3-1半导体学与发光二极管
3二极管及其应用

硼(B)
三、PN结的形成及其单向导电性
物质因浓度差而产生的运动称为扩散运动。气 体、液体、固体均有之。
P区空穴 浓度远高 于N区。 N区自由电 子浓度远高 于P区。
扩散运动 扩散运动使靠近接触面P区的空穴浓度降低、靠近接触面 N区的自由电子浓度降低(相遇而复合) ,产生内电场。
PN 结的形成
由于扩散运动使P区与N区的交界面缺少多数载流子,形成 内电场,从而阻止扩散运动的进行。内电场使空穴从N区向P 区、自由电子从P区向N 区运动。 漂移运动 因电场作用所产 生的运动称为漂移 运动。
3、稳压二极管的应用电路 1)稳压电路
RL
Io IR Uo IZ IR Vo
例:某稳压管 U zW 10V, I zmax 20mA, RL 10k I 5mA zmin
要求:当输入电压由正常 值发生20%波动时,负载 电压基本不变。 求:限流电阻R和输入电 压 ui 的正常值。
0.8ui iR U zW 10R 10
联立方程,可解得:
i
R DZ
iL
ui 18.75V, R 0.5k
ui
iZ
RL
uo
2)限幅电路
四、发光二极管
发光二极管也叫LED,它是由砷化镓(GaAs)、磷化镓(GaP)、
磷砷化镓(GaAsP)等半导体制成的。不仅具有一般PN结的单向导电 性,而且在一定条件下,它还具有发光特性。
近似分析 中最常用
导通时UD=Uon 截止时IS=0
应根据不同情况选择不同的等效电路!
100V?5V?1V?
?
2. 微变等效电路
当二极管在静态基础上有一动态信号作用时,则可将二极 管等效为一个电阻,称为动态电阻,也就是微变等效电路。
电路与模拟电子技术-常用半导体器件与二极管电路

9/3/2020
12
5.1.4 杂质半导体
三价元素硼(B)
掺通入常三杂价质元半素导的体杂中质的半导多体子,的由数于量空可穴达载到流少子子的数数量量大的大10于10自倍由或电 更子多载,流因子此的,数掺量杂而半称导为空体穴要型比半本导征体半,导也体叫的做导P型电半能导力体增。强P型几半十 万导倍体。的多子是空穴,少子是自由电子,不能移动的离子带负电。
极管,由于反向饱和电流很小可以忽略不计, 穿
因此这一段范围可称为反向截止区。
区
外加反向电压超过反向击穿电压UBR时,反向电流突然增大,二极管失去单向 导电性,进入反向击穿区。
9/3/2020
27
5.2.3 二极管的主要技术参数
最大耗散功 率Pmax指通过 二极管的电 流与加在二 极管两端电 压的乘积。 最大耗散功 率是二极管 不能承受的 最高温度的 极限值。超 过此值,二 极管将烧损。
内电场对多数载流子扩散运动的阻力,故正向电流很小, 几乎为零。这一区域称之为死区。
外加正向电压超过死区电压(硅管0.5V, 锗管0.1V)时,内电场大大削弱,正向电流
正
向 导 通 死区 区
迅速增长,二极管进入正向导通区。
反向截止区
当二极管两端加反向电压时,将有很小的、 反
向
由少子漂移运动形成的反向饱和电流通过二 击
外壳 金属触丝 PN结
9/3/2020
23
1
1. 点接触型
2
2. 面接触型
3
3. 平面型
铝合金小球 底座
正极引线 PN结 金锑合金
负极引线
9/3/2020
面接触型二极管特点
面接触型二极管 的PN结面积较大 ,允许通过较大 的电流(几安到 几十安),主要 用于把交流电变 换成直流电的整 流电路中,也可 以用于大电流开 关元件。
光纤通信技术-第三章-光源与光发射系统-电子教案 (3)

10.什么是张弛振荡?简述张弛振荡产生的原因。
11.什么是码型效应?如何消除码型效应。
12.什么是自脉动现象?自脉动现象有哪些特点?
13.光源的间接调制方法有哪些?
14.光纤通信系统对光发射机的基本要求有哪些?
15.光发射机为什么要进行自动温度控制?
