光伏发电及其应用简介

合集下载

光伏发电技术及其应用分析

光伏发电技术及其应用分析

光伏发电技术及其应用分析随着全球气候变化问题日益严峻,清洁能源成为了许多国家政策中不可或缺的一部分。

近年来,光伏发电技术作为一种清洁、环保、可再生的能源,其发展速度越来越快。

本文将探讨光伏发电技术的基本原理、分类、应用以及未来发展趋势。

一、光伏发电技术基本原理光伏发电技术是一种利用太阳能光子对半导体材料的光电转换能力来产生电能的技术。

其基本原理是将半导体材料暴露在阳光下,太阳能光子与半导体原子相互作用,激发出电子。

此时,原子大部分带正电,而激发出来的电子带负电,这种程度不平衡形成了电场,电子在电场的作用下被吸引到另一个接触面上,这样就产生了光电流。

光电流可以被蓄电池、用电器直接使用,也可以通过变频器转换为交流电。

二、光伏发电技术的分类根据不同的半导体材料,光伏发电技术可以分为单晶硅、多晶硅、非晶硅、柔性硅、有机光伏等不同种类。

其中,单晶硅和多晶硅被广泛应用于光伏发电市场,其性能稳定、效率高、使用寿命长成为市场主流产品。

另外,也有一些不同形态的光伏发电装置,例如光伏电池板、光伏薄膜、光伏玻璃等,他们形状各异,但都可以实现太阳能光子转化为电能的功能。

三、光伏发电技术的应用1. 太阳能光伏发电系统太阳能光伏发电系统是利用太阳光伏发电技术来将光能转化为电能。

其系统由发电部分、储能部分和控制部分组成,发电部分由太阳能电池板构成,储能部分由蓄电池构成,控制部分采用微控制器技术。

这种系统可以广泛应用于农村、山区等没有电网的地方,还可以用于光伏发电站。

2. 光伏发电空调系统光伏发电空调系统是指用光伏发电技术驱动空调的系统。

该系统利用光伏电池板中的太阳能,将其转换为电能,再经逆变器转化为交流电再供电给空调。

其特点是非常环保、节能、适用范围广,可以应用于居民房屋、商店等空间中。

四、光伏发电技术的未来发展趋势光伏发电技术是未来清洁能源领域的重要研究方向,未来将会出现更多的创新技术,优化前沿设备,降低光伏发电系统的成本,更加方便大众普及和应用。

