数值分析 参考文献
《数值分析》第五章实验报告

1.900 11.7479965 2.000 15.3982357 则有 i 1 5 6 9 10 ti 1.1 1.5 1.6 1.9 2.0 wi 0.2718282 3.1874451 4.6208178 11.7479965 15.3982357 y(ti) 0.345920 3.96767 5.70296 14.3231 18.6831
b)c)d)类似进行即可
EXERCISE SET 5.9 P322 2、方程组的 Runge-Kutta 算法 a) y' '2 y' y te t ,0 t 1, y(0) y' (0) 0, h 0.1
t
设 u1 (t ) y(t ), u2 (t ) y (t ) ,则将方程转换为方程组
'
-5-
u1' (t ) u2 (t )
' u2 (t ) 2u2 (t ) u1 (t ) t (et 1)
初始条件为
u1 (0) 0, u2 (0) 0
编写 MATLAB 程序 function[t,y] = Runge_Kutta4s(ydot_fun,t0,y0,h,N) %标准四阶Runge_Kutta公式,其中, %ydot_fun为一阶微分方程的函数; %t0为初始点; %y0为初始向量(列向量) ; %h为区间步长; %N为区间的个数; %t为Tn构成的向量; %y为Yn构成的矩阵。 t = zeros(1,N+1);y = zeros(length(y0),N+1); t(1) = t0;y(:,1) = y0; for n = 1 :N t(n+1) = t(n) + h; k1 = h * feval(ydot_fun,t(n),y(:,n)); k2 = h * feval(ydot_fun,t(n)+1/2 * h,y(:,n)+1/2 * k1); k3 = h * feval(ydot_fun,t(n)+1/2 * h,y(:,n)+1/2 * k2); k4 = h * feval(ydot_fun,t(n)+h,y(:,n)+k3); y(:,n+1) = y(:,n) + 1/6 * (k1 + k2 + k3 + k4); end 运行后有 >> odefun = inline('[y(2);2*y(2)-y(1)+t*(exp(t)-1)]','t','y'); >> [t,y] = Runge_Kutta4s(odefun,0,[0;0],0.1,10) t= Columns 1 through 9 0 0.8000 Columns 10 through 11 0.9000 1.0000 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000
数值分析第一次上机练习实验报告

数值分析第一次上机练习实验报告一、实验目的本次实验旨在通过上机练习,加深对数值分析方法的理解,并掌握实际应用中的数值计算方法。
二、实验内容1. 数值计算的基本概念和方法在本次实验中,我们首先回顾了数值计算的基本概念和方法。
数值计算是一种通过计算机进行数值近似的方法,其包括近似解的计算、误差分析和稳定性分析等内容。
2. 方程求解的数值方法接下来,我们学习了方程求解的数值方法。
方程求解是数值分析中非常重要的一部分,其目的是找到方程的实数或复数解。
我们学习了二分法、牛顿法和割线法等常用的数值求解方法,并对它们的原理和步骤进行了理论学习。
3. 插值和拟合插值和拟合是数值分析中常用的数值逼近方法。
在本次实验中,我们学习了插值和拟合的基本原理,并介绍了常见的插值方法,如拉格朗日插值和牛顿插值。
我们还学习了最小二乘拟合方法,如线性拟合和多项式拟合方法。
4. 数值积分和数值微分数值积分和数值微分是数值分析中的两个重要内容。
在本次实验中,我们学习了数值积分和数值微分的基本原理,并介绍了常用的数值积分方法,如梯形法和辛卜生公式。
我们还学习了数值微分的数值方法,如差商法和牛顿插值法。
5. 常微分方程的数值解法常微分方程是物理和工程问题中常见的数学模型,在本次实验中,我们学习了常微分方程的数值解法,包括欧拉法和四阶龙格-库塔法。
我们学习了这些方法的步骤和原理,并通过具体的实例进行了演示。
三、实验结果及分析通过本次实验,我们深入理解了数值分析的基本原理和方法。
我们通过实际操作,掌握了方程求解、插值和拟合、数值积分和数值微分以及常微分方程的数值解法等数值计算方法。
实验结果表明,在使用数值计算方法时,我们要注意误差的控制和结果的稳定性。
根据实验结果,我们可以对计算结果进行误差分析,并选择适当的数值方法和参数来提高计算的精度和稳定性。
此外,在实际应用中,我们还需要根据具体问题的特点和条件选择合适的数值方法和算法。
四、实验总结通过本次实验,我们对数值分析的基本原理和方法有了更加深入的了解。
数值分析积分实验报告(3篇)

