人教版七年级数学下册:5.3.2命题、定理、证明教案
人教版七年级数学下册 5-3-2 命题、定理、证明 教案

教学反思5.3平行线的性质5.3.2命题、定理、证明教学目标1. 了解命题的概念以及命题的构成.2. 知道什么是真命题和假命题,并会判断命题的真假.3. 理解什么是定理和证明.4. 初步体会命题在数学中的应用,感受数学语言的严谨性,培养学生的语言表达能力和归纳能力. 教学重难点重点:区分命题的题设和结论.难点:找出题设和结论不明显的命题的题设和结论;举反例判断一个简单命题是假命题.课前准备多媒体课件教学过程导入新课导入模式教师:在我们日常讲话中,经常会遇到这样的语句(多媒体展示),如:(1) 中华人民共和国的首都是北京;(2) 我们班的同学多么聪明;(3) 浪费是可耻的;(4)春天万物更新.在几何里,我们同样会有这样的语句,如:(1) 平行于同一条直线的两条直线平行;(2)对顶角相等.观察一下,它们有什么共同点,在语文学习当中,我们把这样的句子叫做什么语句呢?师生活动先让学生交流,然后学生代表回答.设计意图在教学过程中,将创设的问题情境和语文联系起来,不仅容易激发学生的好奇心,引起学生的学习兴趣,而且渗透了“学科间的整合”,提升了学生的核心素养.教师:像这样的判断句,在数学当中经常遇到,如(多媒体展示):板书(1) 如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2) 等式两边都加上同一个数,结果仍是等式;(3) 对顶角相等;(4)如果两条直线不平行,那么同位角不相等.教师提问:你们能说一说这4个语句有什么共同点吗?学生在教师的引导下分析每个语句的特点,并能总结出这些语句都是对某一件事情作出“是”或“不是”的判断.初步感受到有些数学语言是对某一件事作出判断的.探究新知探究点一:命题的概念教师:像这些语句一样,判断一件事情的语句,叫做命题.现在同学们判断下列语句是不是命题.(1)两点之间,线段最短.(2)画出两条互相平行的直线.(3)过直线外一点,作已知直线的垂线.(4)a,b两条直线平行吗?(5)玫瑰花是动物.(6)若a2=b2,则a=b.一名学生判断回答,不对的题目,其他同学补充纠正.请同学们再举出“命题”的例子.师生共同判断,给予评价.教师归纳:判断语句是否为命题要紧扣两条:(1)命题必须是一个完整的句子,通常是陈述句,疑问句和命令性语句都不是命题;(2)必须对某一件事件作出肯定或否定的判断.这两条缺一不可.设计意图通过具体的实例,让学生了解命题.探究点二:命题的组成教师:观察黑板上的命题,思考:命题由哪几个部分组成?师生活动学生在明确命题概念的基础上分小组讨论命题的结构,让学生总结出命题的结构.命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.教师:你们是怎样寻找题设和结论的.学生代表回答,教师引导得出结论:任何一个命题,都可以写成“如果……那么……”的形式.“如果”后面的是题设,“那么”后面的是结论.请大家指出“对顶角相等”这一命题的题设,结论,并写成“如果……,那么……”的形式.师生活动结合我们学习的这一章内容,找出命题(本章中学到的结论),并指出命题的题设、结论.设计意图充分发挥小组讨论的优势,让学生积极参与到学习过程中,让学生总结出命题的结构.探究点三:真命题与假命题教师:判断下列语句是不是命题,是命题的指出命题的题设和结论,并判断此命题是否正确.(1)如果两条直线相交,那么它们只有一个交点;(2)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行(3)相等的角是对顶角;(4)任意两个直角都相等.