太阳能光伏发电及其在环保中的应用

太阳能光伏发电及其在环保中的应用

太阳能光伏发电及其在环保中的应用近年来,全球环保议题越来越受到人们的关注。

随着科技的发展,太阳能技术逐渐成为环保领域的重要产物,尤其是太阳能光伏发电技术。

本文旨在对太阳能光伏发电及其应用进行探讨。

一、太阳能光伏发电的原理太阳能光伏发电是通过将太阳辐射能转化为电能的一种技术。

它的原理是利用光电效应,将太阳的辐射能转化为电能。

太阳辐射能可以被太阳能电池板所吸收,然后通过半导体材料的P型和N型结合层形成电势差,并生成电流,最终输出电能。

二、太阳能光伏发电的优势太阳能光伏发电技术具有多种优势。

首先,太阳能光伏发电不会排放有害气体和污染物,因此对环境非常友好,可实现零排放。

其次,太阳能资源十分丰富,是可再生资源。

太阳能不但日光充足、形成面广,而且无需输送,可直接利用于发电,稳定性高。

第三,太阳能光伏发电成本逐年降低,经济效益日益显现。

近年来,太阳能光伏技术得到了迅速发展,并成为可再生能源中最具潜力的技术之一。

三、太阳能光伏发电的应用太阳能光伏发电在环保中的应用十分广泛。

首先,国家在维护环境保护的同时,大力开展太阳能光伏产业,鼓励并支持太阳能研究与应用。

其次,太阳能光伏发电技术已被广泛应用于家庭、工业、商业和公共设施等场所,用于供电或热水。

再次,太阳能光伏发电技术与储能技术结合可以形成分布式能源系统,实现去中心化的能源供应。

四、太阳能光伏发电技术的发展前景太阳能光伏发电技术的发展前景广阔。

首先,国际市场以及国内市场的需求在逐年增长,发展前景非常好。

其次,政府扶持政策持续加强,太阳能光伏发电产业链不断完善,生产成本不断降低。

第三,太阳能光伏发电与储能技术的结合,可以实现系统性的能源构建,使得能源使用更为智能。

综上所述,太阳能光伏发电技术是可再生能源发展中最被看好的一项技术。

未来,随着科技的进步和政府支持力度的不断加强,太阳能光伏发电技术必将在环保领域中发挥越来越重要的作用。

光伏技术的发展及其应用

光伏技术的发展及其应用

光伏技术的发展及其应用近年来,随着环保意识的不断提高和能源需求的增长,光伏技术逐渐受到人们的关注。

光伏技术是指利用太阳能进行发电的一种技术,其发电过程无需燃料消耗,不会产生污染,具有低碳、环保的特点,逐渐成为替代传统化石能源的选择。

一、光伏技术的发展历程早在19世纪,人们就开始利用光电效应进行实验,但直到20世纪50年代,太阳电池才真正开始应用于生产实践。

随着技术的不断发展,太阳能电池的效率不断提高,成本不断降低,以至于光伏发电逐渐成为一种具有广泛应用前景的新兴能源。

二、光伏技术的应用1、屋顶光伏发电系统屋顶光伏发电系统可以将太阳能转化为电能,供家庭使用,既可以减少能源消耗,又可以减少家庭能源支出。

2、公共设施光伏发电系统公共设施光伏发电系统是在公共场所,如学校、医院、商场等设立太阳能电池板,将光能转化成电能供公众使用,减少对传统能源的浪费。

3、光伏农业光伏农业利用光伏发电的技术特点,将太阳能电池板设立在农业用地上,在发电的同时,为农业生产提供遮阳、保温和灌溉的作用,增加了农业的收成。

4、光伏制氢技术光伏制氢技术是指利用太阳能发电,将电能转化为化学能,利用化学反应产生氢气,将其储存起来便于使用,为替代传统化石能源提供了一种可行的解决方案。

三、光伏技术的前景目前,中国已成为世界上最大的光伏市场之一,随着技术的不断发展和成本的不断降低,光伏技术正在逐渐向普及化方向发展。

未来,光伏技术将在能源领域发挥更加重要的作用,在推进能源低碳化、减少污染等方面发挥积极作用。

总之,光伏技术作为一种清洁、环保、具有广泛应用前景的新兴能源,将逐渐走进人们的生活和生产中。

我们需要加大对光伏技术的投入和研发,努力将光伏技术发展成为可持续发展的重要支柱之一。

太阳能光伏发电技术及其应用

太阳能光伏发电技术及其应用

太阳能光伏发电技术及其应用太阳能光伏发电技术的应用有效地解决了偏远地区电能的供应性问题,同时其广泛应用有助于缓解能源短缺现状,有望成为替代能源,同时也应该看到,太阳能光伏发电技术的研究和应用还存在着很多问题需要解决和研究,特别是在我国这样一个起步比较晚的国家,但毋庸置疑的是,随着科研人员的不断努力,未来太阳能光伏发电技术的技术瓶颈一定会被不断突破,而其应用前景也将越来越广阔。

本文就太阳能光伏发电技术及其应用进行简单的阐述。

标签:太阳能;光伏发电技术;应用1、太阳能光伏发电技术1.1太阳能电池技术对于太阳能光伏发电系统而言,光伏电池在其中占据着最重要的地位,然而在应用光伏电池时光电转换的效率以及生产的成本是其最应当注重的问题。