16.光纤通信系统对光源器件的基本要求有哪些?
17.简述激光器的结发热效应。
18.何谓激光器的偏置电流?应如何选择偏置电流?
120.构成激光器必须具备的条件有哪些?
21.在光纤通信系统中,光源为什么要加正向电压?
22.简述半导体激光器的特性。
23.简述F-P腔半导体激光器的结构。
24.光发射机主要有哪些部分组成?简述各部分的作用。
4、课后作业:6。
3.4新型半导体激光器
重点介绍分布式反馈激光器的结构特点,引出在此特点基础上的发光原理,并指明它所具有的独特优点;简要介绍耦合腔半导体激光器与量子阱激光器的结构与特点。
3.5光源的调制
重点介绍光源的直接数字调制以及可能产生的效应:电光延迟、张弛振荡、自脉动、码型效应等。简要介绍光源的三种间接调制方式,包括:声光调制、热光调制和磁光调制。
3.6光发射机
首先介绍通信系统对光发射机的基本要求;重点介绍光发射机的组成与功能,包括:输入电路、光源和控制电路。
1:计划学时:2学时
2:讲授要求:
注意区分新型激光器与F-P腔激光器在结构和性能上的不同,使学生能够对前后学习的知识有一个连贯性的认识;详细介绍光发射机的三个组成部分,使学生清楚各部分的主要功能。
课程
光纤通信技术
章节
第三章
学期
2013/2014学年第一学期
半导体激光器和发光二极管

半导体激光器(LD)和半导体发光二极管(LED)
半导体光源的优点:
❖ 体积小、重量轻、耗电少、易于光纤耦合 ❖ 发射波长适合在光纤中低损耗传输 ❖ 可以直接进行强度调制 ❖ 可靠性高
光 纤 通 信 系统
1
第2讲
一. 激光原理的基础知识
1、光的吸收和放大 1)能级和能带
2)能级的光跃迁 3)光的吸收和放大
(1) 边发射结构
这是一种沿着有源区的结平面方向提取光的结构,上 面介绍的条形半导体激光器一般都采用这种结构提取光 。
(2) 面发射结构
这是由表面发射光的结构,它的发射结构又分成水平 腔和垂直腔结构。
光 纤 通 信 系统
29
第2讲
结构特点: 1) 发射方向垂直于或倾斜于PN结平面 2) 形成面发射的机理有多种情况,包括垂直腔型、水平腔型和 向上弯腔型激光器。其中,垂直腔面发射激光器(VCSEL)是 面发射激光器中最有前途的一种激光器 .
光 纤 通 信 系统
该能级被电子占据概率等于50%
该能级被电子占据概率大于50% 该能级被电子占据概率小于50%
11
第2讲
各种半导体中电子的统计分布
本征半导体 P型半导体 N型半导体
兼并型P型半导体 兼并型N型半导体 双兼并型半导体
光 纤 通 信 系统
12
第2讲
导带
禁带
Ef
价带
(a) 本征半导体
要APC • 高工作速率(达3Gb/s以上) ,高张弛振荡频率 • 易集成,低价格,高产量
光 纤 通 信 系统
32
第2讲
2、量子阱激光器
结构特点:有源区非常薄 量子阱(QW,Quantum Well) 半导体激光器是一种窄
半导体光电子学

1.半导体中与光有关的3种量子现象 : 自发发射(半导体发光二极管LED的工作原理),受激吸收(光电导,光探测器的工作原理),受激发射(半导体激光器LD,半导体光放大器SOA的工作原理). 填空2.半导体在光电子学中独有的特点: ①半导体能带中存在高的电子态密度,因而在半导体中有可能具有很高的量子跃迁速率②在半导体同一能带内,处在不同激励状态的电子态之间存在相当大的互作用(或大的公有化运动),这种互作用碰撞过程的时间常数与辐射过程的时间常数相比是很短的,因而能维持每个激励态之间的准平衡.③半导体中的电子态可以通过扩散或传导在材料中传播,可以将载流子直接注入发光二极管或激光器的有源区中,因而有很高的能量转换效率.④在两能级的激光系统中,每一处于激发态的电子有它唯一返回的基态(即某一特定的原子态) 理解3.