固体物理学中的半导体物理学

合集下载

半导体物理学前置课程

半导体物理学前置课程

半导体物理学前置课程
半导体物理学前置课程一般包括以下内容:
1. 固体物理学基础知识:晶体结构、晶格振动、电子能带理论、电子自旋、晶格缺陷等。

2. 电磁学基础知识:电场、磁场、电磁辐射等。

3. 量子力学基础知识:量子力学原理、波函数、量子态、哈密顿算符等。

4. 固体能带理论:包括价带和导带的理解、半导体的能带结构、半导体材料的能带间隙等。

5. 简单能带模型:包括紧束缚模型、自由电子气模型、等效质量近似等。

6. 电子与声子的相互作用:介电函数、声子谱、声子与电子的散射等。

7. 电子在晶体中的输运性质:包括导电性、迁移率、扩散、简单的输运方程等。

8. 光电子学基础知识:吸收、发射、散射、色谱、光电子光谱等。

9. pn结和二极管:pn结的形成、Zero bias和封锁态、偏置态、
二极管的I-V特性、二极管的基本应用等。

10. 器件物理:包括MOS结和MOSFET、BJT、HEMT、HBT 等器件的基本原理和工作原理。

以上是一个大致的半导体物理学前置课程的内容,具体课程内容可能会根据不同学校和教师的要求有所不同。

《半导体物理学》课程教学大纲

《半导体物理学》课程教学大纲

《半导体物理学》课程教案大纲一、课程说明(一)课程名称:《半导体物理学》所属专业:物理学(电子材料和器件工程方向)课程性质:专业课学分:学分(二)课程简介、目标与任务:《半导体物理学》是物理学专业(电子材料和器件工程方向)本科生的一门必修课程。

通过学习本课程,使学生掌握半导体物理学中的基本概念、基本理论和基本规律,培养学生分析和应用半导体各种物理效应解决实际问题的能力,同时为后继课程的学习奠定基础。

本课程的任务是从微观上解释发生在半导体中的宏观物理现象,研究并揭示微观机理;重点学习半导体中的电子状态及载流子的统计分布规律,学习半导体中载流子的输运理论及相关规律;学习载流子在输运过程中所发生的宏观物理现象;学习半导体的基本结构及其表面、界面问题。

(三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接:本课程的先修课程包括热力学与统计物理学、量子力学和固体物理学,学生应掌握这些先修课程中必要的知识。

通过本课程的学习为后继《半导体器件》、《晶体管原理》等课程的学习奠定基础。

(四)教材与主要参考书:[]刘恩科,朱秉升,罗晋生. 半导体物理学(第版)[]. 北京:电子工业出版社. .[]黄昆,谢希德. 半导体物理学[]. 北京:科学出版社. .[]叶良修.半导体物理学(第版)[]. 上册. 北京:高等教育出版社. .[]. . , ( .), , , .二、课程内容与安排第一章半导体中的电子状态第一节半导体的晶格结构和结合性质第二节半导体中的电子状态和能带第三节半导体中电子的运动有效质量第四节本征半导体的导电机构空穴第五节回旋共振第六节硅和锗的能带结构第七节族化合物半导体的能带结构第八节族化合物半导体的能带结构第九节合金的能带第十节宽禁带半导体材料(一)教案方法与学时分配课堂讲授,大约学时。

限于学时,第节可不讲授,学生可自学。

(二)内容及基本要求本章将先修课程《固体物理学》中所学的晶体结构、单电子近似和能带的知识应用到半导体中,要求深入理解并重点掌握半导体中的电子状态(导带、价带、禁带及其宽度);掌握有效质量、空穴的概念以及硅和砷化镓的能带结构;了解回旋共振实验的目的、意义和原理。

