20. 高速铁路牵引网故障测距原理

合集下载

牵引网故障测距

牵引网故障测距
离 开关 的操 作 、直 流电动 机运行 状态 的改变 以及 弓 网状 态 的
2 行波 分析 法
行波法 就是 根据 行波传 输 理论 实现对 输 电线故 障测距 的
方法 ,即利用高频故障暂态电流、电压行波或在故障后用脉 冲频率调制雷达系统以及断路器断开或重合时产生的暂态信 号等来间接判定故障点的位置。文献[l 1】 指出 ,现国内外研 究 6 种行波测距原理方法 ,而所有的这些测距原理都可以看 成两种,即单端行波测距和双端行波测距 ,其中 A、C 、 、E
铁路供电系统是铁路运输安全可靠运行的保障,一旦供 电系统发生故障 ,就可能造成巨大的经济损失。电气化铁道 牵引供电系统是电力系统中一个特殊的分支,由于牵引网与 电力机车受电系统特殊的滑动受 电与取流方式限制,决定了 牵引网既要承担一般输 电线沿铁道传输 电能的任务,又要承 担移动的机车用户频繁操作而产生的强大的电与机车受电弓 滑动机械的冲击 , 因此将不可避免地形成频繁的牵引网故障, 严重影响电气化铁道的运行 。对高速电气化铁道 ,牵引网故 障的精确定位,对缩短抢修时间,提高运输效率将具有直接
测距法、单线双差比测距法 ,吸馈电流比与电抗测距法等 , 但这几种方法都是基于阻抗法的原理 ,而阻抗法受牵引网运
l M
上式中,z为线路单位长度的阻抗 ; 点F 的距离 ;
为 M 端到故障 为 M 端测
为 M 端测量到对地的电压;
行方式 、供 电方式和线路结构等因素的影响比较大 ,而行波 法受各种因素的影响较小 , 行波的传播速度比较稳定,且准 确度较高 ,速度又快。随着输 电线路行波传输理论研究的深
线路单位阻抗 的整定,基波信号的提取与分析 ,由于采用集 中参数, 忽略了分布电容的影响, 必将导致原理性的误用有 明显的局 限性 。

电气化铁道供电牵引网故障测距分析

电气化铁道供电牵引网故障测距分析

专业研讨672019年第19期电气化铁道供电牵引网故障测距分析◎.方小飞/吉林铁道职业技术学院摘要:随着我国高速铁道的不断发展,电气化铁道成为了铁路动力的发展趋势,并以行驶密度大、速度快的优势成为了我国未来铁路发展的主力军。

而该种动力方式要求牵引功率高,因此选择正确的供电方式可以有效提升输送功率。

AT、BT 供电方式为告诉铁路提供了大功率的电力输出,但在其运行的过程中,依然存在供电牵引网故障问题,因此,本文通过分析供电牵引网故障测距,提出了几点解决方案,以更好地保证供电方式的正常运作。

关键词:电气化铁道供电;牵引网;故障测距一、AT 供电方式(一)AT 供电方式的测距原理在我国的电气化铁道供电系统中,AT 供电方式得到了很好的应用及发展。

就目前来说,在电气化铁路系统中,所使用的AT 供电线路,如图1所示,一般采用的是SP(末端分区亭)并联运行或者是单线运行方式。

因此在正常维修时,要求在SSP(开闭所)处实施并联。

在天窗运行方式时,AT 在F 与T 线之间存在并联,使牵引网阻抗距离关系呈非线性,因此该种供电方式不能应用于直接供电线路中的电控测距中。

图1 AT供电牵引网示意图如图2所示,全并联AT 供电牵引网的AT 方式上下共用,并联所有AT 处所处的上下行钢轨(R),正馈线(F)及接触网(T)。

其中上、下行线路接触网分别为T1、T2;钢轨分别为R1、R2;正馈线分别为F1、F2;双极断路器分别为CB1、CB2;AT 所及分区所的自耦变压器分别为AT1、AT2;Tr 为带中心抽头的单相变压器。