随着科技的进步,人们开始对第一代光伏电池进行了改变,在光伏电池这能够加入了许多的非硅材料,一方面能够减少制作材料的成本,同时在降低半导体材料对电能消耗方面也有著十分显著的作用。

1.2光伏阵列的最大功率跟踪技术根据实际的情况,光伏阵列功率在输出时通过非线性的传导,能够与周围的环境、光照强度以及负载状况等因素联系在—起。

从图1我们可以看出,图上的两条曲线分别表示了光伏阵列的电流以及电压输出的特性。

其中A点表示的是当曲线1以及曲线2在太阳光照强度不同的情况下,光伏阵列某个时刻的运行轨迹的相交。

一旦太阳辐照强度出现变化,输出特性曲线也会随之改变,从1上升到2,此时若负载1若保持不变,则系统会停留在A′上,其功率与相应的最大点存在了一定的距离。

而将负载特性将1变化到2,则太阳辐照度变化也会由2转为1,相应的工作点会从B点转为B′点。

1.3聚光光伏技术太阳的光能经过路径出现损耗,因此地面上太阳光能中的能量十分有限,而聚光光伏技术的产生,不仅能够减少路径对太阳光能的损耗,同时还能进—步增加太阳能的使用效率。

其主要的工作原理是使用面积较小的高性能聚光电池来聚集太阳光,这样能够在提高太阳光辐照密度的同时,有效的减少生产的成本。

光伏发电的原理及应用

光伏发电的原理及应用

光伏发电的原理及应用1. 前言光伏发电是指利用太阳能将光能转化为电能的一种技术。

随着环境保护意识的增强和新能源政策的推动,光伏发电逐渐成为现代能源领域的重要组成部分。

本文将介绍光伏发电的原理及其应用。

2. 光伏发电的原理光伏发电的原理是基于光电效应,即当阳光打在半导体材料上时,能量被吸收并转化为电能。

具体来说,光子的能量被吸收后会激发材料中的电子,使其脱离原子成为自由电子。

这些自由电子可以在材料中形成电流,被导线收集起来供电使用。

3. 光伏发电系统的构成光伏发电系统主要由光伏组件、逆变器、储能装置和配电系统等组成。

下面将分别介绍这些组成部分的功能。

3.1 光伏组件光伏组件是光伏发电系统的核心部件,也是直接与太阳能进行能量转化的部分。

它由多个光伏电池组成,一般使用硅材料制作。

光伏组件将太阳光转化为直流电能,并输出给逆变器进行进一步处理。

3.2 逆变器逆变器是将光伏组件输出的直流电能转换为交流电能的装置。

由于光伏组件产生的是直流电,而家庭和工商业用电大多是交流电,因此需要通过逆变器将直流电转换为交流电以供使用。

3.3 储能装置储能装置用于存储光伏发电系统产生的电能。

当光照条件不理想或需求大于光伏系统产生的电能时,储能装置可以提供额外的电能,保证供电稳定。

3.4 配电系统配电系统将光伏发电系统产生的电能分配给需要的地方。

它包括电线、插座、断路器等设备,确保电能能够安全、有效地传输。

4. 光伏发电的应用4.1 家庭应用在家庭中,光伏发电系统可以安装在屋顶上,通过吸收太阳能将阳光转化为电能,供给家庭使用。

这种应用方式可以减少使用传统能源的依赖,降低家庭的能源消耗。

4.2 商业应用光伏发电系统在商业领域也有广泛的应用。

许多企事业单位、商业建筑等安装了光伏系统,通过光伏发电减少用电成本,降低对传统能源的需求,同时也能为企业树立环保形象。

4.3 农业应用光伏发电在农业领域的应用也越来越普遍。

农业温室、水泵、灌溉系统等都可以使用光伏发电系统提供电能,降低能源成本,提高农业生产效率。

光伏发电技术及应用

光伏发电技术及应用
针对小型企业用电需求,建设光 伏电站,提供清洁、可再生的电 力供应,降低企业能源成本。
光伏发电技术在大型企业及工业园区的应用
大型企业光伏电站
在大型企业厂房屋顶或空地上安装光 伏板,为企业提供稳定的电力来源, 降低生产成本。
工业园区光伏电站
在工业园区内建设集中式光伏电站, 整合园区内企业用电需求,优化能源 结构,降低碳排放。
定性和可靠性。
光伏发电技术面临的挑战与问题
成本问题
虽然光伏发电技术不断降低成本,但目前光伏发电成本仍然较高, 需要进一步降低成本以扩大应用范围。
