灰渣稀相气力输送系统设计计算说明书

合集下载

气力输送系统基本参数计算知识

气力输送系统基本参数计算知识

系统基本参数计算更新时间:2005年07月20日系统基本参数计算1.输灰管道当量长度Leg输灰管道的总当量长度为Leg=L+H+∑nLr (m)(5-19)2.灰气比μ根据所选定的空气压缩机容量和仓泵出力,用下式可计算出平均混合比μ=φGhX103/[ Qmγa(t2+t3)](kg/kg)(5-20)Gh=ψγhνp (t/仓) (5-21)式中Gh—仓泵装灰容量,t/仓。

灰气比的选择取决于管道的长度、灰的性质等因素。

对于输送干灰的系统,μ值一般取7-20 kg/kg。

当输送距离短时,取上限值;当输送距离长时,则取下限值。

3.输送系统所需的空气量因单、双仓泵均系间断工作,故系统所需的空气量应根据仓泵每一工作周期所需的气耗量.再折合成每分钟的平均耗气量即体积流量Qa=φGhX103/[μγa(t2+t3)](m3/min)(5-22)质量流量Ga=Qaγa=16.67 Gm/μ (kg/min)(5-23)4.灰气混合物的温度输送管始端灰气混合物的温度可按下式计算tm=( Gmchth+ Gacata)/( Gmch+Gaca) (℃) (5-24)式中Gm—系统出力,kg/min;ch—灰的比热容,kcal/(kg℃) ,按公式(5-7)计算th—灰的温度,℃;ca—空气的比热容,一般采用o.24kcal/(kg℃);ta—输送空气的温度,℃。

因灰气混合物在管道内流动时不断向外界散热,故混合物的温度逐渐下降,其温降值与周围环境温度、输送管道的直径等因素有关。

根据经验,每100m的温降值一般为6—20℃。

当混合物与周围环境的温度差大时,取上限值;温度差小时取下限值。

5.输送速度仓泵正压气力除灰系统输送的距离一般比较长,为保证系统安全经济运行,沿输送管线的管径需逐段放大,一般均配置2—3种不同管径的管道,以使各管段的输送速度均在设计推荐范围内,根据实践经验,各管段的输送速度推荐如下:管道始端的速度:νb =10-12m/s;"前、中段管道末端的速度:νe=15-20m/s;后段管道末端的速度:νe=15-25 m/s。

气力输送系统基本参数计算(全)

气力输送系统基本参数计算(全)

系统基本参数计算更新时间:2005年07月20日系统基本参数计算1.输灰管道当量长度Leg输灰管道的总当量长度为Leg=L+H+∑nLr (m)(5-19)2.灰气比μ根据所选定的空气压缩机容量和仓泵出力,用下式可计算出平均混合比μ=φGhX103/[ Qmγa(t2+t3)](kg/kg)(5-20)Gh=ψγhνp (t/仓) (5-21)式中Gh—仓泵装灰容量,t/仓。

灰气比的选择取决于管道的长度、灰的性质等因素。

对于输送干灰的系统,μ值一般取7-20 kg/kg。

当输送距离短时,取上限值;当输送距离长时,则取下限值。

3.输送系统所需的空气量因单、双仓泵均系间断工作,故系统所需的空气量应根据仓泵每一工作周期所需的气耗量.再折合成每分钟的平均耗气量即体积流量Qa=φGhX103/[μγa(t2+t3)](m3/min)(5-22)质量流量Ga=Qaγa=16.67 Gm/μ (kg/min)(5-23)4.灰气混合物的温度输送管始端灰气混合物的温度可按下式计算tm=( Gmchth+ Gacata)/( Gmch+Gaca)(℃) (5-24)式中Gm—系统出力,kg/min;ch—灰的比热容,kcal/(kg℃) ,按公式(5-7)计算th—灰的温度,℃;ca—空气的比热容,一般采用o.24kcal/(kg℃);ta—输送空气的温度,℃。

