牵引网故障测距

合集下载

牵引网故障测距

牵引网故障测距
离 开关 的操 作 、直 流电动 机运行 状态 的改变 以及 弓 网状 态 的
2 行波 分析 法
行波法 就是 根据 行波传 输 理论 实现对 输 电线故 障测距 的
方法 ,即利用高频故障暂态电流、电压行波或在故障后用脉 冲频率调制雷达系统以及断路器断开或重合时产生的暂态信 号等来间接判定故障点的位置。文献[l 1】 指出 ,现国内外研 究 6 种行波测距原理方法 ,而所有的这些测距原理都可以看 成两种,即单端行波测距和双端行波测距 ,其中 A、C 、 、E
铁路供电系统是铁路运输安全可靠运行的保障,一旦供 电系统发生故障 ,就可能造成巨大的经济损失。电气化铁道 牵引供电系统是电力系统中一个特殊的分支,由于牵引网与 电力机车受电系统特殊的滑动受 电与取流方式限制,决定了 牵引网既要承担一般输 电线沿铁道传输 电能的任务,又要承 担移动的机车用户频繁操作而产生的强大的电与机车受电弓 滑动机械的冲击 , 因此将不可避免地形成频繁的牵引网故障, 严重影响电气化铁道的运行 。对高速电气化铁道 ,牵引网故 障的精确定位,对缩短抢修时间,提高运输效率将具有直接
测距法、单线双差比测距法 ,吸馈电流比与电抗测距法等 , 但这几种方法都是基于阻抗法的原理 ,而阻抗法受牵引网运
l M
上式中,z为线路单位长度的阻抗 ; 点F 的距离 ;
为 M 端到故障 为 M 端测
为 M 端测量到对地的电压;
行方式 、供 电方式和线路结构等因素的影响比较大 ,而行波 法受各种因素的影响较小 , 行波的传播速度比较稳定,且准 确度较高 ,速度又快。随着输 电线路行波传输理论研究的深
线路单位阻抗 的整定,基波信号的提取与分析 ,由于采用集 中参数, 忽略了分布电容的影响, 必将导致原理性的误用有 明显的局 限性 。

地铁直流牵引供电系统接触网故障点测距方法

地铁直流牵引供电系统接触网故障点测距方法

地铁直流牵引供电系统接触网故障点测距方法摘要:在通常情况下,接触网线路出现的故障大致可划分为两大主要类型:瞬时故障和永久故障。

瞬时故障发生时,直流牵引系统可利用继电保护装置的重合闸功能恢复供电,但故障点仍是该系统运行中的薄弱点,需及时发现故障点并排除故障,避免发生二次故障进而影响该系统的安全、稳定运行;而当产生永久故障时,则需快速查明故障发生的位置并及时修复排除。

因此,故障点测距方法的引入,不仅能为维修人员及时发现故障点和抢修线路提供便利,且能保证直流牵引系统的安全可靠供电,保障地铁安全运营。

对直流牵引供电系统故障点测距技术进行研究,是地铁牵引供电系统的可靠性、安全性和经济性运行需求下的一个重要课题。

关键词:地铁直流;牵引供电;接触网1 直流牵引供电系统接触网故障点测距方法概述由于直流牵引供电系统组成和运行方式的相似性,既有的电力系统及电气化铁路中的故障点测距方法可为地铁牵引供电系统的故障点测距提供参考。

电力系统中最常用的故障点测距方法主要有两种:故障点分析法和行波法。

其中:故障分析法也被称为电阻法,该方法根据供电系统的相关电气参数和测量到的故障时的电气量,通过推导得到的公式计算出故障点的位置,这是一种传统的故障点测距方法;行波法则是基于暂态行波在传播过程中遇到波阻抗不连续点发生的折射和反射原理,利用探测得到的行波波头之间的时间差来实现故障点测距。

行波法中,波速是影响故障点定位精度的关键,波速的计算取决于大地电阻率的大小和接触网架构的配置。

此外,行波测距需专门设备实现,投资较大。

直流牵引供电系统接触网沿线的隧道内地质条件比较复杂,不同区域地质段的土壤电阻率也有所不同。

且由于直流牵引供电系统的站间距太短,电压等级低,行波过程不明显,采用行波法测距存在行波波头检测难度大和定位精度差等问题,因此,行波法并不适用于直流牵引供电系统的故障点测距。