半导体物理学 教学大纲

半导体物理学   教学大纲

半导体物理学一、课程说明课程编号:140313Z10课程名称(中/英文):半导体物理学/Semiconductor physics课程类别:专业选修课学时/学分:48/3先修课程:量子力学;固体物理学适用专业:应用物理、物理科学、电子信息科学与技术教材、教学参考书:➢刘恩科,朱秉升,罗晋生编著《半导体物理学》(第七版),电子工业出版(2011)➢《半导体物理》,钱佑华,徐至中,高等教育出版社2003➢《半导体器件物理》(第3版),耿莉,张瑞智译|(美)S. M. SZE, KWOK K. NG 著,西安交通大学出版社 2010➢《Semiconductor Physics and Devices:Basic Principles》4rd Ed. (美)Donald A. Neamen 电子工业出版社2013➢《半导体物理学学习辅导与典型题解》--高等学校理工科电子科学与技术类课程学习辅导丛书,田敬民电子工业出版社2006➢半导体物理讲义与视频资料,蒋玉龙二、课程设置的目的意义本课程是高等学校应用物理、物理学和电子信息科学与技术专业本科生的专业选修课。

本课程的目的和意义是:通过本课程的学习使学生获得半导体物理方面的基本理论、基本知识和方法。

通过本课程的学习要为应用物理、物理学与电子信息科学与技术专业本科生学习其它专业课(材料、器件、集成电路等)以及毕业后从事半导体相关的技术开发与科学研究奠定必要的理论基础。

三、课程的基本要求本课程所使用的教材共13章,分为四大部分。

第1-5章,晶体半导体的基本知识和性质的阐述;第6-9章,为半导体的接触现象;第10-12章,为半导体的各种特殊效应;第13章为非晶态半导体。

全部课堂教学为48课时,对上述内容做了必要精简。

第10-13章全部不在课堂讲授,留给学生自学或参考,其它各章节的内容也作了部分删减。

通过本课程的学习,使学生掌握半导体物理的基本性质,即半导体中电子的状态及主要半导体的能带结构,半导体中的杂质能级和缺陷能级,半导体中载流子的统计分布,半导体的导电性和非平衡载流子的运动规律,p-n结,金属半导体接触理论等。

半导体物理学复习讲义 引论~第三章

半导体物理学复习讲义 引论~第三章

1.3晶向和晶面
晶体各向异性 将布拉维格子看成互相平行等距的直线族 每一直线族定义一个方向,称为晶向 如沿晶向的最短格矢为
l1a1 l2a2 l3a3
该晶向可记为:
l1, l2 , l3
1.3晶向和晶面
将布拉维格子看成互相平行等距的平面族,也称为晶面 如某平面族将基矢分成
1. 恒量 2. V为正空间体积
考虑自旋,k空间态密度:
状态密度定义
单位能量间隔内的状态数目:
考虑自旋,k空间态密度:
E-k 关系
能量空间状态密度
能量变化 dE
k状态变化 dk
k空间体积变化 dΩ
状态数变化 dZ
球形等能面状态密度求解
导带E- k关系:
k k0
E E dE
k k dk
1.1半导体的晶格结构和结合性质 1.2半导体中的电子状态和能带 1.3半导体中电子的运动
有效质量 空穴
1.4本征半导体的导电机构
1.5回旋共振
1.6硅和锗的能带结构 1.10宽禁带半导体
1.1.1金刚石结构和共价键
特点:
每个原子和周围的4个最近邻原子形成一个正四面体
顶角原子和中心原子形成共价键
1.2半导体中的电子状态和能带
1.2.1原子的能级和晶体的能带
电子壳层:1s,2s,2p,3s,3p,3d,4s
……
电子的共有化运动
最外层电子的共有化运动最为显著
公有化运动导致简并能级出现分裂
由于原子数量巨大,分裂后能级之间差距微小,形
成能带,称为允带
S:非简并态, P:三重简并
1.2.1原子的能级和晶体的能带 几个名词:
三、原子结合类型