在目前的AT 供电牵引网中,普遍采用AT 中性点吸上电流比测距进行故障测距。

图2 全并联AT供电牵引网示意图图3所示为新型AT 供电牵引网,当供电网发生金属性短路时,牵引网阻抗即为端口阻抗。

一般情况下,AT 电牵引网由于横连线与AT 的存在,所有上、下行线纵向元件在线路参数上不完全对称。

但从图3的新型AT 供电牵引网中可以看出,上、下行的F 、T 线路呈相互对称的两项,具有一定的对称性。

高速铁路牵引变电所综合自动化系统-故障测距装置

高速铁路牵引变电所综合自动化系统-故障测距装置

不同运行方式下的故障测距
直供方式 全并联AT供电方式 AT全解列的直供方式 变电所1台馈线断路器带两路馈线的供电方式 AT所并联点解列、分区所并联的供电方式 单线AT供电方式
故障测距装置要求
适用于AT牵引供电系统。
要求2:适用各种运行方式。
要求4:具备测量、显示和数 据通信接口等功能。
要求3:采用吸上电流比AT 测距原理、电抗法原理。
牵引网故障类型
1 接触网对轨道—地回路故障
2
正馈线对轨道—地回路故障
TR故障
FR故障
TF故障
3
接触网对正馈线故障
电抗法
故障测距法
上下行电流比法
吸上电流比法
横连线电流比法
问题:四种故障测距方法需要同时使用吗?还是单独使用其中一种或几种呢?
故障测距
故障测距装置应根据断路器和隔离开关位置或各所亭的电压和电流的大 小及方向来自动判断牵引网运行方式,并根据不同的牵引网运行方式和 故障情况自动选择合适的测距方法进行测距。
初始阶段:-40〜40ms
故障切除阶段:300〜400ms
重合闸阶段:1382〜 1520ms
故障录波
波形图上的时间坐标一般都以故障录波 器启动开始计时,记为0,其他的时间均 是以此为基准的相对时间。
0sB相电流开始增大,电压开始降低, 表明B相发生了接地故障。 0.328s保护II段动作出口 0.360s后跳开三相断路器切除故障 1. 420s线路重合闸动作合闸成功
故障录波图的结构可分为三类:
第一类:简单故障分析报告。 第二类:故障录波器的基本信息。 第三类:各通道录波图。
(1)故障分析报告
故障录波
故障分析报告是录波器自动地对本次故障进行的简单分析汇总,它包 括变电站名称、故障设备名称、故障发生的时间、故障类别、故障测 距及保护和断路器动作信息等内容。

牵引网故障测距.doc

牵引网故障测距.doc

牵引网故障测距华东交通大学电气学院07铁道电气化3班韩佳顺电气化铁道牵引供电系统是指从牵引变电所经馈电线到牵引网再到电力机车的工作系统。

我国电气化铁道采用工频单相交流牵引制式。

牵引变电所一般用于将三相110 kV的电能变换成27.5 kV(牵引网额定电压为25 kV)的电能并按单相分配给机车用户。

根据牵引网不同供电方式的要求及牵引变电所为抑制单相牵引负荷造成电力系统的不对称影响,常采用不同接线方式与结构的主变压器,并以此将变电所区分为三相牵引变电所(一般用Y0/△-11变压器,二次侧△的C相接地,由A、B相向两侧供电,形成左右两侧供电臂。

)、单相牵引变电所、三相两相牵引变电所(如Scott接线主变压器、平衡变压器等),供电原理如图2所示。

而前面提到的“牵引网不同供电方式”一般可分为直接供电(direct feeding)、BT(booster transfor- mer)供电和AT(auto-transformer)供电方式。

上述不同的牵引变电所形式、不同的牵引网供电方式及针对单复线电气化区段,对故障测距均有不同的要求。

因此,有必要研究针对不同类型牵引网的故障测距算法。

电力牵引负荷的特点从故障测距涉及的因素来考查电力牵引负荷的特点,会发现它有以下一些特点值得关注。

(1)一段牵引网一般只由1台变压器从单端供电,形成明显的线路首端和末端,并且没有分支;在线路的首端,可将变压器看成它的电源;(2)单台机车功率相对于变电所容量较大,因此,机车的各种工况导致的负荷电流波动较大;电流的变化以突变(阶跃)居多;(3)负荷峰、谷值相差悬殊;(4)滑动取流的机车受电弓由于离线产生电弧及机车的频繁调级、投切(变压器空载),导致在系统中产生丰富的谐波(高次及分次);(5)系统的回流(经回流轨、地或回流线)杂乱。