目前,地铁主要采用DC 1 500 V或DC 750 V电压等级的直流供电方式向列车供电,直流电压、直流电流相比于交流有效信息较少,只有幅值或变化量等有效信息。

电气化铁道供电牵引网故障测距分析

电气化铁道供电牵引网故障测距分析

专业研讨672019年第19期电气化铁道供电牵引网故障测距分析◎.方小飞/吉林铁道职业技术学院摘要:随着我国高速铁道的不断发展,电气化铁道成为了铁路动力的发展趋势,并以行驶密度大、速度快的优势成为了我国未来铁路发展的主力军。

而该种动力方式要求牵引功率高,因此选择正确的供电方式可以有效提升输送功率。

AT、BT 供电方式为告诉铁路提供了大功率的电力输出,但在其运行的过程中,依然存在供电牵引网故障问题,因此,本文通过分析供电牵引网故障测距,提出了几点解决方案,以更好地保证供电方式的正常运作。

关键词:电气化铁道供电;牵引网;故障测距一、AT 供电方式(一)AT 供电方式的测距原理在我国的电气化铁道供电系统中,AT 供电方式得到了很好的应用及发展。

就目前来说,在电气化铁路系统中,所使用的AT 供电线路,如图1所示,一般采用的是SP(末端分区亭)并联运行或者是单线运行方式。

因此在正常维修时,要求在SSP(开闭所)处实施并联。

在天窗运行方式时,AT 在F 与T 线之间存在并联,使牵引网阻抗距离关系呈非线性,因此该种供电方式不能应用于直接供电线路中的电控测距中。

图1 AT供电牵引网示意图如图2所示,全并联AT 供电牵引网的AT 方式上下共用,并联所有AT 处所处的上下行钢轨(R),正馈线(F)及接触网(T)。

其中上、下行线路接触网分别为T1、T2;钢轨分别为R1、R2;正馈线分别为F1、F2;双极断路器分别为CB1、CB2;AT 所及分区所的自耦变压器分别为AT1、AT2;Tr 为带中心抽头的单相变压器。

在目前的AT 供电牵引网中,普遍采用AT 中性点吸上电流比测距进行故障测距。

图2 全并联AT供电牵引网示意图图3所示为新型AT 供电牵引网,当供电网发生金属性短路时,牵引网阻抗即为端口阻抗。

一般情况下,AT 电牵引网由于横连线与AT 的存在,所有上、下行线纵向元件在线路参数上不完全对称。

但从图3的新型AT 供电牵引网中可以看出,上、下行的F 、T 线路呈相互对称的两项,具有一定的对称性。

高速铁路牵引变电所综合自动化系统-故障测距装置

高速铁路牵引变电所综合自动化系统-故障测距装置

不同运行方式下的故障测距
直供方式 全并联AT供电方式 AT全解列的直供方式 变电所1台馈线断路器带两路馈线的供电方式 AT所并联点解列、分区所并联的供电方式 单线AT供电方式
故障测距装置要求
适用于AT牵引供电系统。
要求2:适用各种运行方式。
要求4:具备测量、显示和数 据通信接口等功能。
要求3:采用吸上电流比AT 测距原理、电抗法原理。
牵引网故障类型
1 接触网对轨道—地回路故障
2
正馈线对轨道—地回路故障
TR故障
FR故障
TF故障
3
接触网对正馈线故障
电抗法
故障测距法
上下行电流比法
吸上电流比法
横连线电流比法
问题:四种故障测距方法需要同时使用吗?还是单独使用其中一种或几种呢?
故障测距
故障测距装置应根据断路器和隔离开关位置或各所亭的电压和电流的大 小及方向来自动判断牵引网运行方式,并根据不同的牵引网运行方式和 故障情况自动选择合适的测距方法进行测距。
初始阶段:-40〜40ms
故障切除阶段:300〜400ms
重合闸阶段:1382〜 1520ms
故障录波
波形图上的时间坐标一般都以故障录波 器启动开始计时,记为0,其他的时间均 是以此为基准的相对时间。
0sB相电流开始增大,电压开始降低, 表明B相发生了接地故障。 0.328s保护II段动作出口 0.360s后跳开三相断路器切除故障 1. 420s线路重合闸动作合闸成功
故障录波图的结构可分为三类:
第一类:简单故障分析报告。 第二类:故障录波器的基本信息。 第三类:各通道录波图。
(1)故障分析报告
故障录波
故障分析报告是录波器自动地对本次故障进行的简单分析汇总,它包 括变电站名称、故障设备名称、故障发生的时间、故障类别、故障测 距及保护和断路器动作信息等内容。