爱因斯坦关系说明什么问题: 爱因斯坦关系B12=B21;A21=8πn3ℎv3c3B21爱因斯坦关系表示了热平衡条件下自发发射,受激发射与受激吸收三种跃迁几率之间的关系4.粒子数反转条件(伯纳德-杜拉福格条件)f c>f v(导带电子占据几率大于价带电子占据几率); F c−F v>ℎv (准费米能级之差大于作用在该系统的光子能量);ΔF≥E g (准费米能级之差大于等于禁带宽度)5.异质结能带图:Pn能带图6. 弗伽定律:7. 异质结对载流子和光子的限制:NpP 结构异质结中①由N 型限制层注入p 型有源层的电子将受到pP 同型异质结的势垒的限制,阻挡它们向P 型限制层内扩散.②pN 型异质结的空穴势垒限制着有源层中的多数载流子空穴向N 型限制层的运动. ③由于能产生光波导效应,从而限制有源区中的光子从该区向宽带隙限制层逸出而损失掉。
n 1 < n 2 > n 38. 激光器的构成:①激光工作介质②激励源③光学谐振腔9. 光子和费米子的差别:光子属于玻色子,服从玻色爱因斯坦分布.电子属于费米子服10.K选择定则的定义:不管是竖直跃迁还是非竖直跃迁,也不论是吸收光子还是发射光子,量子系统总的动量和能量必须守恒,这就是跃迁的k选择定则11.同质结和异质结或同型异质结和异型异质结空间电荷区的差别:①同质结:当P型半导体和N型半导体结合在一起时,由于交界面处存在载流子浓度的差异,这样电子和空穴都要从浓度高的地方向浓度低的地方扩散。
半导体光电子学第6章 半导体发光二极管

半导体激光器与发光二极管在结构上的主要差别是前 者有光学谐振腔,使复合所产生的光子在腔内振荡和 放大;而后者则没有谐振腔。
正是由于它们在发光机理和上述这一基本结构上存在 差别,而使它们在主要性能上存在明显差别。
光谱宽度随有源层厚度的增 加而减小可归因于能为载流 子所填充的能带变窄。
面发光二极管的光谱宽度较宽。例如, 在高的注入电流下中心波长为1.3m 的面发光管,其Δ可达1300Å。但 它对温度不灵敏、高可靠性和低成本 等优点,却是光纤通信局部网(LAN) 中波分复用(WDM)光源所希望的。
然而,如此宽的谱宽限制了在保证邻 近信道之间有小的串音的前提下所能 供复用的波长数量。
防止发光管产生受激发射的另一种有效方法是将后端面弄斜, 以破坏由解理面形成的法布里-拍罗腔,如图6.2-2所示。其 基本结构与V沟衬底埋层异质结激光器相同,前端面镀增透 膜,后端面腐蚀成斜面。这种结构的特点是更能可靠地防止 受激发射,与前面采取非泵浦区结构的边发光管相比,更能 利用有源层的长度来产生自发辐射,获得较高输出功率。
1.不存在阈值特性,P-I线性好,因而有利于实现信 号无畸变的调制,这在高速模拟调制中是特别重要的;
2.虽然半导体发光二极管的光相干性很不好,但正因 为如此,避免了半导体激光器容易产生模分配噪声和 对来自于光纤传输线路中反射光较灵敏的缺点; 3.工作稳定,输出功率随温度的变化较小,不需要精 确的温度控制,因而驱动电源很简单;
三、发光二极管的发射谱
半导体发光二极管的自发发射的特点决定了它的发射光 谱是很宽的,要比半导体激光器的线宽高几个数量级。 而且光谱宽度Δ与峰值波长有关,可表示为
半导体发光二极管工作原理特性及应用

半导体发光二极管工作原理特性及应用半导体发光器件包含半导体发光二极管(简称LED)、数码管、符号管、米字管及点阵式显示屏(简称矩阵管)等。
事实上,数码管、符号管、米字管及矩阵管中的每个发光单元都是一个发光二极管。
一、半导体发光二极管工作原理、特性及应用(一)LED发光原理发光二极管是由Ⅲ-Ⅳ族化合物,如GaAs(砷化镓)、GaP(磷化镓)、GaAsP (磷砷化镓)等半导体制成的,其核心是PN结。
因此它具有通常P-N结的I-N 特性,即正向导通,反向截止、击穿特性。