因灰气混合物在管道内流动时不断向外界散热,故混合物的温度逐渐下降,其温降值与周围环境温度、输送管道的直径等因素有关。

根据经验,每100m的温降值一般为6—20℃。

当混合物与周围环境的温度差大时,取上限值;温度差小时取下限值。

5.输送速度仓泵正压气力除灰系统输送的距离一般比较长,为保证系统安全经济运行,沿输送管线的管径需逐段放大,一般均配置2—3种不同管径的管道,以使各管段的输送速度均在设计推荐范围内,根据实践经验,各管段的输送速度推荐如下:管道始端的速度:νb =10-12m/s;"前、中段管道末端的速度:νe=15-20m/s;后段管道末端的速度:νe=15-25 m/s。

车间碎料气力运输系统上

车间碎料气力运输系统上

G.
CO
M
C-D 段:要考虑 C 处叶轮旋转供料器,管道有 5%的风量外逸
6. 整个管道系统内要求的气流 V A-C 段:V = V 水平最小+Vt=23.2+3=26.2m/s
C-D 段:V'= V 水平最小+Vt=24.9+3=27.9m/s 7. 管道直径 A-C 段: d = 4Q 4 × 16250 = = 0.468m = 468mm 3600πv 3600 × 3.14 × 26.2
根据[1]P115 公式 9-7 得:

v
t

= 0.14
其中:a----截面形状系数,对于刨花和锯屑取 0.9。 h----木材碎料厚度,对于刨花和锯屑取 1mm。 则: vt = 0.14 500 1.2 × 0.02 + 0.9

γ
a 焹 0.02 +
(
)
ON
=
9900 = 0.9 15437.5 × 0.6 × 1.2
(2)混合气流在直立上升管道内的压力损失 H 直立 根据[1]P121 公式 9-22 得: H 捈棫
2 λ ' l ' γ 焹 v' (1 + kµ ') + µ ' γ 焹 h' = × d' 2g
其中:l----在管道系统中,所有直立上升管段和倾斜上升管段的总长。 h----物料上升的高度(对于倾斜上升管段按其在铅垂轴向的投影高度来计
配用电机型号为:Y2BOS-4 380V;功率为:75KW。 联轴器型号:6-75×(75) ;风机轴:75mm;电动机轴:75mm。 5. 风机校核 根据计算出的驱动风机所需的电功率 N=67.2KW 可知:67.2KW<电动机的功率 75KW, 因此,所选风机是合适的。

灰渣稀相气力输送系统设计计算说明书

灰渣稀相气力输送系统设计计算说明书

灰渣稀相气力输送系统设计计算说明书灰渣稀相气力输送系统设计计算说明书一系统出力按污泥处理量在设计点400t/d、进厂污泥固含率在设计点(20%),污泥中可燃质在设计低限(38.5%,DS)计算,焚烧炉系统的灰渣产率为2.05t/h;如果按污泥处理量在设计点400t/d、固体中可燃质含量在设计点(56%,DS)、进厂污泥固含率在设计高限(27%)计算,则系统的灰渣产率为1.98t/h,如果按污泥中固含率在设计点20%、固体中可燃质含量在设计点(56%,DS)、污泥处理量在设计高限450t/d计算,系统的灰渣产率为1.65t/h。

系统的最大灰渣产率按第一种情况计算,即取2.05t/h。

尾气干法处理时碳酸氢钠的加入量为460 kg/h,活性炭的加入量为4.6kg/h。

为便于灰渣分别处置,余热锅炉和电除尘器收集的灰渣通过一套输送系统输送到灰渣储仓,而袋式除尘器收集的飞灰以及尾气处理时加入系统的碳酸氢钠和活性炭则通过另一套系统输送到飞灰储仓。