学生独立思考,学生代表回答,其他同学纠正补充,最后总结结果:四个语句都是命题.命题(1)的题设是“两直线相交”,结论是“只有一个交点”;命题(2)的题设是“两条直线被第三条直线所截形成的同旁内角互补”,结论是“这两条直线平行”;命题(3)的题设是“两个角相等”,结论是“它们是对顶角”;命题(4)的题设是“两个角是直角”,结论是“它们相等”.其中(1)(2)(4)是正确命题,(3)是错误命题.教师总结:如果命题的题设成立,那么结论一定成立,像这样的命题称为真命题;如果命题的题设成立时,不能保证结论一定成立,像这样的命题称为假命题.判断一个命题是真命题,必须经过推理证实;判断一个命题是假命题,只需举出一个反例即可.设计意图通过分析语句,练习了找命题的题设和结论,更容易回答出命题的正确与否.探究点四:定理教师:请同学们判断下列命题哪些是真命题?哪些是假命题?(1)在同一平面内,如果一条直线垂直于两条平行线中的一条,那么也垂直于另一条;(2)如果两个角互补,那么它们是邻补角;(3)如果丨a l=lbl,那么a=b;(4)经过直线外一点有且只有一条直线与这条直线平行;(5)两点确定一条直线.师生活动学生代表回答,如果出现错误或不完整,请其他学生修正或补充,教师点评.教师归纳:上述问题中(1)(4)(5)的正确性是经过推理证实的,这样得到的真命题叫做定理.定理也可以作为继续推理的依据.前面学过的一些图形的性质,都是真命题,例如“两条直线平行,同旁内角互补”等.教师追问:经过推理证明得到的真命题叫做定理.同学们能说出我们学过的定理有哪些吗?学生独立思考,然后回答,师生共同补充学过的定理.设计意图学生积极思考教师所提出的问题,练习怎样判断真、假命题.以上面问题中的真命题为切入点引出定理的概念.让学生回顾学过的定理,进一步加深对定理概念的理解.探究点五:证明教师:请同学们判断下列两个命题的真假,并思考如何判断命题的真假.命题1:在同一平面内,如果一条直线垂直于两条平行线中的一条,那么它也垂直于另一条.教师:命题1是真命题还是假命题?学生抢答:真命题.教师:你能将命题1所叙述的内容用图形语言表达出来吗?学生画出图1:教师:这个命题的题设和结论分别是什么呢?学生回答:题设:在同一平面内,一条直线垂直于两条平行线中的一条;结论:这条直线也垂直于两条平行线中的另一条.教师:你能结合图形用几何语言表述命题的题设和结论吗?学生回答:在同一平面内,若b〃c,a丄b,则a丄c.教师:请同学们思考如何利用已经学过的定义、定理来证明这个结论呢?已知:在同一平面内,b〃c,a丄b.求证:a丄c.证明:如图1,T a丄b(已知),・•・Z1=90°(垂直的定义).又b〃c(已知),・•・Z1=Z2(两直线平行,同位角相等).・•・—1=90°(等量代换).・•・a丄c(垂直的定义).教师:在很多情况下,一个命题的正确性需要经过一系列推理,才能做出判断,这个推理的过程叫做证明.刚才我们对命题1作出了判断,经过一系列的过程对命题1进行了证明,回顾一下,证明一个命题的正确性要分为几个步骤.学生思考交流,学生代表回答,其他同学补充,教师引导得出结论.要证明一个命题的正确性要分为三步:第一步,分析命题的题设和结论;第二步,根据命题画出图形,结合图形,根据题设写出已知,根据结论写出求证;第三步书写证明过程.教师:对于命题1这个真命题,经过了三步,我们证明了它的正确性,大命题2:相等的角是对顶角.教师:判断这个命题的真假.学生回答:假命题.教师:这个命题的题设和结论分别是什么?学生回答:题设:两个角相等;结论:这两个角互为对顶角.教师:我们知道假命题是在题设成立的前提下,结论不一定成立,你能否利用图形举例说明当两个角相等时它们不一定是对顶角的关系?