空调风道系统余压校核水力计算

合集下载

空调管道水力计算解读

空调管道水力计算解读
为了保证各管路达到预期的风量,使并联支管
的计算阻力相等,称为并联管路阻力平衡。对 一般的通风系统,两支管的计算阻力差应不超 过15%;含尘风管应不超过10%。若过上述规 定,采用下述方法进行阻力平衡。 (1)调整支管管径 这种方法通过改变支管管径来调整支管阻力, 达到阻力平衡。调整后的管径按下式计算:
含有粉尘等,会增加设备和管道 的磨损。反
之,流速低,阻力小,动力消耗少;但是风 管断面大,材料和建造费用大,风管占用的 空间也增大。流速过低会使粉尘沉积而堵塞 管道。因此, 必须通过全面的技术经济比较选定合理的流 速。根据经验总结,风管内的空气流速可按 下表确定。若输送的是含尘气流,流速不应 低于其表所列的值。
计算,获得管网特性曲线。


圆形伞形罩 800m3/s
1 L=11m
2 L=6m 3 5 L=3m L=4m 4 L=6m
6 7 L=6m L=8m
除尘器
风机
1500m3/s 4000m3/s
图2-3-2 通风除尘系统的系统图
[ 解 ]:
1.对各管段进行编号,标出管段长度和风点
的排风量。 2.选定最不利环路,本系统选择1-3-5-除尘器 - 6-风机-7为最利环路。 3.根据各管段的风量及选定的流速,确定最 不利环路各管段的断面尺寸和单位长度摩擦 阻力。 根据表2-2-3输送含有轻矿物粉尘的空气时, 风管内最小风速为,垂直风管12m/s、水平 风管14m/s.
考虑到除尘器及风管漏风,取5%的漏风
系数,管段6及7的计算量为


6300×1.05=6615m3/h. 管段1 有水平风管,初定流速为14m/s。根据 Q1=1500m/h(0.42m3/s)、V1=14m/s所选管 径按通风管道 统一规格调整为 D1=200mm:实际流速V1=13.4m3/S;由图2-31查得,Rml=12.5Pa/m。 同理可查得管段3、5、6、7的管径及比摩阻, 具体结果见表2-3-5。 4.确定管段2、4的管径及单位长度摩擦力,

空调管道的水力计算

空调管道的水力计算

Summary of work performed during the quarter considered important and convering what was learned from these experiences, including as necessary examples of detailed analysis or the presentation of a particular aspect of the training undertaken during the period.Engineering Supervisor Comments: 管道的阻力计算流体在管内流动时,由于其黏性剪切力及涡流的存在,不可避免的会消耗一定的机械能,这种机械能的消耗不仅包括了流体流经直管段的沿程阻力,还包括了因流体运动方向改变而引起的局部阻力。

一、阻力的基本知识(一)沿程阻力流体流经一定管径的直管时,由于流体内摩擦力而产生的阻力,阻力的大小与路程长度成正比的叫做沿程阻力。

流体在水平等径管中稳定流动时,阻力损失表现为压力降低,即h f=p1−P2ρg =∆pγ(1-1)式中λ——摩擦系数,它与流体的性质、流速、流态以及管道的粗糙度有关。

与雷诺数Re和管壁粗糙度ε有关,可实验测定,也可计算得出。

影响阻力损失的因素很多,比如流体的密度ρ及黏度μ;管径d,管长l,管壁粗糙度ε;流体的流速u等。

利用公式可表示为:∆p=f(d,l,μ,ρ,u,ε) (1-2)利用这些因素之间的关系,可以将公式(1-1)变成:h f=∆pγ=λldu,2g(1-3)该公式的特点是将求阻力损失问题转化为求无量纲阻力系数问题,比较方便。

同时将沿程损失表达为流速水头的倍数形式比较恰当。

因此,该公式适用于计算各种流态下的管道沿程阻力。

流体为层流时,λ=64/Re;湍流时λ是Re及相对粗糙度的函数,由实验或查表得到。

风路系统水力计算

风路系统水力计算

风路系统水力计算1 水力计算方法简述目前,风管常用的的水力计算方法有压损平均法、假定流速法、静压复得法等几种。

1.压损平均法(又称等摩阻法)是以单位长度风管具有相等的摩擦压力损失m p ∆为前提的,其特点是,将已知总的作用压力按干管长度平均分配给每一管段,再根据每一管段的风量和分配到的作用压力,确定风管的尺寸,并结合各环路间压力损失的平衡进行调整,以保证各环路间的压力损失的差额小于设计规范的规定值。