牵引网故障测距.doc

牵引网故障测距.doc

牵引网故障测距华东交通大学电气学院07铁道电气化3班韩佳顺电气化铁道牵引供电系统是指从牵引变电所经馈电线到牵引网再到电力机车的工作系统。

我国电气化铁道采用工频单相交流牵引制式。

牵引变电所一般用于将三相110 kV的电能变换成27.5 kV(牵引网额定电压为25 kV)的电能并按单相分配给机车用户。

根据牵引网不同供电方式的要求及牵引变电所为抑制单相牵引负荷造成电力系统的不对称影响,常采用不同接线方式与结构的主变压器,并以此将变电所区分为三相牵引变电所(一般用Y0/△-11变压器,二次侧△的C相接地,由A、B相向两侧供电,形成左右两侧供电臂。

)、单相牵引变电所、三相两相牵引变电所(如Scott接线主变压器、平衡变压器等),供电原理如图2所示。

而前面提到的“牵引网不同供电方式”一般可分为直接供电(direct feeding)、BT(booster transfor- mer)供电和AT(auto-transformer)供电方式。

上述不同的牵引变电所形式、不同的牵引网供电方式及针对单复线电气化区段,对故障测距均有不同的要求。

因此,有必要研究针对不同类型牵引网的故障测距算法。

电力牵引负荷的特点从故障测距涉及的因素来考查电力牵引负荷的特点,会发现它有以下一些特点值得关注。

(1)一段牵引网一般只由1台变压器从单端供电,形成明显的线路首端和末端,并且没有分支;在线路的首端,可将变压器看成它的电源;(2)单台机车功率相对于变电所容量较大,因此,机车的各种工况导致的负荷电流波动较大;电流的变化以突变(阶跃)居多;(3)负荷峰、谷值相差悬殊;(4)滑动取流的机车受电弓由于离线产生电弧及机车的频繁调级、投切(变压器空载),导致在系统中产生丰富的谐波(高次及分次);(5)系统的回流(经回流轨、地或回流线)杂乱。

简便起见,下文中关于以上特点的引用将直接使用其序号。

各种测距方法在牵引网中应用的比较按照故障测距原理,输电线故障测距一般可分为阻抗法、故障分析法和行波法。

“T接”牵引网的故障测距算法研究

“T接”牵引网的故障测距算法研究

“T接”牵引网的故障测距算法研究摘要:在复杂铁路线路或枢纽地区,牵引网有时采用“T接”方式。

通过对“T接”牵引网回路研究,提出了“T接”全并联AT供电牵引故障时,采用横联电流比原理计算故障距离的修正方法。

关键词:T接牵引网;故障测距;横联电流比;全并联AT供电0引言我国高铁线路列车速度快,行车密度大,为机车提供动力的牵引供电系统多采用全并联AT供电方式,牵引网结构一般为“串接”方式。

在一些复杂铁路线路或枢纽地区,为节省设备投资和提高牵引网使用效益,出现了“T接”方式的牵引网。

全并联AT供电方式的牵引网故障时,常用的测距方法包括吸上电流比、横联电流比、上下行电流比等。

在“T接”的全并联AT供电牵引网故障时,直接采用原测距方法,测距误差较大。

通过对“T接”方式的全并联AT供电回路研究,提出采用横联电流比原理计算故障距离的修正方法。

该方法能提高测距精度,对于及时排除故障,恢复供电有非常重要的帮助。

1 “T接”全并联AT供电牵引网及等值电路1.1“T接”全并联AT供电牵引网目前我国高铁牵引网大多采用全并联AT供电方式,在AT所和分区所处将上下行接触网(T)、正馈线(F)和钢轨(R)并联连接,变电所、AT、分区所均给一条铁路线路供电。