简便起见,下文中关于以上特点的引用将直接使用其序号。

各种测距方法在牵引网中应用的比较按照故障测距原理,输电线故障测距一般可分为阻抗法、故障分析法和行波法。

高速铁路牵引供电故障测距分析与研究

高速铁路牵引供电故障测距分析与研究

联 自耦变压器 AT供电方式 。此供电方式与传统的复
(2)第 二 次 跳 闸为 直 供 电抗 法 测 距 报 告 ,也 为 F
线 AT供 电方式 最 大 的不 同在 于其 在上 下行 首 末端 并 型接地 故 障 ,公 里标 为 K384+566m。
联 的基 础上 ,将 AT变压 器上 下行 对 应线 路并 联 起来 ,
快 找到故 障 点 ,迅 速 采取措 施 恢复 供 电 。
阻抗 角 74.2。;
大 西高 铁 自 2014年 7月 开 通 以来 ,曾发生 过几
(2)第 二 次跳 闸 :16:34:05阻 抗 I段保 护 动 作 ,重
种典 型 的故 障跳 闸 。通过 对典 型故 障 跳 闸时 的电流分 合成 功 。故 障 电压 6.063kV,电流 6252A,阻抗 4.2312,
图 4 运城北变 电所 2017年 4月 26日跳 闸电流分布图(不平衡 )
把 变 电所 下行 TF电流 数 值 换 ,IU流 分 布
2.1 基础 跳 I1flJ数 据
5所 示 、这时 每个 节点 的 电流 父 系均符 合 尔锥 人
l9:42:48运 城 此 变 IU所 21 1、2l2过 电 流 保 护 动 定 律 同时 也满 足 了全并 联 AT供 电 }乜流 分 布的币 嘤
0 } ~二 …: …:二…二: 一 一《 l…’~~:……~~: …:一 …:一 畸_ :一:…二二 一~ …:二… *: = E , 抽 ~ …二…~一: 一 _一:_ 一_l~l j

靴 l¨l T日 BR

图 3 212rr型 故 障 第二 、第 三次 跳 闸 电流 分 布 图 (直 供 方 式 )

牵引网故障测距系统

牵引网故障测距系统

牵引网故障测距系统第一节牵引网故障测距电气化铁路牵引供电系统的故障大多数发生在接触网,故障致使保护动作而跳闸,中断供电,这类故障往往产生电弧,对绝缘器件和导线有较大损害,如不及时排除,故障可能再次发生。

为了提高牵引供电的可靠性,目前几乎所有牵引变电所都装有接触网故障测距装臵。

这种装臵能在接触网发生短路故障时,自动测量出故障点的距离,对于及时发现和排除故障,特别是发现和排除许多难以发现的瞬时性故障具有十分重要的意义。

目前,应用于牵引供电系统的故障点测距装臵主要有电抗型和电流型两种。

电抗型是通过测量短路电抗值的方法来量度故障点的距离。

电流型是用于AT供电方式中,它是通过测量故障点两侧AT变“吸上电流比值”的方法量度故障点的距离,复线区段供电臂末端并联的用“上下行电流比值”的方法量度故障点的距离,单线区段用“吸馈电流比值”的方法量度故障点的距离。

目前,AT测距原理主要有“AT中性点吸上电流比原理”、“吸馈电流比”和“复线上下行电流比原理”,前者适用于单、复线T-R、T-PW、F-PW、F-R等短路故障下的测距,不适合T-F短路故障测距;后者适用于复线下各种类型短路故障测距,不适用单线下故障测距,第二节 BT和直供系统故障点测距BT和直供系统故障点测距多用电抗型故障点测距装臵,是通过测量牵引变电所至故障点短路电抗的方法来反应故障点的距离,由于测量数值只反应线路电抗值,因而测量值不受过渡电阻变化的影响,相对误差较少。

无论是直供还是BT牵引供电系统,由于接触网结构、线路结构沿线的变化,变电所出口处可能安装有抗雷圈、串联电容补偿等设备,使供电臂内单位长度阻抗不可能均匀分布,且电抗—距离曲线不一定通过原点,因此在实际构成故障点测距装臵时通常将电抗---距离特性根据实际供电臂情况做分段线性化处理,以消除测量误差。