这种方法对于系统所用的风机压头已定,或对分支管路进行压力损失平衡时,使用起来比较方便。

2.假定流速法是以风管内空气流速作为控制指标,这个空气流速应按照噪声控制、风管本身的强度,并考虑运行费用等因素来进行设定。

根据风管的风量和选定的流速,确定风管的断面尺寸,进而计算压力损失,再按各环路的压力损失进行调整,以达到平衡。

各并联环路压力损失的相对差额,不宜超过15%。

当通过调整管径仍无法达到要求时,应设置调节装置。

3.静压复得法(略,具体详见《实用供热空调设计手册》之11.6.3)对于低速机械送(排)风系统和空调风系统的水力计算,大多采用假定流速法和压损平均法;对于高速送风系统或变风量空调系统风管的水力计算宜采用静压复得法。

工程上为了计算方便,在将管段的沿程(摩擦)阻力损失mP ∆和局部阻力损失jP ∆这两项进行叠加时,可归纳为下表的3种方法。

将mP ∆与jP ∆进行叠加时所采用的计算方法计算方法名称基本关系式备注单位管长压力损失法(比摩阻法) 管段的全压损失)(2222j m ej m P l p V l V d P l P P ∆+∆=+=∆+∆=∆ρζρλ P ∆——管段全压损失,Pa ;mp ∆——单位管长沿程摩擦阻力,Pa/m用于通风、空调的送(回)风和排风系统的压力损失计算,是最常用的方法当量长度法2222ρζρλV V d l ee=风管配件的当量长度λζee d l =常见用静压复得法计算高速风管或低速风管系统的压力损失。

空调水系统水力计算方法与步骤

空调水系统水力计算方法与步骤

A
B
旁通管(平衡管)
精选2021版课件
7
8.5 空调水系统的水力计算
空调冷冻水系统的水力计算
【例题】解题步骤
✓ 1 计算冷冻水流量
✓ 2 选定最不利环路,结合表8-5、 8-6、 8-7、 8-8依据各管段的流
量,确定各管段的流速与管径,用线性插值法确定比摩阻。
✓ 3 查表8-9,8-10确定管段的局部阻力系数,计算各管段的局部阻
精选2021版课件1Leabharlann 8.5 空调水系统的水力计算
空调冷冻水系统的水力计算
1. 管径的确定
空调水系统的管内流速按下表9-6推荐值采用,或依据表9-7根据流量确定管径。
精选2021版课件
2
8.5 空调水系统的水力计算
空调冷冻水系统的水力计算
8-8
1. 管径的确定
精选2021版课件
3
8.5 空调水系统的水力计算
水泵的流 量与扬程 均要乘以
✓ 泵的扬程应能克服所管分区的二次最不利环路的总安阻全力系。数
精选2021版课件
6
8.5 空调水系统的水力计算
空调冷冻水系统的水力计算
【例题】如下图所示的空调冷冻水二次泵循环系统(一级循环略去),此系统计 算冷负荷为48.8kW,冷冻水供水温度为7 ℃ ,回水温度为12 ℃ ,空调机组 表冷器水侧阻力为50kPa,各管段的长度见表3-20,求各管段的管径及二次 水泵的流量和扬程。
8.5 空调水系统的水力计算
空调冷冻水系统的水力计算
空调冷冻水系统的水力计算方法与步骤:
✓ 通常按推荐的流速或比摩阻确定管径 ✓ 计算最不利环路阻力损失 ✓ 然后进行并联环路的阻力平衡 ✓ 确定系统总阻力 ✓ 结合水泵特性曲线选择水泵型号