卸灰时,依据灰斗料位或按顺序开启旋转阀,在同一时间,每套输灰系统只能开启一台旋转阀。

根据经验数据,两台余热锅炉排出的灰渣量约为440kg/h。

按电除尘器最高除尘效率99.9%计算,则其灰斗最大灰渣产率1.61t/h,余热锅炉和电除尘器共用的灰渣输送线灰渣最大产率为2.05t/h。

按余热锅炉加电除尘器最低除尘效率为90%,袋式除尘器除尘效率按99.9%计算,飞灰输送线的最大产灰率(包括烟气处理系统加入的碳酸氢钠粉和活性炭粉)0.67t/h。

因为对每个灰斗来说,灰渣输送系统采用的是间歇运行的方式,且灰渣和飞灰输送都没有备用线,参考《火力发电厂除尘设计规程》有关规定,灰渣输送系统的出力按系统最大灰渣产率的250%进行设计。

综合上述因素,余热锅炉和电除尘器的灰渣输送线设计出力取5.125t/h,袋式除尘器的飞灰输送系统的设计出力取1.675t/h。

二灰渣输送线操作参数选取按输送系统输送距离最长的部分(余热锅炉灰斗至渣仓)管线布置计算,灰渣输送管线的当量长度大于200m。

气力输送计算【范本模板】

气力输送计算【范本模板】

气力输送计算
一、设计依据和主要参数确定
1、输送量(G)
输送管在正常工作中最大物料量:20T/H
2、输送风速(V)
气力输送装置中空气在管道中运动要有一个最有利的经济速度,此速度。

风速过高动力消耗过大。

动力消耗几乎与风速的三次方成正比。

风速过低,对物料输送量变化的适应小,工作不稳定易发生堵塞或掉料.所以应该在保证输送工作稳定可靠的前提下,尽量采用低风速。

通常当物料比重和颗粒愈大、输送浓度越高、或者有弯曲和水平输送时所需风速取大值,反之则取较低数值.一般输送粮粒的风速为20—25m/s.
我们考虑到我们输送距离短,弯头少等实际情况选择输送风速为22m/s.
3、输送浓度(υ)
输送浓度即气体输送中气体所含输送物料的质量浓度。

我国粮食行业一般输送稻谷等粮粒时取υ=3-5。

我们根据实际情况取υ=4
4、风量(Q) 根据公式y
G Q υ==2.1410203⨯⨯=4.17×103 m 3/h y-空气的比重 取1.2Kg/m 3
考虑到系统漏风和储备所需风量为Q=1。

1×4.17×103=4。

58×103
m 3/h
5、输料管直径D 根据公式=⨯==22
1058.48.188.183V Q D 271.1 我们进行取整,得输料管直径D=300mm 。

6、压力损失(P)。

成品灰气力输送计算书

成品灰气力输送计算书

成品灰气力输送计算书
喷射泵后的压力(压差)为ΔPb1=Pb-Pa=1422.3kgf/m2=13938.54Pa(1kgf/m2=9.8066pa)
根据喷射泵相关理论,文氏管喷射泵输送的主要能量损失在于将空气的压力能→速度能(动能)→压力能的转化过程中,能量损耗占总能量的0.5~0.6左右,另还包括将灰料加速的能量损耗,而能量的损耗主要以空气输送压降实现,尽管输送空气流量有一定的变化,但仅是少量而不予考虑
(此理论也基本与工程实际相符)。

故喷射泵前后压损为:
ΔPb2=ΔPb1/(1-0.6)=34846.35Pa
所以进入喷射泵的输送空气压力(压差)为
ΔPb0=ΔPb1+ΔPb2=48784.89Pa
考虑从风机房内的纯空气压损及一定的富裕量,并结合罗茨风机选型,
取罗茨风机升压为 58.8 Kpa。

罗茨风机流量取1.1×Q'a=38.83m3/min,根据罗茨风机型号,选定风机流量为39.46 m3/min 故原灰输送选定罗茨风机型号为CKSR200A,风冷型,升压 58.8 Kpa,流量39.46 m3/min。

