限制性内切酶
限制性核酸内切酶名词解释

限制性核酸内切酶名词解释限制性核酸内切酶(RestrictionNucleases)是一类酶,在一个特定的基因序列中,它能够以高精度地找到并且切割目标片段。
它的另一个叫法是限制性内切酶,是一种分子生物学中的重要工具,通常用来分离和分析特定的DNA片段,从而帮助研究人员全面了解和研究基因组。
这类酶被发现于1960年,并于1972年获得诺贝尔生理学或医学奖,因为它们在分子生物学方面具有重要的意义。
限制性核酸内切酶是一种能够将双链DNA分割成其他片段的酶。
它们是自然界中存在的,细菌通过限制内切酶来防御抗生素和其他有害细菌,另一方面,研究人员也可以使用它们来分离和分析DNA片段,从而了解基因信息和细胞运行机制。
在这种情况下,限制性核酸内切酶能够将双链DNA识别为其特定目标序列,在这个特定序列处将所有字母(A,T,G,C)切断,并将其分割成单链片段。
每个限制性核酸内切酶都有一个特定的识别序列,只有细菌有多种不同的内切酶,这些酶可以识别每个特定的目标序列,并且可以在这些序列处将双链DNA切割成片段。
限制性核酸内切酶的工作原理和精度使它们成为了分子生物学方面的重要工具。
它们可以用来识别和分析基因片段,而这些片段可以用来研究基因组,并了解基因如何影响细胞运作及机体发育,以及疾病随之而来的基因变化。
限制性核酸内切酶可以用来分离DNA,而这也是各种分子生物学应用所必需的。
例如,它们可以用来制作基因组图谱、分析基因组差异、复制特定基因以及在真核细胞和原核细胞等不同的生物体中测量基因表达的等,在医学研究中也有很大的应用。
此外,由于限制性核酸内切酶的超精确切割功能,它们被广泛应用于基因工程和转基因技术中,可以帮助开发者们分离和重组特定的基因,以获得想要的表型。
这些技术也能够应用于改变植物的物种,用以改善植物的各种性状,例如增加水合作用,减少营养价值,增强抗病性能,增加耐盐性以及改变其他特性。
总之,限制性核酸内切酶是一种重要的酶,它的工作原理和精确的切割功能使它成为了分子生物学研究中的重要工具,并且它还在基因工程和转基因技术中有着广泛的应用。
限制性内切酶

限制性核酸内切酶是一类能够识别双链DNA分子中的某种特定核苷酸序列(一般4-8bp),并在此处切割DNA双链的核酸内切酶。
主要存在于原核生物,是原核生物自我保护的一种机制。
它的作用包含两类,一种是对外的,限制作用,指一定类型的细菌可以通过限制性核酸内切酶的作用,破坏入侵的外源DNA,使得外源DNA对生物细胞的入侵受到限制。
另一种是对内的,修饰作用,指在特定位置发生甲基化,可免遭自身限制性酶的破坏。
限制性核酸内切酶的发现是在本世纪中期,Arber等人对λ噬菌体在大肠杆菌不同菌株上的平板培养效应的研究为基础,发现了原核生物体内存在着寄主控制的限制和修饰系统。
实验是:在K株或B株大肠杆菌上生长繁殖的噬菌体λ(K)或λ(B),再次感染原寄主菌体的成斑率为1,而感染新的寄主菌株的成斑率则分别为10-4和4*10-4所以说受到了限制。
在 20 世纪 60 年代,噬菌体学家阐明了宿主限制和修饰现象的生化机制。
该研究工作在 Me-selson 和 Yuan(1968)纯化得到了大肠杆菌 K12 的限制性内切酶时达到高峰。
因为这个内切酶可以把未修饰的 DNA 切割成大的分离片段,人们认为它一定识别一个靶序列。
从而提供了对 DNA 进行可控操作的前景。
但不幸的是,K12 内切酶不具备人们希望的性质。
虽然它确实是结合到一定的区域序列上,切割却在几千个碱基对以外“随机”发生的(Yuan 等,1980)。
经过大量努力后,终于在1970 年取得了突破,人们发现了在流感嗜血杆菌(Haemophilusinfluenzae)中存在一种酶,其作用更加简单(Kelly & Smith,1970;Smith & W ilcox,1970),即这个酶可以识别双链 DNA 分子中的一个特定靶序列,并在该序列之内切断多聚核苷酸链,从而产生长度和序列一定的分离片段。
突破性的进展始于 Hamilton Smith 的发现,他从嗜血流感细菌(Haemophilus influenzae)菌株 Rd中找到了一种限制性内切酶(Smith & Wilcox,1970),并阐明了它在噬菌体 T7 DNA 中切割的核苷酸序列(Kelly & Smith,1970)。
限制性内切酶