此外,在一定条件下,它还具有发光特性。
在正向电压下,电子由N区注入P区,空穴由P区注入N区。
进入对方区域的少数载流子(少子)一部分与多数载流子(多子)复合而发光,如图1所示。
假设发光是在P区中发生的,那么注入的电子与价带空穴直接复合而发光,或者者先被发光中心捕获后,再与空穴复合发光。
除了这种发光复合外,还有些电子被非发光中心(这个中心介于导带、介带中间邻近)捕获,而后再与空穴复合,每次释放的能量不大,不能形成可见光。
发光的复合量相关于非发光复合量的比例越大,光量子效率越高。
由于复合是在少子扩散区内发光的,因此光仅在靠近PN结面数μm以内产生。
理论与实践证明,光的峰值波长λ与发光区域的半导体材料禁带宽度Eg有关,即λ≈1240/Eg(mm)式中Eg的单位为电子伏特(eV)。
若能产生可见光(波长在380nm紫光~780nm红光),半导体材料的Eg应在3.26~1.63eV之间。
比红光波长长的光为红外光。
现在已有红外、红、黄、绿及蓝光发光二极管,但其中蓝光二极管成本、价格很高,使用不普遍。
(二)LED的特性1.极限参数的意义(1)同意功耗Pm:同意加于LED两端正向直流电压与流过它的电流之积的最大值。
超过此值,LED发热、损坏。
(2)最大正向直流电流IFm:同意加的最大的正向直流电流。
超过此值可损坏二极管。
(3)最大反向电压VRm:所同意加的最大反向电压。
发光二极管的材料

发光二极管的材料发光二极管(LED)是一种半导体器件,其发光原理是通过半导体材料的电子跃迁而产生的。
在LED的制造过程中,材料的选择对其性能和发光效果起着至关重要的作用。
下面我们将介绍LED常用的材料及其特性。
1. Ⅲ-Ⅴ族化合物半导体材料。
Ⅲ-Ⅴ族化合物半导体材料是LED制造中最常用的材料之一,包括氮化镓、磷化铝、砷化镓等。
这些材料具有较大的带隙能量,因此可以发射可见光甚至紫外光。
其中,氮化镓材料的发展尤为迅速,其发光效率和稳定性都得到了大幅提升。
此外,磷化铝材料也被广泛应用于LED的制造中,其发光波长覆盖了红、橙、黄等颜色。
2. Ⅱ-Ⅵ族化合物半导体材料。
Ⅱ-Ⅵ族化合物半导体材料也是LED的重要材料之一,主要包括硫化镉、硒化锌等。
这些材料通常用于制造红外LED,其发光波长较长,适用于红外通信、遥控器等领域。
此外,硒化锌材料也可以用于制造蓝光LED,其发光效果优异。
3. 磷化物材料。
磷化物材料是一类新型的LED材料,其发光效率和稳定性均优于传统的Ⅲ-Ⅴ族和Ⅱ-Ⅵ族化合物半导体材料。
磷化物LED可以实现更高的发光效率和更广泛的发光波长范围,因此在照明、显示等领域具有广阔的应用前景。
4. 硅基LED材料。
硅基LED材料是近年来备受关注的新型材料,其制备工艺相对简单,成本较低,且可以与传统的硅基电子器件兼容。
虽然硅基LED的发光效率较低,但由于其在集成电路领域的优势,仍然具有重要的应用价值。
5. 其他材料。
除了上述几类常用的LED材料外,还有一些新型材料正在被研究和开发,如氮化铟镓、氮化铟镓锡等。
这些材料在发光效率、发光波长范围、稳定性等方面均具有优势,有望成为未来LED制造的重要材料。
总的来说,LED的材料选择对其性能和应用领域有着重要影响。
随着半导体材料科学的不断发展和进步,LED材料的种类将会更加丰富,其性能也将得到不断提升。
相信在不久的将来,LED将会在照明、显示、通信等领域发挥越来越重要的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光致电子发射 功函数Φ
Li原子
Li金属
费米能级EF Li金属
P163 图3.2
自由电子浓度n的计算
电子浓度/单位能量
费米能级EF 状态密度 费米-狄拉克函数
自由电子浓度n的计算