稀相气力输送计算

稀相气力输送计算

稀相气力输送计算稀相气力输送是一种重要的物料输送方式,特别适用于粉状、颗粒状和粒径较细的物料。

在稀相气力输送系统中,物料通过气流的作用从一个位置输送到另一个位置,以实现物料的输送、混合、分离等目的。

稀相气力输送具有输送距离长、输送速度快、无积聚、环境友好等特点,广泛应用于化工、矿山、冶金、建材等行业。

1.气体流量计算:气体流量是指通过管道系统的气体的流量,单位为立方米/小时。

气体流量的计算公式为:Q=A*V*Y其中,Q为气体流量,A为横截面积,V为气体流速,Y为输送率。

2.管道直径的计算:管道直径是指输送管道的内径,单位为毫米。

管道直径的计算需要综合考虑气体流量、输送距离、输送速度等因素。

一般来说,较大的管道直径可以提高输送速度,减少压降,但也会增加成本。

管道直径的计算公式为:D=(Q/(0.785*V))^0.5其中,D为管道直径,Q为气体流量,V为气体流速。

3.输送速度的计算:输送速度是指物料在稀相气力输送中的平均速度,单位为米/秒。

输送速度的计算需要考虑物料的密度、气体流速等因素。

输送速度的计算公式为:V=(Q/(A*Y))/ρ其中,V为输送速度,Q为气体流量,A为横截面积,Y为输送率,ρ为物料密度。

4.压降的计算:压降是指气体在输送管道中因摩擦阻力、管道弯曲等因素造成的压力降低。

压降的计算需要考虑气体流量、管道直径、管道长度等因素。

压降的计算公式为:ΔP=f*(L/D)*(Q/A)^2/2其中,ΔP为压降,f为摩擦系数,L为管道长度,D为管道直径,Q 为气体流量,A为横截面积。

以上是稀相气力输送计算的一般方法和公式。

在实际应用中,还需要考虑物料的流动性、粒径分布、输送系统的布局等因素,以确保输送系统的稳定和高效运行。

同时,还需要根据具体的物料特性和输送要求,选择合适的设备和工艺参数。

电厂灰渣压气式气力输送系统设计

电厂灰渣压气式气力输送系统设计

题目:电厂灰渣压气式气力输送系统设计专业:机械设计制造及其自动化学生:(签名)指导教师:(签名)摘要近年来,我国在交通运输、建筑材料、电力、化学、冶金、采矿、铸造、食品、轻纺等工业部门中,气力输送的应用已日益增多。

在国外,应用气力输送的广泛性大大超过了人们的预料,已涉及城市卫生和公用事业方面。

随着我国工业生产现代化的迅速发展,生产过程中采用气力输送的方式越来越多,并且逐渐成为势在必行的选择。

本设计采用空气正压输送方式,首先气力输送系统方案的设计;其次计算设计灰渣气力输送系统的工作参数、确定风机的类型、管道直径、供料器、分离器的形式;最后绘制出灰渣气力输送系统、分离器、供料器组装图及非标附件的零件图。

本设计选用的旋转进料器,保证电厂灰渣能在正压的环境中进去输送管道,保证生产的正常进行,旋风分离器可使灰渣与空气分离,使灰渣顺利进入料仓。

送料的空气经过净化过滤,环保,安全,实现了整个输送系统的功能。

关键词:电厂灰渣正压输送系统设计Subject:Fly ash and gas pressure pneumatic conveying system designABSTRACTIn recent years,our country in the transportation, building materials, electric power, chemical, metallurgy, mining, foundry, food, textile and other industrial sectors, application of pneumatic conveying has been increasing. In foreign countries, extensive application of pneumatic conveying much more than people had expected and it has been to city health and public utilities.With China's rapid development of the modern industry production, the pneumatic conveying is more and more used in the process of production and gradually become be imperative choice.This design uses the air positive pressure conveying mode. Firstly design pneumatic conveying system, Secondly, calculation of parameter design of ash pneumatic conveying system, determine the type of fan, pipe diameter, feeders, the form of separator,Finally, draw the ash pneumatic conveying system, separator, The feeder assembly drawing and non-standard attachment parts.This design uses the rotary feeder, ensure the plant ash in pipeline under pressure environment and normal production. The cyclone separator can make the ash is separated from the air and smoothly into the bin. Feeding through the air purification filter can make air environmental protection and safe. So it realize the function of the entire transportation system.Keywords: Ash-slag Positive pressure conveying systems Design目录1 绪论 (4)1.1发展状况 (4)1.1.1国外研究现状 (4)1.1.2 国内研究现状 (4)1.2 电厂灰渣气力输送系统总体设计 (5)1.2.1 输送类型选择 (5)2 系统设计计算 (7)2.1 鼓风机选型 (7)2.1.1设计数据 (7)2.1.2设计计算 (7)2.2旋转加料器设计计算................................................................... 错误!未定义书签。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