即采用分段线性电抗逼近法测距原理,最多可分为10段,整定时输入线路各分段点对应的公里数及该分段内的单位电抗值,针对复线直供考虑互感的影响。

电气化铁道供电牵引网故障测距综述

电气化铁道供电牵引网故障测距综述

电气化铁道供电牵引网故障测距综述电气化铁道供电牵引网中的供电方式有很多种,最常用的方式有直接供电、AT、BT、等。

全并联方式也逐渐被应用于电气化铁道牵引网的供电过程中。

在几种供电方式中可以根据不同的测距原理进行测距,如阻抗法等。

文章主要对几种供电方式下的测距方法进行了综述,最后对行波测距法进行了探讨。

标签:电气化铁道;牵引网;故障测距1 电气化铁道供电牵引网目前,单相交流制是我国电气化铁路常采用的基本供电方式。

铁路线上的牵引变电所和牵引网组成了牵引供电系统。

采用双回路高压输电线路来提高供电的可靠性。

一般牵引供电回路包括:电力机车、回流线、沿铁路线分布的牵引变电所、馈电线、接触网、钢轨和大地以及正馈线等。

而通常所说的牵引网一般只包括钢轨和大地回流线、馈电线、接触网三个部分。

2 故障测距方法2.1 直接供电测距2.1.1 单线直接供电测距直接供电牵引网与R-L电力线路是等效的,其供电臂包含多个区间和站场,导致出现不同的牵引网阻抗特性,但是在同一段上,牵引网的特性相同。

因此,可在同一段内采用阻抗计算方式,利用线路电抗和距离关系对故障点进行定位。

如图1所示,当故障发展在dn-1与dn之间时,可利用公式(1)进行故障定位,得到定位距离d。

d=dn-1+(Yn-Yn-1/dn-dn-1)(Y-Yn-1)(1)图1 短路电抗—距离曲线2.1.2 复线直接供电测距供电臂末端称为分区亭,首端称为牵引变电所,在复线直接供电中常采用在分区亭并联,短路时会受到上下行阻抗(Z上行和Z下行)的影响。

测距原理为:k=Z上行*2L/(Z上行+Z下行)(2)其中,L为线路电感。

2.2 AT供电故障测距AT供电方式可以很大程度上提高供电电压,一般可以提高一倍,加大了牵引网的载流能力。

该方式采用正馈线和自耦变压器,可减少对通信线路的干扰。

AT供电方式还可以降低成本,在日本以及成为标准的供电方式,在我国很多城市间的电气化铁路也采用了AT供电方式(如北京-秦皇岛的电气化铁路)。

故障测距—高速铁路电力电缆故障定位(铁路牵引供电系统继电保护)

故障测距—高速铁路电力电缆故障定位(铁路牵引供电系统继电保护)

图9.16 冲闪高压闪络法原理图
3.冲击高压闪络法
特点
脉冲电流法
图9.17 冲闪高压闪络法波形图
优点:适用于大部分闪络故障。 缺点:波形比较复杂,辨别难度较大;准确度较低。
跨步电压法
跨步电压法
1.跨步电压法基本原理
跨步电压法是当电缆产生保护层绝缘破损的故障时,施加高压脉冲 给故障电缆,此时故障点会构成喇叭型的电位分布,用高灵敏度的电压 表在大地表面测两点间的电压变化,在故障点附近产生电压变化。
低压脉冲法
低压脉冲法
1.低压脉冲法基本原理
低压脉冲法是向故障电缆注入一个低压脉冲使其在电缆中传播,脉冲 遇到阻抗不匹配处时发生反射,通过反射脉冲与发射脉冲的时间差来计算 故障距离距离。
图9.10 低压脉冲法测距系统原理图
低压脉冲法
2.低压脉冲法特点
优点:装置简单,操作方便;能够 快速准确地定位低阻故障和断路故障点。
电源
0 -V +
0 -V +
0 - V+
0
0
- V +- V +
故障电缆
跨步电压法原理图 图9.24 跨步电压法原理图
跨步电压法
2.跨步电压法接线
例如:
A
F
A
F
图9.25 跨步电压法接线图
B B
0
-
V+
0
-
V+
0 -V +
图9.2跨6步跨电步压法电地压面电法位地分布面图电位分布图
声测法
声测法
1.声测法基本原理
优点:波形简单;准确度较高。 缺点:如果故障点电阻不高;泄漏电流大,使电压几乎都降在高 压试验设备的内阻上,故障点形不成闪络。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