空调水系统水力计算方法与步骤详解

空调水系统水力计算方法与步骤详解
注意:计 算结果要 用表格的 形式!!
5 并联管路阻力平衡计算
6 系统总阻力计算 7 水泵的流量与扬程计算
8.5 空调水系统的水力计算
空调冷冻水系统的水力计算
【例题】如下图所示的空调冷冻水二次泵循环系统(一级循环略去),此系统计 算冷负荷为48.8kW,冷冻水供水温度为7 ℃ ,回水温度为12 ℃ ,空调机组 表冷器水侧阻力为50kPa,各管段的长度见表3-20,求各管段的管径及二次
水泵的流量和扬程。
空调冷冻水系统一般一般为闭式系统,泵的流量按空调系统夏季最大计算冷负 荷确定,即
qm

c t
8.5 空调水系统的冷冻水循环水泵的选择
泵的扬程应能克服冷冻水系统最不利环路的总阻力(包括用冷设备、产冷设备、 管道、阀门等阻力)
沿程
8.5 空调水系统的水力计算
管径的确定85空调水系统的水力计算空调冷冻水系统的水力计算空调冷冻水系统的水力计算管径的确定8885空调水系统的水力计算空调冷冻水系统的水力计算空调冷冻水系统的水力计算空调冷冻水系统一般一般为闭式系统泵的流量按空调系统夏季最大计算冷负荷确定即85空调水系统的水力计算空调冷冻水系统的水力计算空调冷冻水系统的水力计算泵的扬程应能克服冷冻水系统最不利环路的总阻力包括用冷设备产冷设备管道阀门等阻力85空调水系统的水力计算空调冷冻水系统的水力计算空调冷冻水系统的水力计算当空调冷冻水系统为二次泵系统时泵的选择
8.5 空调水系统的水力计算
空调冷冻水系统的水力计算
1. 管径的确定
空调水系统的管内流速按下表9-6推荐值采用,或依据表9-7根据流量确定管径。
8.5 空调水系统的水力计算
空调冷冻水系统的水力计算
8-8
1. 管径的确定

空调风系统水力计算书范本

空调风系统水力计算书范本

空调风系统水力计算书一、 计算依据《实用供热空调设计手册》第二版 风系统基本参数:气温(℃): 20 ; 大气压力(Pa): 843.8 ; 管材:薄钢板; 绝对粗糙度(mm):0.16;干管推荐流速上限(m/s):10. 干管推荐流速下限(m/s):4..;支管推荐流速上限(m/s):6.; 支管推荐流速下限(m/s):2.;运动粘度(m^2/s):1.57E-05二、 计算公式1. 沿程阻力(Pa)22v d l P m ρλ⋅⋅=∆2. 局部阻力(Pa)22v P j ρζ⋅=∆三、 计算结果1、 PFY.B3(1)-1排风系统1.1 根据地下室空调风管平面图,该风系统最不利环路的水力计算如下:负二层排风管(PFY .B2(4)-1)水力计算表1.2 风系统阻力计算对于地下负二层排风管(PFY.B2(4)-1):P=沿程阻力+局部阻力+末端风口阻力+消声器阻力=64.7+180.1+30+50=324.8Pa风机压头校核:324.8*1.1=357Pa<400Pa,风机选型满足要求。

2、XF.(2)C1-1新风系统2.1根据空调风管平面图,该风系统最不利环路的水力计算如下:商业C新风管(XF.(2)C1-1)水力计算表2.2风系统阻力计算商业C新风管(XF.(2)C1-1):P=沿程阻力+局部阻力+消声器阻力=19.7+202+50=272Pa风机压头校核:272*1.1=299Pa<300Pa,风机选型满足要求。

3、风机单位风量耗功率计算(1)计算公式W S=P/(3600×ηCD×ηF)式中:W S—风道系统单位风量耗功率[W/(m³/h)];P—空调机组的余压或通风系统风机的风压(Pa); ηCD—电机及传动效率(%),ηCD取0.855;ηF—风机效率(%),按设计图中标注的效率选择。

(2)计算结果选取PFY.B3(1)-1系统为例,则W S=P/(3600η)=500/(3600*0.855*0.75)=0.22。

空调水系统水力计算方法与步骤

8.5 空调水系统的水力计算
空调冷冻水系统的水ቤተ መጻሕፍቲ ባይዱ计算
空调冷冻水系统的水力计算方法与步骤:

通常按推荐的流速或比摩阻确定管径 计算最不利环路阻力损失 然后进行并联环路的阻力平衡 确定系统总阻力 结合水泵特性曲线选择水泵型号
由于空调冷冻水系统供回水温差小,末端换热盘管阻力大,在计算系统总循 环阻力时,可以不计供回水密度引起的作用压力;在并联环路平衡时,一般 也可忽略不计。
空调冷冻水系统一般一般为闭式系统,泵的流量按空调系统夏季最大计算冷负 荷确定,即
qm

c t
8.5 空调水系统的水力计算
空调冷冻水系统的水力计算
2. 空调冷冻水循环水泵的选择
泵的扬程应能克服冷冻水系统最不利环路的总阻力(包括用冷设备、产冷设备、 管道、阀门等阻力)
沿程
8.5 空调水系统的水力计算
8.5 空调水系统的水力计算
空调冷冻水系统的水力计算
【例题】如下图所示的空调冷冻水二次泵循环系统(一级循环略去),此系统计 算冷负荷为48.8kW,冷冻水供水温度为7 ℃ ,回水温度为12 ℃ ,空调机组 表冷器水侧阻力为50kPa,各管段的长度见表3-20,求各管段的管径及二次
水泵的流量和扬程。
8.5 空调水系统的水力计算
空调冷冻水系统的水力计算
1. 管径的确定
空调水系统的管内流速按下表9-6推荐值采用,或依据表9-7根据流量确定管径。
8.5 空调水系统的水力计算
空调冷冻水系统的水力计算
8-8
1. 管径的确定
8.5 空调水系统的水力计算
空调冷冻水系统的水力计算
2. 空调冷冻水循环水泵的选择
A
B

空调水系统水力计算-异程式

相关的计算公式与说明空调水系统水力计算采用比摩阻法1绘制计算图给出局部构件如阀门等2管段编号从最不利环路编起3绘水力计算表最不利环路水力计算表和其他管路水力计算表4局部阻力统计表5计算并联管路计算阻力不平衡率参见采暖通通风与空气调节设计规范流量gm3h比摩阻hipam管内流速vdimm摩擦阻力dpy损失pa局部阻力当量长度ljm局部阻力dpj损失pa风机盘管局部阻力及电力dpfcu总阻力损失dppa最不利环路为19管段阻力损失为pa流量为m3h流量gm3h比摩阻hipam管内流速vdimm摩擦阻力dpy损失pa局部阻力当量长度ljm局部阻力dpj损失pa风机盘管局部阻力及电力dpfcu总阻力损失dppa管段910与管段234567并联流量gm3h比摩阻hipam管内流速vdimm摩擦阻力dpy损失pa局部阻力当量长度ljm局部阻力dpj损失pa风机盘管局部阻力及电力dpfcu总阻力损失dppa管段1112与管段3456并联局部阻力部件名称及个局部阻力当量长度11123456100冷冻水供回水温差流量04kpa03kpamkpa120105105c要求
算管段的秒流量, m 3 / s
kPa / m
i 宜取 0.1 ~ 0.3kPa/m ,不应大于 0.4kPa
Pz P 100% Pz 压力(与最不利环路上与计算管段并联的管段的压力损失)
计算管路压力损失
估算管径)
9 100 1
1
接分水器
8
接集热器
不平衡率 Pz P 100% Pz Pz 资用压力(与最不利环路上与计算
P--计算管路压力损失
方法
qs Hi
ห้องสมุดไป่ตู้
G 0.1
~
0.3
由比摩阻计算公式
d(i 估算管径)