学生画图回答:如图2所示,OC是Z AOB的平分线,Z1=Z2,但它们不是对顶角.教师总结:要证明一个命题是假命题,只要举一个反例即可.设计意图通过分析两个命题,让学生学会如何判断命题的真假,怎样来证明命题的真假.通过对命题1正确性的推理,来说明什么是证明.证明一个命题为真命题的步骤又有哪些?渗透了“推理”与“证明”的联系、区别•判断一个命题是假命题,只要举出一个反例就可以了.新知应用例1把命题“同位角相等”改写成“如果……那么……”的形式,并分别指出命题的题设和结论.学生代表回答,其他同学补充纠正,教师引导,得出结论.解:可以写成“如果两个角是同位角,那么这两个角相等”•题设是“两个角是同位角”,结论是“这两个角相等”.设计意图练习命题的改写以及分清命题的题设和结论.例2下列命题哪些是正确的,哪些是错误的?(1)两条直线被第三条直线所截,同旁内角互补;(2)等式两边都加上同一个数,结果仍是等式;(3)互为相反数的两个数相加得0;(4)同旁内角互补;(5)对顶角相等.师生活动学生独立完成,并回答.解:(1)(4)错误,(2)(3)(5)正确.设计意图练习判断命题的正确与错误.例3完成下面的证明过程:Z1=Z2,Z C=Z D,求证:Z A=Z F.证明:TZ1=Z2(已知),Z2=Z3(),・•・Z1=(等量代换),・•・〃(),・•・Z C=Z4().又•・•Z C=Z D(已知),・•・Z D=Z4(),・•・DF〃AC(),・•・Z A=Z F().学生独立完成,并回答.如果错误,其他同学补充.答案:对顶角相等Z3BDCE同位角相等两直线平行两直线平行,同位角相等等量代换内错角相等,两直线平行两直线平行,内错角相等教师:除以上证明方法以外,还有其他的方法吗?请同学们独立思考,再交流相法.设计意图让学生熟悉证明的过程,会填写出一些证明的关键步骤和理由.通过不同方法的引导,拓展学生思维,逐步提高推理能力.课堂练习(见导学案“当堂达标”)参考答案l.A2.C3.若Za=50°,ZB=60°,则Za+ZB>90。
人教版初中数学七年级下册5.3.2《命题、定理、证明(1)》教案

学生语句,获得感性认识.
从生活中常见的语句引入课题,唤起学生的学习兴趣及探索欲望.
二、自主探究 合作交流 建构新知
活动1:观察发现、认识命题
请同学读出下列语句:
(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;
(2)两平行线被第三条直线所截,同旁内角互补;
(3)对顶角相等;
5.3.2命题、定理、证明
第一课时 教学设计
教学目标:
1、理解命题的概念及构成、会判断所给命题的真假;
2、会判断命题及其真假的判断,为今后的学习打好基础,发展应用意识。
教学重、难点
教学重点:命题的概念、区分命题的题设和结论;判断命题的真假。
教学难点:区分命题的题设和结论。
教学过程
教学内容与教师活动
学生活动
2、将下列命题改成“如果……,那么……”的形式.
(1)两条直线被第三条直线所截,同旁内角互补;
(2)等式两边都加同一个数,结果仍是等式;
(3)互为相反数的两个数相加得0;
(4)同旁内角互补;
(5)对顶角相等.
3、下列命题哪些是真命题,哪些是假命题?
(1)两条直线被第三条直线所截,同旁内角互补;
(2)等式两边都加同一个数,结果仍是等式;
线中的一条,那么也垂直于另一条;
(2)如果两个角互补,那么它们是邻补角;
(3)如果 ,那么a=b;
(4)过直线外一点有且只有一条直线与之平行;
(5)两点确定一条直线.
观察口答
观察猜想
归纳命题的概念.
独立思考
合作交流
归纳命题的结构
思考感悟
仔细判断
仔细判断,
认识定理
为学生提供参与数学活动的时间和空间,培养学生的观察归纳能力.