第1篇一、实验目的本次实验旨在通过数值分析的方法,研究几种常见的数值积分方法,包括梯形法、辛普森法、复化梯形法和龙贝格法,并比较它们在计算精度和效率上的差异。
通过实验,加深对数值积分理论和方法的理解,提高编程能力和实际问题解决能力。
二、实验内容1. 梯形法梯形法是一种基本的数值积分方法,通过将积分区间分割成若干个梯形,计算梯形面积之和来近似积分值。
实验中,我们选取了几个不同的函数,对积分区间进行划分,计算积分近似值,并与实际积分值进行比较。
2. 辛普森法辛普森法是另一种常见的数值积分方法,它通过将积分区间分割成若干个等距的区间,在每个区间上使用二次多项式进行插值,然后计算多项式与x轴围成的面积之和来近似积分值。
实验中,我们对比了辛普森法和梯形法的计算结果,分析了它们的精度差异。
3. 复化梯形法复化梯形法是对梯形法的一种改进,通过将积分区间分割成多个小区间,在每个小区间上使用梯形法进行积分,然后计算所有小区间积分值的和来近似积分值。
实验中,我们对比了复化梯形法和辛普森法的计算结果,分析了它们的精度和效率。
4. 龙贝格法龙贝格法是一种通过外推加速提高计算精度的数值积分方法。
它通过比较使用不同点数(n和2n)的积分结果,得到更高精度的积分结果。
实验中,我们使用龙贝格法对几个函数进行积分,并与其他方法进行了比较。
三、实验步骤1. 编写程序实现梯形法、辛普森法、复化梯形法和龙贝格法。
2. 选取几个不同的函数,对积分区间进行划分。
3. 使用不同方法计算积分近似值,并与实际积分值进行比较。
4. 分析不同方法的精度和效率。
四、实验结果与分析1. 梯形法梯形法在计算精度上相对较低,但当积分区间划分足够细时,其计算结果可以接近实际积分值。
2. 辛普森法辛普森法在计算精度上优于梯形法,但当积分区间划分较细时,计算量较大。
3. 复化梯形法复化梯形法在计算精度上与辛普森法相当,但计算量较小。
4. 龙贝格法龙贝格法在计算精度上优于复化梯形法,且计算量相对较小。
数值分析基础

数值分析基础整理:朱华伟参考文献:张卫国讲义一、绪论1.1数值分析理论1、课程介绍数值分析:是指用计算机求解各类数学问题的方法与理论。
数值分析中需要考虑的问题:a、理论可靠性:指由数值分析算法得出的结果值不值得信赖;b、计算复杂性包括时间复杂性和空间复杂性。
时间复杂性是指算法运行时间的长短;空间复杂性是指数据占据空间的大小,这里理解为数据占据计算机存储空间的大小。
c、结构要好:指实现算法的程序可移植性要好,可修改性要好等等。
早期主要考虑计算复杂性,现在主要考虑结构性要好,计算复杂度适中即可,也就是,在保证结构性要好的同时,计算复杂度要尽可能的小。
2、主要内容主要的数学模型:a、方程求根模型,如,一元二次方程。
可以用迭代法求解,迭即是重复,代即是代入。
b、线性方程组模型,可以用迭代法,直接法求解。
c、特征值的特征向量模型。
d、插值方法与数值微分模型。
e、数值逼近与数值拟合模型。
f 、 数值积分模型。
g 、 微分方程组的解的模型。
1.2误差及有效数字 1、误差的来源解决一个实际问题的过程: 分析问题假设、简化、抽象数学模型构造算法 编程求解误差有四种:a 、模型误差:由数学模型与实际问题的差别所造成。
b 、方法(算法)误差:有些问题需要截断进行处理,这样就会产生余项误差。
c 、舍入误差:计算机存储时出现的误差。
d 、观测(测量)误差:在进行实际数据的测量时产生的误差。
在数值分析中我们只关心舍入误差和观测误差。
2、误差的度量 有三种方式:a 、绝对误差与绝对误差界, 是绝对误差的界, 为准确值,x 为 的一个近似值。
,n 的取值取决于具体的b 、相对误差与相对误差界, 是相对误差的界。
通常c、有效数字有两种方法表示:1、如果舍去部分不超过所取值的最后一位的一半,则有效数字取到所取值的最后一位;如果舍去部分超过所取值的最后一位的一半,则有效数字取到所取值的最后一位的前一位。
2、规格法设,k>0且取整,取1~9,取0~9,若=,则x有n位有效数字,的取值取决于方法1,然后经过换算即可求出n。
数值分析小论文 董安.(优选)