“T接”方式的牵引网区别在于:在变电所~分区所中间“T接”出一段铁路线路,变电所、AT所、分区所同时给两条铁路线路供电。

“T接”牵引网全并联AT供电方式可简化如图1所示,其中变电所牵引变压器(T)二次线圈中点抽出接地并接钢轨,在变电所馈线不设自耦变压器。

CB1、CB2分别为下、上行双极断路器,AT1、AT2分别为AT所、分区所的自耦变压器,L1为线路一变电所至“T接”处线路长度,L2为线路一分区所至“T接”处线路长度,L3为线路二AT所至“T接”处线路长度。

图1 “T接”牵引网全并联AT供电方式示意图图2为我国高铁牵引网横截面图,从图中可以看出下行的接触线(T1)和上行的接触线(T2),下行的正馈线(F1)和上行的正馈线(F2)对称。

电气化铁道牵引网故障测距研究综述

电气化铁道牵引网故障测距研究综述电气化铁道牵引网是现代铁路的必备设施之一,它能有效地提高列车的运行速度,并降低能耗。

然而,由于铁路线路的复杂性,以及架空电缆、网杆等元器件的使用,导致电气化铁道牵引网的故障率高。

因此,如何快速准确地定位故障点,是电气化铁道牵引网维护的一个重要问题。

本文将对电气化铁道牵引网故障测距研究的现状进行综述,以期为相关领域的研究工作者提供参考和借鉴。

一、故障测距方法综述1. 电气法故障测距方法电气法故障测距方法是通过电流、电压等物理量的测量,利用求解电路等效模型的方法,计算故障点的位置。

其中,电气法包括了瞬态法、频域法和时域法等多种方法。

这些方法具有精度高、适用范围广、操作简单等优点。

但是,这种方法只对单一故障模型适用,如对于复杂的多重故障模型等,电气法的计算精度会受到很大的干扰。

2. 光纤传感故障测距方法光纤传感故障测距方法是一种利用光纤传感原理,利用光纤传输信号,通过测量光信号的强度、相位变化等可知道故障点的位置。

这种方式具有高精度、设备简单等优点。

但是,光纤传感器在使用时往往需要保持状态稳定,而且需要是防潮防尘等应用环境,不便于在实际中应用。

3. 电磁法故障测距方法电磁法故障测距方法是建立在“电-磁-力”三者之间交互作用的基础上,通过测量电气信号与磁场的联合变化,计算出故障点的位置。

这种方法具有抗干扰性强、适用范围广等优点。

但是,由于电磁波在导体中的传输路径是非线性的,因此只有高质量的实验数据才能获得准确的结果。

4. 声波故障测距方法声波故障测距方法是通过测量故障点周围介质中声波传播的速度和声波传播时间差,计算出故障点的位置。

这种方法具有便于操作、设备简单等优点。

但是,声波故障测距方法对于环境中的杂音和干扰比较敏感,因此需要在噪声环境下进行实测。

二、故障测距研究现状目前,针对电气化铁道牵引网故障测距方面,已经有一系列的研究成果。

例如:“铁路供电系统故障快速定位技术研究及其应用”等。

基于复小波分析的牵引网故障测距算法


达时 间 等 因素 都 影 响着 行 波 法 的精 确 性 . 位信 息 相
Ab t a t s r c :Th t d f t e ta t n n t r a l 1c t n e su y o h r c i e wo k f u t o a i o o
u i g he ta se o p ne a c i e b t r r s ls t a sn t r n intc m o ntc n a hev ete e u t h n
重要 的理论 意义 和实用 价值 . 阻抗法 故 障测距是 发展 最早 且 较成 熟 的测 距 方
Su y f t d o Tr c i n Ne wo k a to t r Fa l Lo a in ut c to Ba e n Co lx W a e e s d o mp e v lt
Un v r iy S a g a 0 8 4, i a i e st , h n h i2 1 0 Ch n )
法 , 由于过渡 电阻 的影 响很 难 消 除 , 但 降低 了该 方 法
的测 距 精 度 . 波 法故 障测距 在 电气 化铁 道 牵 引 网 行 中 的应 用还 刚 刚 起 步 , 速 、 路参 数 、 波 波 头 到 波 线 行
随着世 界石 油资源 的 日益短 缺 和各 国对 环 境保
护 的 日益重 视 , 界 电气化 铁 路 以及 城 市 轨 道交 通 世 将 进 行 一 轮更 快 速 的发 展 . 电气 化铁 道 牵 引 网故 障 测距 技术 是 提 高牵 引 网安 全 可 靠 运行 的重 要 手 段 .
过渡 电阻等对故障测距的影 响, 具有较高 的精度和可靠性. 关键词 : 障测距 ; 故 牵引 网; 暂态谐振频率 ; r t Mol 复小波 e