人教版七年级下册5.3.2命题、定理、证明课程设计

人教版七年级下册5.3.2命题、定理、证明课程设计一、课程目标通过本课程的学习,学生应当能够:1.理解什么是命题和定理,能够举出实例;2.掌握如何证明数学命题的方法;3.开始了解初步的数学证明方法。
二、教学重点1.了解命题和定理的概念;2.分清真命题、假命题与命题的否定;3.学习以归谬法和反证法证明数学命题的方法。
三、教学难点1.学生的数理思维能力差异较大,部分学生可能不能理解数学命题的抽象概念;2.学习证明数学命题比较枯燥,需要调动学生学习的积极性。
四、教学方法本课程的教学方法主要采用讲授、练习和互动交流相结合的方法。
1.讲授:首先通过讲解命题和定理的概念,让学生初步了解数学命题,并举例说明其实际意义。
然后通过讲解如何证明数学命题的方法,引导学生学习证明数学命题的思想和方法;2.练习:通过练习题目,让学生掌握如何判断一个命题的真假,并锻炼学生运用反证法和归谬法证明数学命题的能力;3.互动交流:教师和学生之间的互动交流能够加深学生对于本课程内容的理解和记忆,在学生证明数学命题时,可以通过组内小组讨论、展示等方式,加深学生对于证明方法的理解。
五、教学内容与流程本课程的教学内容分为三部分:命题与定理的概念、如何证明数学命题的方法、实例分析。
5.1 命题与定理的概念命题和定理是数学中常用的概念,命题是一个能够判断真假的陈述句,而定理是一个能够被证明是真实的命题。
教师通过幻灯片、黑板绘图等方式,向学生讲解命题和定理的概念,并举例说明。
5.2 如何证明数学命题的方法本节课的核心内容是教给学生如何证明数学命题的方法,采用反证法和归谬法。
5.2.1 反证法教师通过实例向学生讲解反证法,即假设命题不成立,通过推理得出一定的结论,与前提相矛盾,推翻假设,从而证明命题的真实性。
5.2.2 归谬法教师通过实例向学生讲解归谬法,通过假设命题成立,推理出与已知事实相悖的结论,得出假设命题的不成立,从而证明命题的真实性。
5.3 实例分析通过实例分析,让学生应用所学知识,理解如何证明数学命题。
人教版数学七年级下册《5-3-2命题、定理、证明 》教案

人教版数学七年级下册《5-3-2命题、定理、证明》教案一. 教材分析《5-3-2命题、定理、证明》是人教版数学七年级下册的一章内容。
本章主要介绍命题、定理和证明的概念,要求学生理解命题的真假判断,了解定理的定义和证明过程,能够运用证明方法解决一些简单的数学问题。
二. 学情分析学生在学习本章内容前,已经掌握了整数、分数、代数等基础知识,具备一定的逻辑思维能力。
但部分学生对于抽象的概念理解起来可能存在一定的困难,需要通过具体的例题和实践活动来加深理解。
三. 教学目标1.了解命题、定理的概念,理解命题的真假判断,掌握定理的定义和证明过程。
2.培养学生运用证明方法解决数学问题的能力。
3.培养学生的逻辑思维能力和团队合作能力。
四. 教学重难点1.命题、定理的概念及命题的真假判断。
2.证明方法的应用。
五. 教学方法1.讲授法:讲解命题、定理的概念,演示证明过程。
2.案例分析法:分析具体例题,引导学生运用证明方法解决问题。
3.小组合作法:分组讨论,共同完成证明任务。
六. 教学准备1.教材、PPT课件。
2.相关例题和练习题。
3.教学工具:黑板、粉笔。
七. 教学过程1.导入(5分钟)利用PPT课件展示一些日常生活中的命题,如“明天会下雨”、“今天是星期天”等,引导学生思考这些命题的真假判断。
2.呈现(10分钟)讲解命题、定理的概念,解释命题的真假判断,通过PPT课件展示定理的定义和证明过程。
3.操练(10分钟)给出几个简单的例题,让学生尝试运用证明方法解决问题。
引导学生思考证明过程中的关键步骤,培养学生的逻辑思维能力。
4.巩固(10分钟)学生分组讨论,共同完成一个证明任务。
教师巡回指导,解答学生疑问。
5.拓展(10分钟)给出一个较复杂的证明题目,让学生独立完成。
鼓励学生运用所学知识,解决问题。
6.小结(5分钟)教师总结本节课的主要内容,强调命题、定理和证明的概念,以及证明方法的应用。