空调管道的水力计算

流体在管内流动时,由于其黏性剪切力及涡流地存在,不可避免地会消耗一定地机械能,这种机械能地消耗不仅包括了流体流经直管段地沿程阻力,还包括了因流体运动方向改变而引起地局部阻力.一、阻力地基本知识(一)沿程阻力流体流经一定管径地直管时,由于流体内摩擦力而产生地阻力,阻力地大小与路程长度成正比地叫做沿程阻力.流体在水平等径管中稳定流动时,阻力损失表现为压力降低,即文档收集自网络,仅用于个人学习()式中λ——摩擦系数,它与流体地性质、流速、流态以及管道地粗糙度有关.与雷诺数和管壁粗糙度ε有关,可实验测定,也可计算得出.文档收集自网络,仅用于个人学习影响阻力损失地因素很多,比如流体地密度及黏度;管径,管长,管壁粗糙度;流体地流速等.利用公式可表示为:文档收集自网络,仅用于个人学习()利用这些因素之间地关系,可以将公式()变成:()该公式地特点是将求阻力损失问题转化为求无量纲阻力系数问题,比较方便.同时将沿程损失表达为流速水头地倍数形式比较恰当.因此,该公式适用于计算各种流态下地管道沿程阻力.流体为层流时,;湍流时是及相对粗糙度地函数,由实验或查表得到.文档收集自网络,仅用于个人学习但对于湍流流体而言,目前尚无完善地理论方法对其进行求解,需采用一定地实验研究其规律.(二)局部阻力局部阻力流体地边界在局部地区发生急剧变化时,迫使主流脱离管道边壁而形成漩涡,流体质点间产生剧烈地碰撞,由于实际流体粘性作用,碰撞中地部分能量会不断地变为热能而逸散在流体之中,从而使流体地机械能减小.局部阻力损失产生于某些局部地方,比如管径地改变(突扩、突缩、渐扩、渐缩等),方向地改变(弯管),再者装置了某些配件(阀门、量水表等). 文档收集自网络,仅用于个人学习局部阻力通常有两种表示方法,即当量长度法和阻力系数法.当量长度法流体流过某管件或阀门时,因局部阻力造成地损失,相当于流体流过与其具有相当管径长度地直管阻力损失,这个直管长度称为当量长度,用符号表示.采用这种计算方法就可以用直管阻力地公式来计算局部阻力损失.进而计算管路时,可将管路中地直管长度与管件、阀门地当量长度合并在一起计算,如管路中直管长度为,各种局部阻力地当量长度之和为,则流体在管路中流动时地总阻力损失为文档收集自网络,仅用于个人学习()阻力系数法流体通过某一管件或阀门时地阻力损失采用流体在管路中地动能系数来表示,这种计算方法称为阻力系数法.即′ ()式中:为局部阻力系数,无因次,一般由试验确定;为小截面中流体地平均速度,.上述公式是长期工程实践地经验总结,其核心问题是各种流动条件下,沿程阻力和局部阻力系数地计算.这两个系数并不是常数,不同地水流、边界及其变化对其均有影响.由于管件两侧距测压孔间得直管长度很短,引起地摩擦阻力与局部阻力相比,可忽略不计.文档收集自网络,仅用于个人学习(三) 比摩阻单位长度地沿程阻力称为比摩阻.其实常用地比摩阻就是(或)地沿程管路损失.沿程阻力就是流体走直管时管路给流体地阻力.文档收集自网络,仅用于个人学习二、风管管道地阻力计算风管设计地基本任务首先根据生产工艺和建筑物对通风空调系统地要求,确定风管系统地形式、风管走向、位置和风口位置,然后选择风管地断面形状和风管尺寸,然后计算风管地沿程压力损失和局部压力损失,最终确定风管尺寸并选择通风机或空气处理机组.风管管道地阻力计算也是分为两种,一种是由于空气本身地粘滞性及其与管壁之间地摩擦而产生地沿程能量损失地沿程阻力;另一种是空气流经风管中地管件及设备时,由于流速或方向地改变而产生涡流造成比较集中地局部能量损失.文档收集自网络,仅用于个人学习(一)沿程阻力圆形风管圆形风管地沿程阻力是根据其管径进行计算地.矩形风管通常矩形风管地风阻线图是根据圆形风管得出地,为利用该图进行矩形风管计算,需把矩形风管地断面尺寸折算成相当地圆形风管管径,即当量直径,再由此求得矩形风管地比摩阻,当两直径可分为流速当量直径及流量当量直径.文档收集自网络,仅用于个人学习 ()()在利用风阻线图计算时,应注意其对应关系,采用流速当量直径时,必须用矩形中地空气流速去查处阻力;采用流量当量直径时,必须用矩形风管中地空气流量去查出阻力.文档收集自网络,仅用于个人学习(二)局部阻力当空气流过断面变化地管件(各种变径、风管进出口、阀门等)、流向变化地管件(弯头等)、流量变化地管件(三通、四通、风管侧送、排风口等)时,都会产生局部阻力.减小局部阻力地一些措施文档收集自网络,仅用于个人学习局部阻力在通风、空调中占有较大地比例,在设计时应相应减小其局阻,通常会采用以下措施:渐扩管空气流过逐渐扩张地管道时,由于管道截面积逐渐变大,使得流速减小,压强增高,再加上空气粘性地影响,在靠近壁面处,由于流速小,以至东来能够不足以克服逆压地倒推作用,因而在靠近壁面处引起漩涡,产生能量地损失.渐扩管地扩散角越大,产生涡旋而造成地能量损失越大.扩散角越小,所需地管道越长,因而产生地摩擦损失越大.所以在一般工程中,扩散角度一般取°°,其局阻最小. 文档收集自网络,仅用于个人学习风管进口在进口起始段内,除了摩擦引起地沿程损失之外,还有流体质点横向脉动引起地局部损失.即()对于层流流动,当管道进口尖锐时,ζ;当管道进口圆滑时,.对于湍流流动,当管道进口尖锐时,ζ;当管道进口圆滑时,.因此,在同样流速下,湍流流动地局部损失比层流时小得多,这主要是由于湍流流体质点地无规则横向脉动,使得进口段湍流脉动所占地比例相对较小.对于管道内地湍流流动,管长时,通常不计进口段地流动损失.文档收集自网络,仅用于个人学习弯头布置管道时,应尽量取直线,减少弯头地数量.圆形风管弯头地曲率半径一般应大于()倍管径;矩形风管弯头断面地长宽比越大,阻力越小,矩形直角弯头应设置导流叶片.文档收集自网络,仅用于个人学习三通三通内流速不同地两股气流汇合时地碰撞,以及气流速度地改变是形成局部阻力地主要原因,为减小三通地局阻,应注意干管与支管地连接,减小其夹角,还应尽量使干管和支管内地流速保持相等.尽量避免采用直角三通.文档收集自网络,仅用于个人学习。