牵引网故障测距

牵引网故障测距曾振华(华东交通大学,电气与电子工程学院,江西南昌330013)摘要:我国电气化铁道采用工频单相交流牵引制式,根据牵引网不同供电方式的要求及牵引变电所为抑制单相牵引负荷造成电力系统的不对称影响,常采用不同接线方式与结构的主变压器,在高压输电线中利用故障电流分量消除过渡电阻影响的阻抗测距原理及将其用于牵引网馈线故障测距的计算,采用该方法可以极大提高牵引网故障测距的测量精度。

最后,提出根据AT变压器投入情况进行整定值切换的方法,以保证距离保护的可靠性。

关键字:牵引网;故障测距;阻抗法;故障分量法;AT供电系统;馈线保护策略中图分类号:U223.8 文献标识码:A目前,电气化铁道存在多种供电方式,主要有直接供电方式、带回流线的直接供电方式、BT供电方式、AT供电方式等,应用于电气化铁道的故障测距装置大多数是基于阻抗测距原理的单端测距装置。

在双边供电方式下这种测距方法在原理上受过渡电阻的影响较大,因此要保证良好而稳定的测距精度将是十分困难的。

上述不同的牵引变电所形式、不同的牵引网供电方式及针对单复线电气化区段,对故障测距均有不同的要求。

因此,有必要研究针对不同类型牵引网的故障测距算法。

电力牵引负荷的特点:从故障测距涉及的因素来考查电力牵引负荷的特点,会发现它有以下一些特点值得关注。

(1)一段牵引网一般只由1台变压器从单端供电,形成明显的线路首端和末端,并且没有分支;在线路的首端,可将变压器看成它的电源;(2)单台机车功率相对于变电所容量较大,因此,机车的各种工况导致的负荷电流波动较大;电流的变化以突变(阶跃)居多;(3)负荷峰、谷值相差悬殊;(4)滑动取流的机车受电弓由于离线产生电弧及机车的频繁调级、投切(变压器空载),导致在系统中产生丰富的谐波(高次及分次);(5)系统的回流(经回流轨、地或回流线)杂乱。

各种测距方法在牵引网中应用的比较,按照故障测距原理,输电线故障测距可分为阻抗法、故障分析法,行波法和AT距离保护法。

高速铁路客运牵引网故障测距研究

高速铁路客运牵引网故障测距研究摘要:加快中国的高速铁路快速发展,特别是加快高铁客运专线的建设,是解决铁路运输的一个有效措施。

牵引网是保障高铁客运专线安全运输的输电设备。

当牵引网发生故障后能快速测量出故障点的距离是具有重要意义的。

目前广泛采用的电抗测距法更适用于直供或BT供电方式,不适合于采用AT供电方式的高铁客运专线,本文提出一个新的故障测距方案—行波测距法,对其测量原理及其可行性进行研究。