7.家庭作业(5分钟)布置一些有关命题、定理和证明的练习题,要求学生回家后独立完成。
人教七下数学5.3.2命题、定理、证明教案

5.3.2命题、定理、证明(一)三维教学目标1、了解命题的概念。
2、能区分命题的题设和结论。
3、经历判断命题真假的过程,对命题的真假有一个初步的了解。
(二)教学重难点重点:命题的概念和区分命题的题设与结论。
难点:区分命题的题设和结论。
(三)教学过程活动一:情境引入教师与学生们打招呼,说出以下四句话:(1)七(1)的同学们你们好吗?(2)大家今天都能认真听课吗?(3)七(2)班的所有学生都是好学生。
(4)有时间我请大家吃饭。
问题1:下列四句话中,哪一句是对一件事情作出判断的语句?(1)七(2)的同学们你们好吗?()(2)大家今天都能认真听课吗?()(3)七(1)班的所有学生都是好学生。
()(4)有时间我请大家吃饭。
()问题2 下列语句在表述形式上,哪些是对事情作了判断?(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行()(2)画一个角等于已知角()(3)对顶角相等;()(4)若a2=b2,则a=b。
()(5)两条平行线被第三条直线所截,同旁内角互补;()(6)若a2=4,求a的值;()活动二、新知探究,合作交流教师点评:象上题中的(1)、(3)、(4)、(5)这样判断一件事情的语句叫做命题。
注意:1、只要对一件事情作出了判断,不管正确与否,都是命题。
如:相等的角是对顶角。
2、如果一个句子没有对某一件事情作出任何判断,那么它就不是命题。
如:画线段AB=CD。
问题3 判断下列语句是不是命题?(1)两点之间,线段最短;()(2)请画出两条互相平行的直线;()(3)过直线外一点作已知直线的垂线;()(4)如果两个角的和是90º,那么这两个角互余.()提问几位学生,从而检查学生们是否真正理解命题的概念。
问题4 你能举出一些命题的例子吗?(教师这时让几名学生发言)问题5 请同学们观察一组命题,并思考命题是由几部分组成的?(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2)两直线平行,同位角相等;(3)如果两个角的和是90º,那么这两个角互余;教师点评:命题是由题设(或条件)和结论两部分组成。
人教版数学七年级下册教学设计5.3.2《 命题、定理、证明》

人教版数学七年级下册教学设计5.3.2《命题、定理、证明》一. 教材分析本节课的主题是“命题、定理、证明”,这是人教版数学七年级下册的教学内容。
教材通过引入日常生活中的实例,引导学生理解命题、定理和证明的概念,让学生掌握判断一个命题是否为定理的方法。
教材内容丰富,结构清晰,逻辑性强,有利于学生培养数学思维和解决问题的能力。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和数学基础,他们对数学概念和公式的学习已经有一定的认识。
但学生在学习过程中,可能对抽象的数学概念和定理的证明过程感到难以理解,需要教师通过具体的生活实例和丰富的教学手段,帮助学生理解和掌握。
三. 教学目标1.让学生了解命题、定理和证明的概念,理解定理的判断方法。
2.培养学生运用数学知识解决实际问题的能力。
3.培养学生逻辑思维和数学表达能力。
四. 教学重难点1.重点:理解命题、定理和证明的概念,掌握判断一个命题是否为定理的方法。
2.难点:对抽象的数学概念和定理的证明过程的理解。
五. 教学方法1.采用问题驱动法,引导学生主动探究和理解命题、定理和证明的概念。
2.使用生活中的实例,帮助学生理解和掌握抽象的数学概念。
3.运用小组合作学习,培养学生团队合作和数学表达能力。
4.通过练习和反馈,巩固学生所学知识。
六. 教学准备1.准备相关的生活实例和数学问题,用于引导学生理解和掌握概念。
2.准备PPT,展示教材内容和实例。
3.准备练习题,用于巩固学生所学知识。
七. 教学过程1.导入(5分钟)通过一个生活中的实例,引导学生思考和讨论,引出命题、定理和证明的概念。
