的叶片依靠根部的扭转弹簧,使其压紧在定子表面上,而叶片泵的叶片则依靠根部的压力油和离心力压紧在定子表面上。
低速液压马达:额定转速低于500r/min的则属于低速液压马达。
高速液压马达的基本形式有齿轮式、螺杆式、叶片式和轴向柱塞式等。它们的主要特点是:转速较高,转动惯量小,便于起动和制动,调节(调速和换向)灵敏度高。通常高速液压马达的输出扭矩不大,仅几十Nm到几百Nm,所以又称为高速小扭矩液压马达。
低速液压马达的基本形式是径向柱塞式,例如多作用内曲线式、单作用曲轴连杆式和静压平衡式等。低速液压马达的主要特点是:排量大,体积大,转速低,有的可低到每分钟几转甚至不到一转。通常低速液压马达的输出扭矩较大,可达几千到几万,所以又称为低速大扭矩液压马达。
液压马达与泵的相同点
从原理上讲,马达和泵是可逆的。泵-用电机带动,输出的是压力能(压力和流量);马达-输入压力油,输出的是机械能(转矩和转速)。
从结构上看,马达和泵是相似的。
马达和泵的工作原理均是利用密封工作容积的变化吸油和排油的。泵-工作容积增大时吸油,减小时排出高压油;马达-工作容积增大时进入高压油,减小时排出低压油。
工作压力-马达的实际工作压力即输入油液的压力。在计算时应是马达进口压力和出口压力之差。
额定压力-正常工作条件下,按试验标准规定连续运转的最高压力即额定压力,超过这个最高压力就叫做超载。
额定流量-是指在额定转速和额定压力下输入到马达的流量。
由于有泄漏损失,输入马达的实际流量必须大于它的理论流量。马达的实际流量(即进口流量)-泄漏流量=马达的理论流量。
(一)液压马达的工作参数
排量
在不考虑泄漏的情况下,液压马达每转一弧度所需输入液体的体积( /s)。
理论角速度 和理论转速
即不考虑泄漏时的角速度和转速。有
(4-1)
(4-2)
式中, 为输入马达的流量( /s)。
理论输出扭矩
根据能量守恒定律,有 = ,则
(4-3)
式中, 为马达进出口压差(N/ )。
理论输出功率
相关文档
最新文档