数值分析作业课题名称代数插值法-拉格朗日插值法班级Y110201研究生姓名董安学号S2*******学科、专业机械制造及其自动化所在院、系机械工程及自动化学院2011 年12 月26日代数插值法---拉格朗日插值法数值分析中的插值法是一种古老的数学方法,它来自生产实践。
利用计算机解决工程问题与常规手工计算的差异就在于它特别的计算方法.电机设计中常常需要通过查曲线、表格或通过作图来确定某一参量,如查磁化曲线、查异步电动机饱和系数曲线等.手工设计时,设计者是通过寻找坐标的方法来实现.用计算机来完成上述工作时,采用数值插值法来完成。
因此学好数值分析的插值法很重要。
插值法是函数逼近的重要方法之一,有着广泛的应用 。
在生产和实验中,函数f(x)或者其表达式不便于计算复杂或者无表达式而只有函数在给定点的函数值(或其导数值) ,此时我们希望建立一个简单的而便于计算的函数 (x),使其近似的代替f(x),有很多种插值法,其中以拉格朗日(Lagrange)插值和牛顿(Newton)插值为代表的多项式插值最有特点,常用的插值还有Hermit 插值,分段插值和样条插值.本文着重介绍拉格朗日(Lagrange)插值法。
1.一元函数插值概念定义 设有m+1个互异的实数1x ,2x ,···,m x 和n+1 个实值函数x ,1x ,···nx ,其中n m 。
若向量组k=(0kx ,1kx ,···,km x )T (k=0,1,,n )线性无关,则称函数组{kx (k=0,1,,n )}在点集{i x (i=0,1,,m)}上线性无关;否则称为线性相关。
例如,函数组{2+x ,1-x ,x+2x }在点集{1,2,3,4}上线性无关。
又如,函数组{sin x ,n2x ,sin3x }在点集{0,3,23,}上线性相关。
给点n+1个互异的实数0x ,1x ,···,n x ,实值函数f x 在包含0x ,1x ,···,n x 的某个区间,a b 内有定义。
《数值分析-李庆杨》第1章 引言

结束
将[0,1]分为4等分,分别计算4个小曲边梯形的面积的 近似值,然后加起来作为积分的近似值(如图1-1).记被积 函数为 f(x) ,即 f ( x ) 1 1 x
1 h , xi ih, i 0,1,2,3 4
f ( xi ) f ( xi 1 ) Ti h 2
结束
1.2.2 误差的基本概念 定义1 绝对误差,简称误差: e* x * x, 其中x为准确值 , x *为准确值x的近似值 .
. 误差限: * | e* | 的一个上界
例如,毫米尺 765 x 0.5
在工程中常记为:x= x*± * .
如
l=10.2±0.05mm
,R=1500±100Ω
在科学研究、工程实践和经济管理等工作中,存在大 量的科学计算、数据处理等问题.应用计算机解决数值计算 问题是理工科研究生应当具备的基本能力.
§1.1
算法
解决某类数学问题的数值方法称为算法.为使算法能 在计算机上实现,它必须将一个数学问题分解为有限 次的+、-、×、÷运算和一些简单的基本函数运算.
结束
§ 1.2 误差
1.2.1 误差的来源 在运用数学方法解决实际问题的过程中,每一步都可 能带来误差. 1、模型误差 在建立数学模型时,往往要忽视很多次要因 素,把模型“简单化”,“理想化”,这时模型就与真实 背景有了差距,即带入了误差.
2、测量误差 数学模型中的已知参数,多数是通过测量得 到 . 而测量过程受工具、方法、观察者的主观因素、不可 预料的随机干扰等影响必然带入误差.
例3 多项式求值。
2 P ( x ) a a x a x n 0 1 2
an xn
1.4
微分方程数值方法参考文献