F22
二、常用故障测距原理
单线直接供电方式故障测距
CB
Zl
I
U
CB I
Xl Rl
Rg U

Z
U

Zl
Rg
I
R jX Rl jXl Rg (R0 jX 0 )l Rg
X X0l
l X X0
二、常用故障测距原理
电抗距离查表法故 障测距原理
变电所分相
接触网2
供电线1 供电线2
l
三、客运专线故障测距原理
全并联AT供电方式故障测距要求
➢适用于AT牵引供电系统; ➢适应各种运行方式; ➢采用吸上电流比AT测距原理、电抗法原理; ➢具备测量、显示和数据通信接口等功能; ➢提供详细的测距信息; ➢能正确判断故障类型(T-R、F-R、T-F); ➢能正确判断故障方向(上、下行)。
三、客运专线故障测距原理
变电所、AT所、分区亭三处的吸上电流分别为
IIaattASST IatSP
It1 If 1
Iat1 Iat2 Iat1 Iat2
It2 If 2
变电所
TNF
U1
It1
If1
AT所
It1
If1
U1
Iat1
1AT
1AT
Iat2
2AT
2AT
U2
It2
If2
It2
U2
If2
分区所
It1 U1
Iat1
T1 F1
If1
Iat2
U2 It2
If2 T2 F2
三、客运专线故障测距原理
TF故障类型判断与故障区域判断
如 max(| IatSS |, | IatAT |, | IatSP |) Iset ,则为TF型故障。
当不是TF故障,首先找到各处AT吸上电流模值最大值,并寻
找相邻AT吸上电流较大者,两AT间即为故障区段。
变电所
AT所
分区所
TNF
U1
It1
T1
If1 F1
It1
If1
U1
Iat1 1AT
It1
If1
U1
Iat1 1AT
2AT
It2
U2
If2
Iat2
U2
It2
If2
Iat2 2AT
U2
It2
If2
T2
F2
三、客运专线故障测距原理
故障上下行判断
变电所


当 | I TF1 || I TF 2 | ,判别为下行方向,反之为上行方向。
子所2故障数据 母线T线电压=4.56kV 母线F线电压=4.43kV 211馈线电流=1342.00A 211T线电流=782.00A 211F线电流=556.00A 212馈线电流=1340.00A 212T线电流=1901.00A 212F线电流=558.00A 预留=2229.00A 预留=0.00A AT吸上总电流=2229.00A 211T线电流角度=124.80° 211F线电流角度=302.40° 212T线电流角度=302.60° 212F线电流角度=301.90° 故测遥信代码=-24315.00
五、故障测距报告示实例
2014-05-19 10:20:40.770冲口_牵引变电所长沙方向故障测距保护装置
AT测距法:上行T线故障 故障距离=24.47km 公里标=1070.70km 电阻=4.61Ω 电抗=11.59Ω 母线TF电压=28.46kV 母线T线电压=14.09kV 母线F线电压=14.36kV 211馈线电流=2273.00A 211T线电流=1299.00A 211F线电流=973.00A 212馈线电流=2276.00A 212T线电流=1307.00A 212F线电流=969.00A 预留=0.00A 预留=0.00A AT吸上总电流=674.00A 馈线电压角度=180.50° 211T线电流角度=292.50° 211F线电流角度=110.50°
l min( I1, I2 ) 2L I1 I2
二、常用故障测距原理
AC
55kV
电力机车
接触网 T
钢轨 R
负馈线 F
二、常用故障测距原理
DL Eq
单线AT供电方 式牵引网短路 阻抗
牵引网短路阻抗Z(ohm)
AT1
AT2
7
6 TR或FR故障无 5 法用电抗法测距
AT3 T1
R1
F1
4
3
2
1
T-R短路阻抗理论计算曲线
ln1
ln Xn
ln1 X n1
(X
X n1)
变电所 X Xn+1
X Xn X1
X0
0
L0
L1
Ln
L
Ln+1 L
二、常用故障测距原理
复线直接供电方式故障测距
CB1
Z1
I1
CB2
Z2
I2
U
U
I1 I2 :下行故障 I1 I2 :上行故障
d CB1 I1 U
l CB3
CB2 I2 L
上下行电流比故障测距原理
AT3 T1 R1 F1
Q2
ln+1 L
二、常用故障测距原理
AT供电方式故障测距
SS Eq
AT
SSP
AT
SP
T1
R1
F1
T2 R2 F2
当开闭所不并联、分区所并联的时候:
l min( I1, I2 ) 2L I1 I2