关键词:客运专线;牵引网;行波测距;故障测距近年来,虽然中国高速铁路发展迅速,但铁路运输供需矛盾依然突出。

解决这个问题的有效办法就是加快铁路电气化建设,尤其是高铁客运专线建设。

牵引供电系统是客运专线系统的重要组成部分。

牵引网的最大缺点是可靠性较差且无备用,一旦出现停电故障,将直接影响正常的行车秩序,甚至旅客人身安全。

因此,牵引网发生故障后能得到及时的排查处理,是保障铁路安全运输的必要条件。

传统的人力排查工作量大,且不能满足实际需要,因此研究高铁客运专线牵引网故障测距方案对铁路运输的高效运行具有一定的实际价值。

目前几乎所有牵引变电所都装有牵引网故障测距装置用以提高供电的可靠性。

在牵引网发生短路故障时,装置能自动测量出故障点的距离,对于及时发现和排除故障,特别是发现和排除许多难以发现的瞬时性故障具有十分重要的意义。

目前已有的牵引网故障测距装置中,广泛采用阻抗法进行测距。

目前在牵引供电系统中,对于BT和直接供电系统牵引网故障测距普遍采用电抗法。

阻抗法即利用故障时测量到的工频电压和电流量来计算故障回路的阻抗值,再根据阻抗公式,线路长度与短路阻抗值成正比,从而求出观测点到故障点的距离。

但电抗法却不适用于AT牵引供电系统,主要是由于AT牵引供电系统结构复杂,运行方式繁多,且故障时阻抗—距离曲线呈非线性,采用阻抗法误差极大。

高铁客运专线牵引供电系统考虑AT供电方式在提高牵引网供电能力、改善电磁环境、减少电分相和降低外部电源投资等方面具有明显的优势,所以采用了AT供电方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

牵引网故障测距曾振华(华东交通大学,电气与电子工程学院,江西南昌330013)摘要:我国电气化铁道采用工频单相交流牵引制式,根据牵引网不同供电方式的要求及牵引变电所为抑制单相牵引负荷造成电力系统的不对称影响,常采用不同接线方式与结构的主变压器,在高压输电线中利用故障电流分量消除过渡电阻影响的阻抗测距原理及将其用于牵引网馈线故障测距的计算,采用该方法可以极大提高牵引网故障测距的测量精度。

最后,提出根据AT变压器投入情况进行整定值切换的方法,以保证距离保护的可靠性。

关键字:牵引网;故障测距;阻抗法;故障分量法;AT供电系统;馈线保护策略中图分类号:U223.8 文献标识码:A目前,电气化铁道存在多种供电方式,主要有直接供电方式、带回流线的直接供电方式、BT供电方式、AT供电方式等,应用于电气化铁道的故障测距装置大多数是基于阻抗测距原理的单端测距装置。

在双边供电方式下这种测距方法在原理上受过渡电阻的影响较大,因此要保证良好而稳定的测距精度将是十分困难的。

上述不同的牵引变电所形式、不同的牵引网供电方式及针对单复线电气化区段,对故障测距均有不同的要求。

因此,有必要研究针对不同类型牵引网的故障测距算法。

电力牵引负荷的特点:从故障测距涉及的因素来考查电力牵引负荷的特点,会发现它有以下一些特点值得关注。

(1)一段牵引网一般只由1台变压器从单端供电,形成明显的线路首端和末端,并且没有分支;在线路的首端,可将变压器看成它的电源;(2)单台机车功率相对于变电所容量较大,因此,机车的各种工况导致的负荷电流波动较大;电流的变化以突变(阶跃)居多;(3)负荷峰、谷值相差悬殊;(4)滑动取流的机车受电弓由于离线产生电弧及机车的频繁调级、投切(变压器空载),导致在系统中产生丰富的谐波(高次及分次);(5)系统的回流(经回流轨、地或回流线)杂乱。

各种测距方法在牵引网中应用的比较,按照故障测距原理,输电线故障测距可分为阻抗法、故障分析法,行波法和AT距离保护法。

1 阻抗法的故障测距原理阻抗法的故障测距原理是假定输电线为均匀线,在不同故障类型条件下计算出的故障回路阻抗或电抗与测量点到故障点的距离成正比,从而通过计算故障时测量点的阻抗或电抗值除以线路的单位阻抗或电抗值得到测量点到故障点的距离。

在已有的输电线故障测距装置中,由于阻抗法测距简单可靠,虽存在测距精度问题,但可利用线路一端电流的故障分量以克服过渡电阻的影响[1][2],所以被广泛采用。

测距的精度在牵引网故障测距中有着极其重要的意义,它直接影响到线路故障的查找和排除故障时间的长短。

测距精度高可以缩短抢修时间,快速恢复行车,减少经济损失。

目前在牵引网故障测距中普遍根据阻抗法的电抗测距原理,以消除故障时过渡电阻的影响,但是这种测距方法只在单边供电方式且无机车负荷条件下测距较准确,而在双边供电方式下将产生较大误差,为此有必要研究在双边供电方式下及有机车负荷时故障测距的方法。