灰渣稀相气力输送系统设计计算说明书灰渣稀相气力输送系统设计计算说明书一系统出力
按污泥处理量在设计点400t/d、进厂污泥固含率在设计点(20%),污泥中可燃质在设计低限(38.5%,DS)计算,焚烧炉系统的灰渣产率为2.05t/h;如果按污泥处理量在设计点400t/d、固体中可燃质含量在设计点(56%,DS)、进厂污泥固含率在设计高限(27%)计算,则系统的灰渣产率为1.98t/h,如果按污泥中固含率在设计点20%、固体中可燃质含量在设计点(56%,DS)、污泥处理量在设计高限450t/d计算,系统的灰渣产率为1.65t/h。

系统的最大灰渣产率按第一种情况计算,即取2.05t/h。

尾气干法处理时碳酸氢钠的加入量为460 kg/h,活性炭的加入量为
4.6kg/h。

为便于灰渣分别处置,余热锅炉和电除尘器收集的灰渣通过一套输送系统输送到灰渣储仓,而袋式除尘器收集的飞灰以及尾气处理时加入系统的碳酸氢钠和活性炭则通过另一套系统输送到飞灰储仓。

卸灰时,依据灰斗料位或按顺序开启旋转阀,在同一时间,每套输灰系统只能开启一台旋转阀。

根据经验数据,两台余热锅炉排出的灰渣量约为440kg/h。

按电除尘器最高除尘效率99.9%计算,则其灰斗最大灰渣产率1.61t/h,余热锅炉和电除尘器共用的灰渣输送线灰渣最大产率为2.05t/h。

按余热锅炉加电除尘器最低除尘效率为90%,袋式除尘器除尘效率按99.9%计算,飞灰输送线的最大产灰率(包括烟气处理系统加入的碳酸氢钠粉和活性炭粉)0.67t/h。

因为对每个灰斗来说,灰渣输送系统采用的是间歇运行的方式,且灰渣和飞灰输送都没有备用线,参考《火力发电厂除尘
设计规程》有关规定,灰渣输送系统的出力按系统最大灰渣产率的250%进行设计。