微分方程数值方法参考文献以下是一些微分方程数值方法的参考文献,包括了各种不同领域的文献,例如物理学、经济学、社会学等等:1. 《数值微分方程》(数值微分方程指南) 作者:F. W. J. Olver2. 《有限元分析》(有限元分析指南) 作者:D. A. DeCandino3. 《微分方程数值解教程》(微分方程数值解教程) 作者:G. B. strang4. 《数值微分方程基础教程》(数值微分方程基础教程) 作者:P. J. Simoen5. 《微分方程模拟与数值分析》(微分方程模拟与数值分析) 作者:R. G. leading6. 《微分方程数值分析基础教程》(微分方程数值分析基础教程) 作者:R. G. leading7. 《有限元分析实践》(有限元分析实践) 作者:C. M.客户8. 《数值微分方程 Cookbook》(数值微分方程 Cookbook) 作者:E. A. C. first9. 《有限元分析基础教程》(有限元分析基础教程) 作者:L. D. Landau, E. L. Lifshitz10. 《求解微分方程的数值方法》(数值微分方程,数值分析基础) 作者:R. E. Woods11. 《有限元分析简明教程》(有限元分析简明教程) 作者:T. Andrus, W. C. Amstutz, W. W. C.孤独12. 《数值微分方程教程第二版》(数值微分方程教程第二版) 作者:M. H.疑13. 《数值微分方程基础与进阶》(数值微分方程基础与进阶) 作者:R. G. leading14. 《有限元分析教程》(有限元分析教程) 作者:P. J. Simoen15. 《有限差分法及其应用》(有限差分法及其应用) 作者:N. J. M. Ansaldi16. 《有限元分析简明教程》(有限元分析简明教程) 作者:R. E. Woods17. 《数值微分方程及边界元法》(数值微分方程及边界元法) 作者:H. A. FROST18. 《有限差分法与有限元分析》(有限差分法与有限元分析) 作者:E. A. C. first19. 《微分方程数值解常见问题解答》(微分方程数值解常见问题解答) 作者:E. A. C. first20. 《数值微分方程》(数值微分方程指南) 作者:F. W. J. Olver这些参考文献是微分方程数值方法领域的一些经典作品,涵盖了不同的学科和领域,你可以根据自己的兴趣和需要找到相关的文献进行阅读。
现代数值分析

证明: Q π* 0.31415 101 , and | π * π | 0.5 103 0.5 1014
* 有4 位有效数字,精确到小数点后第 3 位.
有效数字和相对误差的关系
Th1. 若近似数 x 有n 位有效数值,则其相对误差限为
|
er (x)
|
1 2a1
10 ( n 1)
(z)
n
|
k 1
f xk
| (xk )
数据误差对算术运算影响
(1) (x1 x2 ) (x1) (x2 )
(2) (x1 x2 ) | x1 | (x2 ) | x2 | (x1)
(3)
(
x1
/
x2
)
|
x1
|
(
x2
) | x2 2
一个应用: 2进制数转换为10进制数 (1 1 1 0 1 1 1 0)2 = 27+26 +25 +0 +23 +22 +2 +0 =((((((1·2+1)2+1)2+0)2+1)2+1)2+1)2+0=238
➢求多项式值的秦九韶算法 P(x)=a0+ a1x + a2 x2 + ······+ an xn
模型误差 ( Modeling Error ): 从实际问题中抽象出数学模型
观测误差 ( Measurement Error ): 通过测量得到模型中参数 的值 方法误差 (截断误差 Truncation Error): 求近似解。求解数 学模型时,用简单代替复杂,或者用有限过程代替无限过程所引 起的误差 舍入误差 ( Roundoff Error ): 机器字长有限,通常用四舍五 入的办法取近似值,由此引起的误差.