1.1在测距中消除过渡电阻影响的计算在阻抗法测距中消除过渡电阻对测距影响的计算如图1所示,设M 端为测量端,则测量阻抗[1]为F M F MF M M M )(R I I l Z I U Z +⋅== (1)式中:Z 为线路单位长度的阻抗;l MF 为M 端到故障点F 的距离;MU 为M 端测量到的对地电压;İM 为M 端测量到的电流;R F 为故障点的过渡电阻;F I 为故障点的短路电流。

只有在R F =0时,即发生金属性短路,测量结果准确。

在R F ≠0时,即发生通过过渡电阻短路,测量结果有误差,对这种情况应加以消除,以满足测量精度的要求。

以下是两种供电方式下减小过渡电阻影响的方法。

1.2单边供电方式在单边供电方式(单端电源供电方式)下İM =İF ,因此测量阻抗为Z M =Z·l MF +R F ,(2)对式(2)取虚部有Im[Z M ]=Im[Zl MF +R F ],于是测量电抗X M =Xl MF ,l MF =X M /X ,(4)式中:X 为线路单位长度的电抗。

从而消除了过渡电阻R F 对测距的影响。

1.3 双边供电方式由于在正常状态下不存在故障分量的电压、电流,故障分量只有在故障状态下才出现,所以可以利用故障分量电流来消除过渡电阻影响。

根据叠加原理,可将图1分解为正常状态和故障附加状态的叠加。

I Mq 、I Nq 分别为M 端和N 端的故障前(正常状态)电流。

图2 正常状态图再根据叠加原理解İMq =İM -İMf 可推得M 端电流的故障分量与故障点电流之间存在以下关系[1]İMf = İM -İMq = C M İF , (5)式中:İMq 、İM 为M 端故障前和故障后电流;İMf 为M 端的故障分量电流;C M 为M 端的电流分布系数,İF 为故障点电流。

MNR S MF MN R M l Z Z Z l Z l Z Z C ⋅++⋅-⋅+=, (6) 电流分布系数C M 一般为复数,令M j M M γeC C = 2 全并联AT 供电方式馈线保护策略全并联AT 供电系统(如图1)发生故障时,上下行需要同时跳闸,才能切除故障,但是这样会扩大停电范围,使故障线路和非故障线路同时停电。

馈线保护策略应该尽量缩小发生故障时的停电范围,并要求故障线路及时退出运行,非故障线路快速恢复供电。

E M Z s Z MF Z FN Z R E N l MN l MF I Mq I Nq M NFTF R TF R AT 所AT 分区所1QF2QF 3QF 4QF 5QF 6QF 7QF8QFAT 2AT 3AT 4AT 5AT 6AT 1K图1 全并联AT 供电系统供电臂示意图由图1可见,由于牵引变电所主变压器采用V/X 接线,所以在出口处不需要单独设AT 变压器。

在正常运行时AT 所和分区所自耦变压器1台运行,1台备用,所有馈线断路器和隔离开关都闭合。

当发生故障时(如K 1处短路),断路器动作顺序如下:①1QF 和2QF 同时跳闸,使上下行全部停电。

②AT 所和分区所检测到线路失压,使其断路器(3QF 、4QF 、5QF 和6QF )跳闸。

经过上面的操作,全并联AT 供电系统变成上下行相互独立的直接供电系统,同时使故障线路和非故障线路分隔开。

③馈线断路器(1QF 和2QF )重合闸,若K 1处故障是永久性故障,则上行重合闸失败,下行重合闸成功,否则上下行重合闸都成功。

④当AT 所和分区所检测到线路有压后,相应断路器进行重合闸。

由于所有AT 变压器同时投入,会使线路产生较大的励磁涌流,为了避免较大的励磁涌流对断路器等设备产生影响和引起保护误动,AT 变压器按距离牵引变电所的近远,通过一定时限配合依次重合闸,同时系统由直接供电方式逐渐变成AT 供电方式(如3QF 和4QF 检测到线路有压后,通过一定时间延迟进行重合闸,而5QF 和6QF 重合闸的时间延迟较3QF 和4QF 长)。