综合上述因素,余热锅炉和电除尘器的灰渣输送线设计出力取5.125t/h,袋式除尘器的飞灰输送系统的设计出力取1.675t/h。

二灰渣输送线操作参数选取
按输送系统输送距离最长的部分(余热锅炉灰斗至渣仓)管线布置计算,灰渣输送管线的当量长度大于200m。

参考火力电厂输灰系统设计的有关规定,灰渣采用低正压压送方式输送,选取输送管末端气速为22m/s,输送的固气比选为5。

每条输送线的输送量按5.125t/h设计,因此其耗风量为1.025t/h。

估计罗茨风机出口处的空气温度为70?,从风机出口到余热锅炉排灰口空气输送管线几何长度约为92m,空气通过这段输送管线与灰渣混合前温度估计降为60?。

炉渣从余热锅炉卸出时的温度取120?,灰渣热容0.8kJ/(kg??),空气比热1.0kJ/(kg??),则两者混合均匀后的温度约为90?。

这段灰渣输送管线的几何长度约为116m,灰渣输送到管线末端时的温度约降为75?。

仓顶除尘器的压力损失按1.5kpa计算,计算得出管线内径为130mm,选用Ф159×7mm的输送管,其内径为145mm。

如果输送的气体量仍为1.025t/h,则输送管线出口端的气速为17.7m/s。

三输送管线压降计算
因为余热锅炉到灰渣仓的距离最远,因此只需计算该部分的输送管线压力损失就可以确定灰渣输送风机的升压。

这段输送管线水平长度约101m,垂直管道长度约15m,90度弯头(R/Di?6)8个,变径
(DN100/DN150)2个,球阀4个。

这部分管线当量长度为:l=312m。

输灰管线的压力损失按下面公式计算:
2lv,2ae (1) ,,,,,()(1)ppppkm,peeeD
上式中:
Δp—从灰斗出口到灰仓入口之间输送管线的压降 p
p—灰渣输送管线出口处压力,pa,渣仓过滤器压力损失取1.5kpa,e
则管线出口处的压力为p =95650+1500=97150pa; e
λ—为计算管段的空气阻力系数,按经验取其值为0.023;
l—为计算管段的当量长度,m;
ρ—管线出口处的气体密度,按出口处温度压力计算约为a
30.97kg/m;
v—出口处的气体流速; e
D—管道内径, m; i
k—两相流系数,按经验值取0.4;
m—固气比,这里取5
按公式(1)计算得到输灰管线的压力损失为21.8kpa。

由风机到余热锅炉灰斗的气体输送管线上的压力损失按下面公式计算: 2,vLaag (2) ,,p,g2Di
上式中:
Δp—气体输送管线的压力损失,pa; g
λ—为计算管段的空气阻力系数,按经验取其值为0.023;
ρ—管线内气体的平均密度,按管线内气体温度为70?,风机a
3升压为45kpa计算,则ρ =1.43kg/m; a
D—管道内径,气体输送管线与灰渣输送管线取相同的直径,即取i
D =0.145m; i
v—管线内气体的平均流速,按风量1.025t/h, 气体温度为a
70?,风机升压为45kpa计算, v =12.0m/s; a
L—气体输送管线的当量长度,m; g
气体输送管线的水平长度约85m,垂直高度约7m,管线上有90度弯头(R=3Di)8个,蝶阀2个,球阀2个,止回阀1个;L =223m。

g 按公式(2)计算得到气体输送管线的压力损失约为3.7kpa。

四设备选型
1、风机选型
风机需要克服的总压降Δp为:
Δp=Δp,Δp,Δp=27kpa pgf
其中Δp为仓顶除尘器的压降,在此取1.5kpa。

f
风机的压力富裕系数取1.8,则风机所需的压头为48.6kpa。

选用BK6015型罗茨鼓风机,其额定压力为49kpa,额定风量为
317.5m/min,100%负荷时联轴器处的功耗为23.5Kw,配30kW的电机。

按成都的年平均大气压力95650pa、平均气温16.1?计算,风机吸入的空气质量为1212kg/h。

2、灰渣气力输送加料器选型
3 选用RVS102C10A00型旋转加料器,其理论加料能力为10.8m/h。

根据厂家提供的经验数据,加料器的填充率按0.7计,灰渣的堆积密
3度约为0.7t/ m,因此该加料器的实际加料能力约为5.3t/h。

五输送参数校核
按选定的风机入口风量和输送管线内径计算,当风机出口达到额定压力时,气体输送管线内的平均气速约为14.3m/s;根据经验,取旋转卸料阀处漏风量占风机供风量的5%,则进入灰渣输送管线的风量为1151kg/h,管线出口处的流速为
20m/s,输送的固气比为4.6。

按上述参数计算,气体输送管线(风机出口到卸灰阀之间的管线)的压降为5.3kpa,灰渣输送管线压降为26kpa,仓顶除尘器压降仍按1.5kpa计,系统总的压降为32.8kpa,风机额定压力为49kpa,压力富裕系数为1.5。

相关文档
最新文档