状态密度
费米-狄拉克函数
电子浓度
P165 图3.3
3.1半导体概念和能带概述 3.2半导体的统计分布 3.3非本征半导体 3.4直接带隙和间接带隙半导体:E-k能带图
3.2半导体的统计分布
P167 图3.6
电子浓度 /单位能量
能带图
态密度 费米函数
空穴浓度 /单位能量
导带中自由电子浓度的计算 费米函数
非简并
导带电子的态密度 自由电子浓度
玻尔兹曼函数 导带态密度:
3.1半导体概念和能带概述
B. 半导体的能带图
导带CB T=0 K无电子
共价键 原子核(+4)
价带 价带VB
能带图 T=0 K充满电子
:电子的亲和能 导带
P165 图3.4
价带 光致自由电子示意图
空穴产生和运动
P166 图3.5 空穴与电子复合
半导体中空穴的运动
主要内容
导带中自由电子浓度
价带中自由空穴浓度
本征电子浓度ni
本征半导体中的载流子浓度
纯净半导体,无任何掺杂:
n=p=ni
3.2半导体的统计分布
外加电压V引起费米能级变化
主要内容
3.1半导体概念和能带概述 3.2半导体的统计分布 3.3非本征半导体 3.4直接带隙和间接带隙半导体:E-k能带图
P170 图3.7
3.3非本征半导体 施主:donor
施主杂质As浓度Nd
A. n型和p型半导体 自由电子
n型半导体
电子浓度n 空穴浓度p
电导率:
一般来说: ni=1e10 cm-3 轻掺杂: Nd=1e16 cm-3 重掺杂: Nd=1e18 cm-3
电子迁移率μe
空穴浓度p 电子浓度n 电导率:
P171 图3.8
P178 图3.13 能带图
导带
光子
导带 光子
价带
P179 图3.14
在GaP:N中 电子从Er至Ev 发射出绿色光子
光子 直接带隙GaAs 间接带隙Si
间接带隙Si 含复合中心Er
非简并半导体: 费米能级位于 禁带内部
n型半导体
p型半导体
简并半导体: 费米能级进入 导带或价带
杂质形成了 一个能带 常规抛物线 能带
P174 图3.10 n型简并半导体 p型简并半导体
组合能带
能带尾部
3.3非本征半导体
D. 外加电场下的能带图
外加电压V引起费米能级变化
P170 图3.11
例题3.3.1 半导体中的费米能级
受主:acceptor 受主杂质B浓度Na 自由空穴 p型半导体
P172 图3.9
本征半导体
n型半导体
p型半导体
不同类型半导体的能带图
3.3非本征半导体
B. 补偿掺杂 同时掺杂n型杂质和p型杂质
n型杂质多:n型半导体—自由电子主导
p型杂质多:p型半导体—自由空穴主导
3.3非本征半导体
C. 非简并半导体和简并半导体
P175 例题3.3.1
n型半导体
p型半导体
例题3.3.2 n型Si的电导率 本征Si(未掺杂)的电导率:
n型Si(掺杂)的电导率:
P175 例题3.3.2
结论:
n型Si的电导率 掺杂之后大幅提高
主要内容
3.1半导体概念和能带概述 3.2半导体的统计分布 3.3非本征半导体 3.4直接带隙和间接带隙半导体:E-k能带图
3.4直接带隙和间接带隙半导体:
E-k能带图
P177 图3.12
晶体内的电子势能V(x) 势能的周期等于晶体的周期a
晶体内的电子势能:
薛定谔方程: 动能
布洛赫波函数:
势能
总能量E
电子的波矢 (量子化)
考虑波随时间的变化
电子的波矢 (量子化)
电子的动能:
外力:
直接带隙半导体,例如:GaAs E-k图
半导体学与发光二极管
第一部分
我想要得到可见光,因为我知道,如果我能得到 红光,其他颜色将成为可能。Nick Holonyak Jr.
主要内容
3.1半导体概念和能带概述 3.2半导体的统计分布 3.3非本征半导体 3.4直接带隙和间接带隙半导体:E-k能带图
P162 图3.1
3.1半导体概念和能带概述