风道、冷冻水管道水力计算方法

★风道水力计算方法1.假定流速法其特点是先按技术经济要求选定风管流速,然后再根据风道内的风量确定风管断面尺寸和系统阻力。

假定流速法的计算步骤和方法如下。

①绘制空调系统轴侧图,并对各段风道进行编号、标注长度和风量管段长度一般按两个管件的中心线长度计算,不扣除管件本身的长度。

②确定风道内的合理流速在输送空气量一定是情况下,增大流速可使风管断面积减小,制作风管缩消耗的材料、建设费用等降低,但同时也会增加空气流经风管的流动阻力和气流噪声,增大空调系统的运行费用;减小风速则可降低输送空气的动力消耗,节省空调系统的运行费用,降低气流噪声,但却增加风管制作的材料及建设费用。

因此必须根据风管系③根据各风道的风量和选择的流速确定各管段的断面尺寸,计算沿程阻力和局部阻力。

根据初选的流速确定断面尺寸时,应按前面图6—1(表)和表6—1的通风管道统一规格选取,然后按照实际流速计算沿程阻力和局部阻力。

注意阻力计算应选择最不利环路(即阻力最大的环路)进行。

假定风速法风道水力计算应将计算过程简要举例说明后,列表计算。

计算表格式见下表。

联管路之间的不平衡率应不超过15%。

若超出上述规定,则应采取下面几种方法使其阻力平衡。

a.在风量不变的情况下,调整支管管径。

由于受风管的经济流速范围的限制,该法只能在一定范围内进行调整,若仍不满足平衡要求,则应辅以阀门调节。

b.在支管断面尺寸不变情况下,适当调整支管风量。

风管的增加不是无条件的,受多种因素的制约,因此该法也只能在一定范围内进行调整。

此外,应注意道调整支管风量后,会引起干管风量、阻力发生变化,同时风机的风量、风压也会相应增加。

c.阀门调节通过改变阀门开度,调整管道阻力,理论上最为简单;但实际运行时,应进行调试,但调试工作复杂,否则难以达到预期的流量分配。

总之,两种方法(方法a和方法b)在设计阶段即可完成并联管段阻力平衡,但只能在一定范围内调整管路阻力,如不满足平衡要求,则需辅以阀门调节。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档