储能技术
光伏发电的间歇性特点需要储能技术的支持,但目前储能技术尚未 成熟,需要加强研发和应用。
土地资源
光伏电站建设需要占用大量土地资源,需要合理利用土地资源,避 免对生态环境造成不良影响。
采用不同的半导体材料构成异质结结构, 利用不同材料的光谱吸收特性和能级结构 ,提高光电转换效率。
02
光伏发电技术的工作原理
光伏效应
光伏效应定义
光伏效应是指光照射在物质上, 引起物质电导率变化的现象。
光伏效应的发现
光伏效应由法国物理学家贝克雷尔 于1839年发现,随后于1940年由 萧特基和贝尔格兰证实并命名为“ 光伏效应”。
收益分析
光伏发电项目的投资回报率较高,具 有一定的盈利空间,对于投资者来说 具有较大的吸引力。
风险评估
虽然光伏发电技术具有广阔的市场前 景,但也存在一定的投资风险,如政 策风险、技术风险等。
投资建议
投资者在选择光伏发电项目时需要充 分考虑各种因素,进行科学合理的评 估和决策。
THANKS
感谢观看
光伏发电系统的优势
光伏发电系统具有环保、可再生、节能、安装灵活等优势,已成为全球范围内大力推广的清洁能源技术 之一。

光伏发电技术及应用

光伏发电技术及应用

光伏发电技术及应用2019 廖东进目录前言错误!未定义书签。

项目1 太阳能光伏系统认识31.1太阳能光伏发电的应用及特点31.1.1光伏发电应用31.1.2光伏发电特点81.2 光伏发电系统认识111.2.1光伏发电系统工作方式111.2.2太阳能光伏发电系统的组成及分类16项目2 太阳能资源的获取222.1我国太阳能资源分布222.2太阳辐资源获取272.2.1 太阳能辐射量组成272.2.2 太阳能辐射量测量312.3太阳能辐射量估算33项目3光伏电池组件及方阵容量设计373.1光伏单体电池发电特性认识373.1.1单体电池参数认识373.1.2单体电池输出特性分析40 3.2 光伏组件输出特性分析45 3.3光伏方阵结构设计48 3.4光伏方阵容量设计54项目4 光伏储能设备认识及设计614.1铅酸蓄电池的认识614.2蓄电池的选择及容量设计694.3蓄电池的选购、安装、维护734.4超级电容器的认识及使用77项目5 光伏控制器认识865.1太阳能控制器认识865.1.1光伏控制器功能865.1.2光伏控制器分类及控制原理915.2光伏电池最大功率点跟踪方法975.3典型光伏控制应用及选购1005.4典型光伏控制电路制作1055.4.1蓄电池电压检测器电路制作1055.4.2铅酸蓄电池充放电电路1065.4.3太阳能草坪灯控制电路制作1125.5超级电容在LED灯具中的应用116项目6 光伏逆变器1196.1逆变器认识及测试1196.2光伏逆变器控制原理1246.2.1光伏逆变器工作原理1246.2.2独立型逆变器1296.2.3并网型逆变器1356.3小功率逆变器制作141项目7 光伏发电系统容量设计1447.1光伏系统容量设计考虑因素1447.2太阳能光伏发电系统容量的设计与计算1517.2.1光伏发电系统组件容量设计1517.2.2蓄电池和蓄电池组容量设计1557.2.3以太阳辐射量为参数的其他设计方法1607.3并网光伏发电系统容量的设计与计算167项目8 太阳能光伏发电系统的整体配置与相关设计1728.1太阳能光伏发电系统的整体配置1728.2光伏发电供配电系统设计1828.3太阳能光伏发电系统配置设计实例193项目9 RETScreen软件应用2029.1 RETScreen认识2029.2 RETScreen光伏模型中的应用2049.2.1能源模型初始化2049.2.2能源模型分析2059.2.3成本分析模型设计2079.2.4减排量分析2099.2.5财务分析211参考文献213项目1 太阳能光伏系统认识1.1太阳能光伏发电的应用及特点1.1.1光伏发电应用任务目标:1.了解光伏发电的应用领域;2.掌握光伏发电主要应用方式;3.掌握我国光伏发电十二五发展规划的方向及目标。