例如,讲解“勾股定理”的发现过程,让学生了解定理的定义和证明方法。
2.呈现(10分钟)使用PPT展示教材中的相关内容,让学生对命题、定理和证明有一个清晰的认识。
同时,通过讲解和示范,让学生理解定理的判断方法。
3.操练(10分钟)让学生分组讨论,每组选取一个命题,判断它是定理还是假命题,并说明理由。
人教版数学七年级下册5.3.2命题、定理、证明优秀教学案例

3. 详细讲解证明的方法和步骤,包括直接证明、反证法和归纳法等,让学生掌握证明的基本方法。
4. 通过示例题目,演示如何运用命题、定理和证明的知识解决问题,让学生理解学习的实际意义。
(三)学生小组讨论
1. 将学生分成小组,每组选择一个定理进行证明,并用自己的语言解释证明的每一步。
这些亮点体现了本节课在教学设计、教学方法和教学评价等方面的优秀之处,有助于提高学生的学习兴趣、培养学生的思维能力和团队合作能力,促进学生的全面发展。同时,这些亮点也是我作为特级教师在教学实践中不断探索和尝试的结果,希望能够为其他教师提供一定的借鉴和参考。
4. 总结归纳环节:在课程结束时,引导学生回顾和总结所学内容,帮助学生巩固知识,提高学生的记忆和理解能力。总结归纳环节能够使学生对学习内容有一个清晰的认识,增强学生对知识的系统性和整体性的理解。
5. 作业小结环节:布置与课程内容相关的作业,要求学生运用所学知识解决问题,培养学生的应用能力和实践能力。作业小结环节能够及时巩固所学知识,帮助学生检验自己的学习效果,同时也为教师提供了了解学生学习情况的机会,为下一步的教学提供参考。
3. 设计一些评估题目,检验学生对命题、定理和证明的掌握程度,及时发现和纠正学生的错误。
4. 注重对学生的形成性评价,关注学生的进步和努力,激发学生的学习动力和自信心。
四、教学内容与过程
(一)导入新课
1. 利用生活实例引入命题的概念,例如:“如果今天是星期五,那么学校放假。”引导学生理解命题由题设和结论两部分组成。
2. 强调定理证明的重要性,以及定理证明在数学中的应用,使学生认识到学习定理证明的意义。
3. 总结学生在小组讨论中的表现,对学生的学习成果进行肯定和鼓励,激发学生的学习动力。
人教版七年级数学下册5.3.2命题、定理、证明教学设计

a.证明:三角形的内角和等于180度。
b.证明:对角线相等的平行四边形是矩形。
c.证明:圆的任意直径垂直于圆的切线。
3.结合生活实际,自行设计一个包含命题、定理和证明的数学问题,并用所学的知识进行解答。要求问题具有一定的挑战性,能够体现学生对几何知识的综合运用。
4.强调证明过程中需要注意的问题,如逻辑严密、步骤清晰等。
(三)学生小组讨论
1.将学生分成若干小组,每组分配一个几何问题,要求学生运用所学的定理和证明方法解决问题。
2.学生在小组内展开讨论,共同探讨解决问题的方法,教师巡回指导,给予提示和帮助。
3.各小组汇报讨论成果,分享解题过程和经验,其他小组进行评价和补充。
(三)情感态度与价值观
1.培养学生严谨、细致的学习态度,使学生认识到数学的严密性和逻辑性。
2.增强学生对数学美的感知,激发学生对数学学科的兴趣和热爱。
3.培养学生勇于探索、善于思考的品质,使学生体验到数学探究的乐趣。
4.引导学生将所学知识应用于实际生活,认识到数学在现实生活中的重要性,增强学生的社会责任感。
5.创设轻松愉快的学习氛围,鼓励学生提问、表达,激发学生的学习兴趣和积极性。
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握命题的概念,能够正确判断命题的真假。
2.熟悉基本的几何定理,并能运用定理解决实际问题。
3.学会运用逻辑推理进行证明,提高学生的逻辑思维能力。
4.能够将所学知识综合运用,解决复杂的几何问题。
(二)教学设想
1.创设情境,引入命题概念
-利用生活实例,如“两点之间线段最短”,引导学生理解命题的概念,并学会判断命题的真假。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.雷锋同志是伟大的共产主义战士!