半导体物理第1章 半导体中的电子状态

半导体物理第1章 半导体中的电子状态
作用很强,在晶体中电子在理想的周期势场内 作共有化运动 。
能带成因
当N个原子彼此靠近时,根据不相容原理 ,原来分属于N个原子的相同的价电子能 级必然分裂成属于整个晶体的N个能量稍 有差别的能带。
S i1 4 :1 s 2 2 s 2 2 p 6 3 s 2 3 p 2
能带特点
分裂的每一个能带称为允带,允带间的能量范 围称为禁带
一.能带论的定性叙述 1.孤立原子中的电子状态
主量子数n:1,2,3,…… 角量子数 l:0,1,2,…(n-1)
s, p, d, ... 磁量子数 ml:0,±1,±2,…±l 自旋量子数ms:±1/2
n1
主量子数n确定后:n= 2(2l 1) 2n2 0
能带模型:
孤立原子、电子有确定的能级结构。 在固体中则不同,由于原子之间距离很近,相互
Ⅲ-Ⅴ族化合物,如 G a A S , I n P 等 部分Ⅱ-Ⅵ族化合物,如硒化汞,碲化汞
等半金属材料。
1.1.3 纤锌矿型结构
与闪锌矿型结构相比 相同点 以正四面体结构为基础构成 区别 具有六方对称性,而非立方对称性 共价键的离子性更强
1.2半导体中的电子状态和能带
1.2.1原子的能级和晶体的能带
1.3半导体中电子的运动——有效质量
1.3.1半导体中的E(k)与k的关系 设能带底位于波数k,将E(k)在k=0处按
泰勒级数展开,取至k2项,可得
E (k)E (0 )(d d E k)k 0k1 2(d d k 2E 2)k 0k2
由于k=0时能量极小,所以一阶导数为0,有
E(k)E(0)1 2(d d2E 2k)k0k2
1.1.2 闪锌矿型结构和混合键
Ⅲ-Ⅴ族化合物半导体材料 结晶学原胞结构特点 两类原子各自组成的面心立方晶格,沿

半导体物理-绪论

半导体物理-绪论
高锟在“有关光在纤维中的传输以用于光学通信方面”取 得了突破性成就,获得物理学奖一半的奖金,共500万瑞 典克朗(约合70万美元);博伊尔和史密斯发明了半导体 成像器件——电荷耦合器件(CCD)图像传感器,将分享 另一半奖金。
英国曼彻斯特大学物 理学家 安德烈·980-2000年的全球国民生产总值(WGP)及电子、汽车、半导体和钢铁工业的销售量,并外插此曲线到2010年止
太阳能电池、LED, 半导体制冷、IC设

从上图中可以得知: 电子工业和半导体工业已经超过传统的钢铁工业、汽车工业,成为
21世纪的高附加值、高科技的产业。电子工业的高速发展依赖于半导体 工业的快速提高,而在半导体工业中其核心是集成电路(电集成、光集 成、光电集成),集成电路在性能、集成度、速度等方面的快速发展是 以半导体物理、半导体器件、微电子工艺的发展为基础的。
半导体物理-绪论
课程介绍
联想???
定 位
半导体物理
近年诺贝尔物理学奖
法国科学家阿尔贝·费尔 (2007年) 德国科学家彼得·格林贝格尔
巨磁电阻效应,是指磁性材料的电阻率在有外磁场作用时 较之无外磁场作用时存在巨大变化的现象。根据这一效应 开发的小型大容量计算机硬盘已得到广泛应用。
高锟、威拉德·博伊尔和乔治·史密斯 (2009年)
“研究二维材料石墨烯的开创性实验”而共享。2004年制 成的石墨烯已迅速成为物理学和材料学的热门话题,现在 是世界上最薄的材料,仅有一个原子厚。在改良后,石墨 烯致力于塑造低功率电子元件,如晶体管。相比之下,铜 线和半导体都会产生电脑芯片75%的能量消耗,人们确定 了石墨烯拥有取代硅留名史册的本事。
《科学》:2009年十大科学突破 石墨烯微观结构:六角型呈蜂巢晶格的平面薄膜