光伏发电原理及应用

光伏发电原理及应用

光伏发电原理及应用光伏发电是利用光的能量直接转换成电能的一种技术。

它主要依靠光伏效应来实现,光伏效应是指当光照射到半导体材料上时,光子能量会激发材料内的电子,使其跃迁到导带中产生电流。

光伏发电主要由光伏电池组成,而光伏电池则是由多个光伏电池片串联或并联构成。

光伏电池的基本结构由两层半导体材料组成,一层是P型半导体,另一层是N型半导体,它们之间的结面就是PN结。

当光照射到PN结上时,光子的能量会被吸收,并激发出电子-空穴对,形成电流。

光伏发电技术广泛应用于各种领域。

首先是太阳能光伏发电站,这是最主要的光伏发电应用之一。

太阳能光伏发电站利用大面积的光伏电池板,将太阳能转化为电能,并通过逆变器将直流电转化为交流电,供电给城市、农村或大型工业设施。

其次是家庭分布式光伏发电系统,这是将光伏发电应用于家庭的方式。

家庭庭院或屋顶安装光伏电池板,将太阳能转化为电能,减少对传统电网的依赖。

还可以将多余的电能销售给电力公司。

此外,光伏发电还广泛应用于航空航天、交通运输、农业灌溉、海岛供电等领域。

光伏发电有其独特的优点和局限性。

首先,光伏发电是一种清洁、可再生能源的利用方式,不会产生污染物和温室气体。

其次,太阳能光伏发电是分布式发电,可以灵活布局,减少输电损耗。

光伏发电的寿命长,经久耐用,维护成本低。

此外,光伏发电系统运行稳定,可靠性高。

然而,光伏发电也存在一些限制。

首先,光伏发电受到天气条件的影响,阴天、雨天或夜晚的太阳能收集效率较低。

其次,目前光伏发电技术的成本仍较高,需要进一步降低。

为了提高光伏发电的效率和可持续性发展,研究人员进行了许多改进和创新。

一是多晶硅太阳能电池的研发,它具有制造成本低、稳定性好的优点。

二是薄膜太阳能电池的研究,它可以在柔性基底上制备,具有较高的柔性和可塑性。

三是有机太阳能电池的研究,它采用有机半导体材料制造,具有成本低、可塑性好的特点。

此外,还研究了光伏发电与储能技术的结合,以解决光伏发电不稳定的问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光伏发电及其应用简介03A石XX利用太阳光发电是人类梦寐以求的愿望。

从二十世纪五十年代太阳能电池的空间应用到如今的太阳能光伏集成建筑,世界光伏工业已经走过了近半个世纪的历史。

90年代以来,太阳能光伏发电的发展很快,已广泛用于航天、通讯、交通,以及偏远地区居民的供电等领域,近年来又开辟了太阳能路灯、草坪灯和屋顶太阳能光伏发电等新的应用领域。