命题是由题设和结论两部分组成的.一般都写成“如果……,那么……”的形式,“如果”后面是题设,“那么”后面是结论.
例“两直线平行,同旁内角互补”改写如下:如果两直线平行,那么同旁内角互补.
将下列各题改写成“如果……那么……”的形式,并指出下列各命题的题设和结论.
教学方法
讲练结合
教学手段
电子白板
课型
新课
教学环节
教学内容
教师活动
学生活动
活动1
认识命题及其构成
活动2
例题解析
活动3
跟踪训练
活动4
命题的改写
活动5
跟踪训练
活动6
真假命题及定理
活动7
跟踪训练
活动8
课堂小结
看下列句子有什么特点:
1.两直线平行,同位角相等.
2.对顶角相等.
3.3>2.
4.1+1=2.
5.今天是三八妇女节.
教学反思
1.同旁内角互补,两直线平行;
2.两条平行线被第三条直线所截,同旁内角互补;
3.邻补角是互补的角;
4.平行于同一直线的两直线平行;
5.等角的补角相等.
观看幻灯片理解真假命题.
如果题设成立时,结论一定成立的命题称为真命题;题设成立时,不能保证结论一定成立的命题称为假命题.
经过推理证实的真命题叫做定理.
哪些是真命题,哪些是假命题?
(1)内错角相等.
(2)邻补角一定互补.
(3)垂线段是点到直线的距离.
(4)两个锐角的和是锐角.
(5)互补的角是邻补角.
(6)两点之间线段最短.
(7)如果一个数能被2整除,那么它也能被4整除.
1.命题:判断一件事情的语句叫命题.
(1)正确的命题称为真命题,错误的命题称为假命题.
6.白马不是马.
7.猪有四条腿.
例下列语句是命题的是( )
A.你去哪里?
B.画一个圆
C.今天食堂的菜太好吃了!
D.相等的角是内错角
下列语句在表述形式上,哪些角.
3.两直线平行,同位角相等.
4.a、b两条直线平行吗?
5.若a+c=b+c,则a=b.
公理与定理都是真命题.
例平行线的判定定理、平行线的性质定理、平行公理都是真命题.
解:(2)、(6)是真命题,其余是假命题.
学生练习
板书设计
5.3.2命题、定理、证明
命题是由题设和结论两部分组成.题设是已知事项(已知条件),结论是由已知事项推出的事项(结论).
如果题设成立时,结论一定成立的命题称为真命题;题设成立时,不能保证结论一定成立的命题称为假命题.
命题是由题设和结论两部分组成.题设是已知事项(已知条件),结论是由已知事项推出的事项(结论).
疑问句、祈使句、感叹句不是命题
命题:判断一件事情的语句,要么肯定,要么否定,从语法上来讲它应该是一个陈述句,不能是祈使句、疑问句和感叹句.
1.有些命题题设和结论不明显,要经过分析才能找得出.例:猫有四条腿,即如果这个动物是猫,那么它就有四条腿.2.添加“如果”、“那么”后,1)命题的意思不能改变,2)句子要完整,语句要通顺.这样可以使命题的题设和结论更明朗,易于分辨.这就相当于语文中的句子扩写.
(2)命题的结构:命题由题设和结论两部分构成,常可写成“如果……,那么……”的形式.
2.定理:经过推理论证为正确的命题叫定理.也可作为继续推理的依据.
3.判断一个命题是假命题,只要举出一个例子,说明该命题不成立就可以了,这种方法称为举反例.
这些句子都有一个共同点,它们都是判断一件事情的语句,叫做命题.
宝坻区中小学课堂教学教案
授课教师:授课时间:
课题
5.3.2命题、定理、证明
课
时
教
学
目
标
1.认识命题与定理的概念,会区分命题的题设与结论,能准确判断命题的真假,能认识到数学证明的必要性,能有条理地表达说理.
2.体会到定理化的数学发展意义.
教学重点
掌握命题、定理的概念,了解证明的意义
教学难点
分清命题的组成,说出一个命题的逆命题;掌握推理的方法和步骤。