固态电子论半导体物理固体物理部分名词解释(精)

固态电子论半导体物理固体物理部分名词解释(精)

固态电子论半导体物理固体物理部分名词解释(精)固态电子论名词解释库(个人意见,仅供参考<固体物理部分 >晶体:构成粒子(原子,分子,集团周期性排列的固体,具有长程有序性,有固定的熔点,具有自限性, 各向异性和解理性特点的固体。

布拉伐点阵:晶体的周期性结构可以看作相同的点在空间周期性无限分布所形成的系统,称为布拉伐点阵。

布拉伐格子:在空间点阵用三组不共面平行线连起来的空间网格称为布拉伐格子。

基元:布拉伐格子中的最小重复单位称为基元。

原胞:在布拉伐格子中的最小重复区域称为原胞。

晶胞:为了同时反应晶体的周期性和对称性,常常选取最小的重复单位的整数倍作为重复单元,这种单元称为晶胞。

倒格子:分别以 b1,b2,b3, 作为基矢,构成的网格称作倒格子,其中布里渊区:在倒格子中,以某个倒格点作为原点,作出它到其他所有倒格点的矢量的垂直平分面,这些面将倒空间分割成有内置外的相等区域,称为布里渊区。

五种晶体结合力方式:离子结合和离子晶体:共价结合和共价晶体:能把两个原子结合在一起的的一对为两个原子自旋相反配对的电子结构称为共价键。

金属结合和金属晶体:作用力来自带正电原子实和负电电子云的吸引力,电子云重叠产生强烈的排斥作用的排斥力结合的称为金属晶体。

氢键结合和氢键晶体:氢原子同时与两个电负性较大的原子想结合,一个属于共价键,另一个通过库仑作用结合的称为氢键。

范德瓦耳斯结合和分子晶体:靠电偶极矩的相互作用而结合的力称作范德瓦耳斯力。

主要的晶体结构类型:声子:晶格振动的一个频率为 wq的格波等价于一个简谐振子的振动,其能量也可以表示为以下,Enl=(0.5+nhwq.能量单元是 hwq, 它是格波的能量量子,称之为声子。

点缺陷:在一个或几个原子尺寸范围内的微观区域内,晶格结构发生偏离严格周期性而形成的畸变区域。

面缺陷:如果晶体中周期性遭到破坏的区域形成一条线,称这种一维缺陷为线缺陷。

刃型位错:螺型位错:半导体物理部分电子有效质量:在一维模型下,数学表达式 ,有效质量包含了内部势场各个方向的作用,内层电子能带越窄,有效质量越大,外层电子能带越宽,有效质量越小。

半导体物理知识点总结-半导体物理总结

半导体物理知识点总结-半导体物理总结

半导体物理知识点总结-半导体物理总结一、半导体物理知识大纲Ø 核心知识单元A:半导体电子状态与能级(课程基础——掌握物理概念与物理过程、是后面知识的基础)è 半导体中的电子状态(第1章)è 半导体中的杂质和缺陷能级(第2章)Ø 核心知识单元B:半导体载流子统计分布与输运(课程重点——掌握物理概念、掌握物理过程的分析^p 方法、相关参数的计算方法)è 半导体中载流子的统计分布(第3章)è 半导体的导电性(第4章)è 非平衡载流子(第5章)Ø 核心知识单元C:半导体的基本效应(物理效应与应用——掌握各种半导体物理效应、分析^p 其产生的物理机理、掌握具体的应用)è 半导体光学性质(第10章)è 半导体热电性质(第11章)è 半导体磁和压阻效应(第12章)二、半导体物理知识点和考点总结第一章半导体中的电子状态本章各节内容提要:本章主要讨论半导体中电子的运动状态。