太阳能是人类取之不尽用之不竭的可再生能源,具有充分的清洁性、绝对的安全性、相对的广泛性、确实的长寿命和免维护性、资源的充足性及潜在的经济性等优点,在长期的能源战略中具有重要地位。

据记载,人类利用太阳能已有3000多年的历史。

将太阳能作为一种能源和动力加以利用,只有300多年的历史。

近代太阳能利用历史可以从1615年法国工程师所罗门·德·考克斯在世界上发明第一台太阳能驱动的发动机算起。

该发明是一台利用太阳能加热空气使其膨胀做功而抽水的机器。

真正将太阳能作为“近期急需的补充能源”,“未来能源结构的基础”,则是近来的事。

20世纪70年代以来,太阳能科技突飞猛进,太阳能利用日新月异。

我们对太阳能的利用大致可以分为光热转换和光电转换两种方式,其中,光电利用(光伏发电)是近些年来发展最快,也是最具经济潜力的能源开发领域。

太阳能电池是光伏发电系统中的关键部分,包括硅系太阳电池(单晶硅、多晶硅、非晶硅电池)和非硅系太阳能电池等。

在晶体硅太阳能电池的产业链上分布着晶硅制备、硅片生产、电池制造、组件封装四个环节。

光伏发电系统主要由太阳能电池、蓄电池、控制器和逆变器构成。

光伏发电系统可分为独立太阳能光伏发电系统和并网太阳能光伏发电系统:独立太阳能光伏发电是指太阳能光伏发电不与电网连接的发电方式,典型特征为需要蓄电池来存储能量,在民用范围内主要用于边远的乡村,如家庭系统、村级太阳能光伏电站;在工业范围内主要用于电讯、卫星广播电视、太阳能水泵,在具备风力发电和小水电的地区还可以组成混合发电系统等。

并网太阳能光伏发电是指太阳能光伏发电连接到国家电网的发电的方式,成为电网的补充。

在各国政府的扶持下,世界太阳能电池产量快速增长,1995-2005年间,全球太阳能电池产量增长了17倍。

我们预计,2010年全球太阳能电池的年产量有望较2005年的年产量增长6.3倍,整个行业的销售收入有望增长3.5倍。

我国太阳能资源非常丰富,开发利用的潜力非常大。

我国太阳能发电产业的应用空间也非常广阔,可以应用于并网发电、与建材结合、解决边远地区用电困难问题等。

我国政府对太阳能发电产业也给予了充分的扶持,先后出台了一系列法律、政策,有力的支持了产业的发展。

一套基本的太阳能发电系统是由太阳电池板、充电控制器、逆变器和蓄电池构成:(一)太阳能电池板:太阳能电池板是太阳能发电系统中的核心部分,也是太阳能发电系统中价值最高的部分。