通过上面的保护策略,若线路为永久性故障,可以使非故障线路快速恢复正常供电,故障线路退出运行;若为瞬时性故障,上下行可以快速恢复成全并联AT 供电方式。

3行波法的故障测距原理行波法是根据行波传输理论实现对输电线故障测距的方法。

由于行波在线路中有比较稳定的传播速度,且测量到的时间差不受线路类型、故障电阻及系统运行参数等影响,因而,行波法故障测距有较好的精度和稳定性。

早期利用行波的测距装置可分为A 、B 、C 型3种。

A 型装置利用故障点产生的行波在测量点到故障点间来回往返的时间与行波波速之积来确定故障位置;B 型装置利用故障点产生的行波到达两端的时间差与波速之积来确定故障位置;C 型装置是在故障发生时于线路的一端施加高压高频或直流脉冲信号,根据脉冲往返时间来确定故障位置。

这3种方法中,A 型、C 型为单端测距;B 型为双端测距,需要有两端通信。

A 型和B 型装置对输电线路的瞬时性和永久性故障均有较好的适应性,C 型装置则可在线路断开的条件下检测出故障,因此多用于永久性故障定位。

现代行波法中,基于全球定位系统(GlobalPosi -tioning System ,GPS )精确对时的双端行波法的D 型装置(原理同B 型)使得行波故障测距的实现既简单又精确稳定,并且有良好的适应性。

由B 型装置的测距算法可看到,由GPS 精确获得t T 、t Q 、t C 是可能的,而行波速度ν一般是稳定的,因此由D 型装置获得的D nF 也将是精确而稳定的。

将行波法应用于电气化铁道牵引网的故障测距,行波信号可直接通过电压互感器、电流互感器获取,其测距精度和稳定性不受过渡电阻及上述牵引负荷特点(2)(3)(4)等造成的影响。

这将有可能消除牵引网测距中的多种偶然误差,真正得到牵引网故障定位稳定而精确的结论。

4 结语比较阻抗法、故障分析法及行波法在电气化铁道牵引网中故障测距的适应性,笔者发现前两种方法固然有它的优点,但随着输电线行波传输理论研究的深入及电子技术、计算机技术的发展和相关技术的引入,现代行波法将更胜一筹,其应用前景将更加广泛。

然而根据全并联AT正常供电时,分区所和AT所只有1台AT变压器投入的特点,提出的馈线保护策略能够消除线路瞬时故障,缩小停电范围,满足高速铁路的要求。

分析了上行发生永久性故障后下行恢复供电的变化过程,并且对各种变化过程的线路进行了短路阻抗仿真。

最后通过比较分析,提出根据AT变压器的投入情况切换不同的整定值,从而保障供电的可靠性。

5 参考文献[1] 贺威俊,简克良.电气化铁道供变电工程[M].北京:中国铁道出版社.[2]董新洲,葛耀中,徐丙垠,等.新型输电线路故障测距装置的研制[J].电网技术,1998,22(1):17-21.[3]熊列彬. 全并联AT供电方式下供电臂保护控制方案[J]. 电力系统自动化, 2006, (22):73-76.[4]王继芳,高仕斌.全并联AT供电牵引网短路故障分析[J].电气化铁道,2005,(04):20-23.[5]葛耀中.新型继电保护与故障测距原理与技术[M].西安:西安交通大学出版社,1996.[6]Milland.A,Taylor.I.A, Weller.G.C,AC electrified railways protection and distance to fault MeasureMent, IEE Conference Publication, 405 Mar 27-30 1995, P73-77.[7]Lee H,Mousa A M.GPStraveling wave fault locator systems:investigation into the anomalous measurements related to light-ning strikes[J].IEEE Trans on Power Delivery,1996,11(3):1214-1223.Traction nets fault locationZengzhenhua(The east China jiao tong university, electrical institute,jiangxi provance nanchang 330013)Abstract:Our country the electrified railway work frequency ac traction pattern,According to the different ways of power supply traction nets requirements and traction substation to curb the single-phase traction's load caused power system of asymmetry affect, often using different connection mode and structure of the main transformer,the principle of the distance measuring via impedance in high voltage power,transmission line with fault current component to eliminate the impact of transient resistance and its computation applied in fault location of feeders in traction power network, which will dramatically improve the accuracy for fault location.Finally, put forward a protection scheme, which according to the condition of the AT transformer to switch the setting value, to ensures the reliability of distance protection.Key words: Traction networks;fault location;impedance method;fault component method;AT power supply system;feeder protection strategy。

相关文档
最新文档