主要介绍了半导体的几种常见晶体结构,半导体中能带的形成,半导体中电子的状态和能带特点,在讲解半导体中电子的运动时,引入了有效质量的概念。

阐述本征半导体的导电机构,引入了空穴散射的概念。

最后,介绍了Si、Ge和GaAs的能带结构。

在1.1节,半导体的几种常见晶体结构及结合性质。

(重点掌握)在1.2节,为了深入理解能带的形成,介绍了电子的共有化运动。

介绍半导体中电子的状态和能带特点,并对导体、半导体和绝缘体的能带进行比较,在此基础上引入本征激发的概念。

(重点掌握)在1.3节,引入有效质量的概念。

讨论半导体中电子的平均速度和加速度。

(重点掌握)在1.4节,阐述本征半导体的导电机构,由此引入了空穴散射的概念,得到空穴的特点。

(重点掌握)在1.5节,介绍回旋共振测试有效质量的原理和方法。

(理解即可)在1.6节,介绍Si、Ge的能带结构。

(掌握能带结构特征)在1.7节,介绍Ⅲ-Ⅴ族化合物的能带结构,主要了解GaAs的能带结构。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

固体物理学中的半导体物理学在固体物理学中,半导体物理学是一个非常重要的研究领域。

这是因为半导体材料广泛应用于电子学、光电子学、信息技术和
能源等领域。

本文将介绍半导体物理学的基本理论、性质和应用。

半导体物理学是固体物理学的一个分支,主要涉及半导体材料
的物理性质和应用。

半导体是材料的一种,具有介于导体和绝缘
体之间的电导特性。

这种材料在半导体物理学中被广泛研究,因
为其在现代科技领域中的应用非常广泛。

半导体的电导特性与其能带结构有关。

能带是电子能量的一个
描述,对材料的电导性质起着决定性作用。

半导体材料主要由两
种元素组成:本征半导体和外延半导体。

本征半导体是由同一元
素构成的材料,例如矽、锗等。

外延半导体是由不同元素组成的
材料,例如氧化铝、氮化硼等。

本征半导体和外延半导体的电导
性质和能带结构略有不同。

固体物理学中的半导体物理学主要研究以下几个方面:
1. 能带结构:半导体能带的结构对其电导性质起着决定性作用。

半导体材料的能带结构可以通过各种物理手段(例如紫外光谱、
拉曼光谱等)来研究。

2. 掺杂:在制造半导体器件时,可以向半导体材料中掺入少量
杂质,形成掺杂半导体。

掺杂半导体的电导性质与其掺杂浓度和
杂质种类有关,因此研究掺杂半导体的电性质非常重要。

3. 电子运动和输运:电子是半导体中最重要的载流子,其在半
导体中的运动和输运对于半导体器件的性能和应用起着决定性作用。

因此,研究电子在半导体中的输运过程非常重要。

半导体在现代科技领域中被广泛应用。

以下是半导体的一些应用:
1. 半导体器件:半导体器件是电子学和光电子学中最重要的组
成部分之一。

例如,半导体二极管、场效应晶体管、太阳能电池
等都是半导体器件。

2. LED:发光二极管(LED)是一种半导体器件。

它的工作原
理是基于半导体材料的特性,将电能转换为光能。

LED广泛应用
于背光源、自动化系统、节能照明等领域。

3. 激光器:半导体激光器是一种重要的光电子器件,其工作原
理是利用半导体材料的电导特性,将电能转换为光能。

这种器件
在通信、医学、材料加工等领域有重要应用。

总之,半导体物理学是固体物理学中非常重要的一个分支,其
研究范围涵盖了半导体材料的基本理论、性质和应用。

半导体材
料的应用广泛,包括电子学、光电子学、信息技术和能源等领域。

在未来,随着科技的不断发展,半导体材料的应用前景将会更加
广阔。

相关文档
最新文档