其作用是将太阳的辐射能力转换为电能,或送往蓄电池中存储起来,或推动负载工作。

一般根据用户需要,将若干太阳电池板按一定方式连接,组成太阳能电池方阵,再配上适当的支架及接线盒组成。

(二)太阳能控制器:太阳能控制器的作用是控制整个系统的工作状态,并对蓄电池起到过充电保护、过放电保护的作用。

在温差较大的地方,合格的控制器还应具备温度补偿的功能。

其他附加功能如光控开关、时控开关都应当是控制器的可选项。

(三)蓄电池:其作用是在有光照时将太阳能电池板所发出的电能储存起来,到需要的时候再释放出来。

一般为铅酸电池,小微型系统中,也可用镍氢电池、镍镉电池或锂电池。

(四)逆变器:在很多场合,都需要提供220VAC、110VAC的交流电源。

由于太阳能的直接输出一般都是12VDC、24VDC、48VDC。

为能向220VAC的电器提供电能,需要将太阳能发电系统所发出的直流电能转换成交流电能,因此需要使用DC-AC逆变器。

在某些场合,需要使用多种电压的负载时,也要用到DC-DC逆变器,如将24VDC的电能转换成5VDC的电能。

光伏技术基本原理光生伏特效应:当光照在半导体材料时,半导体材料的不同部位之间会产生电势差,这种现象称为“光生伏特效应”,简称“光伏效应”。

1887年,德国物理学家赫兹发现,光照射到某些物质上,会引起物质向外发射电子。

后来,这光致电变的现象被统称为光电效应。

光电效应包括光电子发射、光电导效应和光生伏特效应。

光照射在物体上,物体内的电子逸出物体表面的现象称为光电子发射,称外光电效应。

光照在物体上,物体的电导率发生变化的现象称为光电导效应,物体产生光生电动势的现象称为光生伏特效应,光电导效应和光生伏特效应发生在物体内部,统称为内光电效应。

光伏电池是一种可将太阳能直接变换为电能的半导体光电器,可将太阳能按比例地变换成电能。

光伏电池的变换效率为输入太阳能与输出电功率之比。

太阳能光伏发电的工作原理:当太阳光(或其他光)照射到太阳能电池上,电池吸收光能,产生光生电子-空穴对。

在电池的内建电场作用下,光生电子和空穴被分离,电池两端出现异号电荷的积累,即产生“光生电压”,这就是“光生伏打效应”。

如在内建电场的两侧引出电极并接上负载,则负载就有“光生电流”流过,从而获得功率输出。

这样,太阳的光能就直接变成了可以付诸实用的电能。

把上述太阳能电池将光能转换成电能的工作原理可概括下面三个过程。

第一,太阳能电池吸收一定能量的光子后,半导体内产生电子-空穴对,称为“光生载流子”,两者的电性相反,电子带负电,空穴带正电;第二,电性相反的光生载流子被半导体p-n结所产生的静电场分离开;第三,光生载流子电子和空穴分别被太阳能电池的正、负极所收集,并在外电路中产生电流,从而获得电能。

光伏发电是利用半导体界面的光生伏特效应而将光能直接转变为电能的一种技术。

这种技术的关键元件是太阳能电池。

太阳能电池经过串联后进行封装保护可形成大面积的太阳电池组件,再配合上功率控制器等部件就形成了光伏发电装置。

光伏发电是根据光生伏特效应原理,利用太阳能电池将太阳光能直接转化为电能。

不论是独立使用还是并网发电,光伏发电系统主要由太阳能电池板(组件)、控制器和逆变器三大部分组成,它们主要由电子元器件构成,不涉及机械部件,所以,光伏发电设备极为精炼,可靠稳定寿命长、安装维护简便。