I1 I t1 I f 1


I2 I t2 I f 2
l-故障距离; L-线路总长度。
T-F短路阻抗理论计算曲线
0
0
5
10
15
20
25
30
短路点到牵引变电所的距离L(km)
二、常用故障测距原理
AT吸上电流比测距原

DL AT1
AT2
Eq
Q
1
l
ln
Q
1 (Q1
Q1 Q2
)
D
1-Q2 Q
Q In1 /(In In1)
理想情况:
Q1
0 ln
l
靠近变电所AT处短路时,Q=0;
D
远离变电所AT处短路时,Q=1。
子所1故障数据 母线T线电压=7.51kV 母线F线电压=8.87kV 211馈线电流=1400.00A 211T线电流=779.00A 211F线电流=620.00A 212馈线电流=1408.00A 212T线电流=2020.00A 212F线电流=612.00A 预留=1655.00A 预留=0.00A AT吸上总电流=1655.00A 211T线电流角度=117.70° 211F线电流角度=296.80° 212T线电流角度=296.10° 212F线电流角度=296.40° 故测遥信代码=-24297.00
重合闸失败测距
在变电所,如果


I TF1 I TF 2
,为下行故障。
此时当
0.9
It1 I f 1
1.1 ,判为TF型故障。
否则,当 It1 If 1 ,则为T型故障。
T F T1
F1
T2 F2
三、客运专线故障测距原理
AT故障测距装置定值
失压检测元件 时限:80ms 外启动检测元件 时限:10ms
AT所/分区所
当故障电流由下行流向上行,判别为上行方向,反之为下行
方向。
变电所 TNF
AT所
分区所
U1
It1
T1
If1 F1
It1
If1
U1
Iat1 1AT
It1
If1
U1
Iat1 1AT
2AT
It2
U2
If2
Iat2
U2
It2
If2
Iat2 2AT
U2
It2
If2
T2
F2
三、客运专线故障测距原理
高速铁路牵引网 故障测距原理
电气工程学院 林国松
目录
一、电气化铁道常用供电方式 二、常用故障测距原理 三、客运专线故障测距原理 四、思考题
一、电气化铁道常用供电方式
☆单线直接供电方式 ☆复线直接供电方式 ☆AT供电方式 ☆全并联AT供电方式
一、电气化铁道常用供电方式
单线直接供电方式
D1
d
D2
复线直接供电方式
三、客运专线故障测距原理
问题与建议
1、测距装置定值:设计院确定,厂家配合;由于计算单位电抗 与实际单位电抗差别较大,建议采用既有线经验数据。 2、施工与试验:施工单位施工安装后,必须完成测距装置单机 和系统试验,避免出现后期运营单位和厂家的麻烦。 3、容易出现的问题:T、F线电流线错接;上下行电流线错接; 定值紊乱;开关量错接、漏接。
测距装置定值
接触网1 供电线1
变电所 X X2 X X1
变电所分相 供电线2
接触网2
异相短路?
0
L1
L
L2 L
三、客运专线故障测距原理
测距装置定值
失压检测启动电压:参考馈线保护低压启动过电流低压定值, 一般取0.66倍额定电压;时限为80~100ms。 TF故障判别电流:与牵引网的结构、接触网、钢轨、大地泄露 等有关。根据经验数据,整定为1000A。 馈线电流、AT吸上电流CT变比:设计院确定。 变电所公里标:设计院确定。 吸上电流比-距离表Q-L:设计院确定,厂家配合。 电抗-距离表X-L:设计院确定,厂家配合。
Q-L表整定
供电臂
代码
1
Q0
相关文档
最新文档