理论上讲,光伏发电技术可以用于任何需要电源的场合,上至航天器,下至家用电源,大到兆瓦级电站,小到玩具,光伏电源无处不在。

太阳能光伏发电的最基本元件是太阳能电池(片),有单晶硅、多晶硅、非晶硅和薄膜电池等。

目前,单晶和多晶电池用量最大,非晶电池用于一些小系统和计算器辅助电源等。

光伏发电的优点:结构简单.体积小且轻。

易安装,易运输,建设周期短。

容易启动,维护简单,随时使用,保证供应。

清洁,安全,无噪声。

可靠件高,寿命长。

太阳能无处不有,应用范围广。

降价速度快,能量偿还时间有可能缩短。

太阳光普照大地,没有地域的限制无论陆地或海洋,无论高山或岛屿,都处处皆有,可直接开发和利用,且无须开采和运输。

较少受地域限制,因为阳光普照大地;光伏系统还具有安全可靠、无噪声、低污染、无需消耗燃料和架设输电线路即可就地发电供电及建设同期短。

开发利用太阳能不会污染环境,它是最清洁能源之一,在环境污染越来越严重的今天,这一点是极其宝贵的。

每年到达地球表面上的太阳辐射能约相当于130万亿吨煤,其总量属现今世界上可以开发的最大能源。

根据目前太阳产生的核能速率估算,氢的贮量足够维持上百亿年,而地球的寿命也约为几十亿年,从这个意义上讲,可以说太阳的能量是用之不竭的。

光伏发电的缺点:到达地球表面的太阳辐射的总量尽管很大,但是能流密度很低。

平均说来,北回归线附近,夏季在天气较为晴朗的情况下,正午时太阳辐射的辐照度最大,在垂直于太阳光方向1平方米面积上接收到的太阳能平均有1000W左右;若按全年日夜平均,则只有200W左右。

而在冬季大致只有一半,阴天一般只有1/5左右,这样的能流密度是很低的。

由于受到昼夜、季节、地理纬度和海拔高度等自然条件的限制以及晴、阴、云、雨等随机因素的影响,所以,到达某一地面的太阳辐照度既是间断的,又是极不稳定的,这给太阳能的大规模应用增加了难度。

目前太阳能利用的发展水平,有些方面在理论上是可行的,技术上也是成熟的。

但有的太阳能利用装置,因为效率偏低,成本较高,总的来说,经济性还不能与常规能源相竞争。

在今后相当一段时期内,太阳能利用的进一步发展,主要受到经济性的制约。

目前太阳能利用的发展水平,有些方面在理论上是可行的,技术上也是成熟的。

但有的太阳能利用装置,因为效率偏低,成本较高,总的来说,经济性还不能与常规能源相竞争。

在今后相当一段时期内,太阳能利用的进一步发展,主要受到经济性的制约。

太阳能光伏的应用:(一)太阳能路灯系统简单安装:无需电缆,无土木工程,无需布线,简易混凝土基础。

无需安装:可设置在任一公共场所。

低成本:无电费支出。

低维护成本:系统所有部分无维护费用,事实上并无任何维护工作,同时在不同点间低成本转移。

安全性:为低压直流电,无任何危险操作;独立于传统的供电方式。

(二)风光互补发电系统风光互补发电系统就是采用风力发电机和太阳能电池方阵,组成一个发电系统,将电力并网送入常规电网中。

夜间和阴雨天无阳光时由风能发电,晴天由太阳能发电,在既有风又有太阳的情况下两者同时发挥作用,实现了全天候的发电功能,比单用风机和太阳能更经济、科学、实用。

适用于道路照明、农业、牧业、种植、养殖业、旅游业、广告业、服务业、港口、山区、林区、铁路、石油、部队边防哨所、通讯中继站、公路和铁路信号站、地质勘探和野外考察工作站及其它用电不便地区。

(三)空间太阳能电站1968年美国科学家彼得·格拉赛首先提出了建造空间太阳能电站的构想,其基本思路是:将无比巨大的太阳能电池阵放置在地球轨道上,组成太阳能发电站,将取之不尽、用之不竭的太阳能转化成数千兆瓦级的电能,然后将电能转化成微波能,并利用微波或无线技术传输到地球。

能量转换装置将电能转换成微波或激光等形式(激光也可以直接通过太阳能转化),并利用天线向地面发送能束。

有资料称,从理论上说,在阳光充足的地球静止轨道上,每平方米太阳能能产生1336瓦热量,如果在地球静止轨道上部署一条宽度为1000米的太阳能电池阵环带,假定其转换效率为100%,那么,它在一年中接收到的太阳辐射通量差不多等于目前地球上已知可开采石油储量所包含的能量总和。

空间太阳能电站配备了极高效率光伏电池板的人造卫星能够将光能转换成电能。

想地面约100平方米的光伏接收设施发送红外激光。

缺陷在于:激光难以穿透云层。

(四)欧美主要国家太阳能光伏并网发电太阳能电池所发的电是直流,必须通过逆变装置变换成交流,再同电网的交流电合起来使用,这种形态的光伏系统就是并网光伏系统。

相关文档
最新文档