限制性内切酶限制性内切酶(又称限制酶)首先是在细菌体内发现的,但后来在部分古细菌中也发现了这种成分。
通常,限制性内切酶会切割双链DNA,每个限制性内切酶会识别特定的DNA序列,根据不同的内切酶类型,可在识别序列内或距识别序列不远的位置处切割DNA,识别序列长度通常为4-8bp,酶切之后会形成粘性末端和平末端。
上世纪50年代初期,许多研究团队观测到了噬菌体对于同一物种的不同细菌宿主菌株存在感染效率差异[1,2],即:使用在一种细菌菌株(例如,大肠杆菌C)内繁殖的噬菌体λ感染同一种类的灵异菌株(例如大肠杆菌K),结果发现,相比于重新感染宿主菌株(大肠杆菌C),大肠杆菌K的感染率出现明显下降。
新的宿主(大肠杆菌K)似乎可以选择性抵御或“耐受”侵入的噬菌体。
研究人员还发现,这一现象并没有遗传性,因为经过一轮感染后,在新菌株中生长的噬菌体还可以以正常的感染率感染该菌株。
这种现象被称为“宿主控制变异”,有关其背后的机制也成为了频繁研究的领域[3]。
直到上世纪60年代,人们才发现宿主变异的机制,其与噬菌体DNA的酶切有关,进而发现并分理出了限制性内切酶。
上世纪60年代初Werner Arber观测发现,宿主范围内的决定性遗传物质都存在于噬菌体DNA中,而后续实验证明甲硫氨酸参与宿主的自我保护[4]。
这些发现最终催生了限制性修饰(R-M)体系的概念,通过该体系,来自于宿主的限制性内切酶和甲基化酶共同作用,切割外来病毒(非甲基化)DNA,同时保护宿主的DNA不受甲基化[5]。
随着DNA连接酶的发现以及位点特异性限制性内切酶的家族不断壮大,重组DNA 技术应运而生。
限制性内切酶的命名规则,考虑到内切酶来源的三种特性——属名、种名和菌株或血清型——组成了一个简短的名称,后面加上罗马数字,代表来自同一菌株的多个限制性内切酶[6]。
例如,以HindⅢ酶为代表:“H”代表Haemophilus“in”代表influenzae“d”代表血清型d“Ⅲ”用于区分来自于Haemophilusinfluenza血清型d的其它限制性内切酶限制性内切酶的分类,根据结构的复杂程度、识别序列、切割位点位置以及辅助因子要求,限制性内切酶分为四类:TypeⅠ:同时具有限制性和甲基化活性的多亚基蛋白需要ATP切割位点与识别位点间的间距不定TypeⅡ:特异性的识别序列切割位点位于识别序列内或邻近识别序列在切割位点生成5'磷酸基和3'羟基末端需要M2+TypeⅢ:由两个相反的识别序列组成切割位点与其中一个识别序列的间距恒定需要ATPTypeⅣ:仅切割甲基化的DNA切割位点大约距离识别位点30bp由于自身特殊的特点,TypeⅡ限制性内切酶已经成为分子克隆、法医学DNA分析等许多研究应用最常用的限制性内切酶。
限制性内切酶

生技2班 张维嘉 楼辉辉 梁竟一 冯夏艳 孟慧 毛荣 殷智强
限制性核酸内切酶是可以识别DNA的特异序列,并在识别位点 或其周围切割双链DNA的一类内切酶,简称限制酶。 根据限制酶的结构,辅因子的需求切位与作用方式,可将限制 酶分为三种类型,分别是第一型、第二型及第三型。 Ⅰ型限制性内切酶既能催化宿主DNA的甲基化,又催化非甲基 化的DNA的水解; Ⅱ型限制性内切酶只催化非甲基化的DNA的水解; III型限制性内切酶同时具有修饰及认知切割的作用。
用于DNA基因组物理图谱的组建;基因的定位和基因分离;DNA分子碱基 序列分析;比较相关的DNA分子和遗传工程。 限制性核酸内切酶是由细菌产生的,其生理意义是提高自身的防御能力. 限制酶一般不切割自身的ype II restriction enzyme ) 识别序列: 5'GGGCC^C 3‘ BamHI(类型:Type II restriction enzyme ) 识别序列: 5' G^GATCC 3' BglII (类型:Type II restriction enzyme ) 识别序列: 5' A^GATCT 3' EcoRI (类型:Type II restriction enzyme ) 识别序列: 5' G^AATTC 3' HindIII (类型:Type II restriction enzyme ) 识别序列: 5' A^AGCTT 3' KpnI (类型:Type II restriction enzyme ) 识别序列: 5' GGTAC^C 3' NcoI (类型:Type II restriction enzyme ) 识别序列: 5' C^CATGG 3' NdeI (类型:Type II restriction enzyme ) 识别序列: 5' CA^TATG 3' NheI (类型:Type II restriction enzyme ) 识别序列: 5' G^CTAGC 3' NotI (类型:Type II restriction enzyme ) 识别序列: 5' GC^GGCCGC 3' SacI (类型:Type II restriction enzyme ) 识别序列: 5' GAGCT^C 3' SalI (类型:Type II restriction enzyme ) 识别序列: 5' G^TCGAC 3' SphI (类型:Type II restriction enzyme ) 识别序列: 5' GCATG^C 3' XbaI (类型:Type II restriction enzyme ) 识别序列: 5' T^CTAGA 3' XhoI (类型:Type II restriction enzyme ) 识别序列: 5' C^TCGAG 3'
限制性内切酶的名词解释

限制性内切酶的名词解释
限制性内切酶在生物体内有一类酶,它们能将外来的DNA切断,即能够限制异源DNA的侵入并使之失去活力,但对自己的DNA却无损害作用,这样可以保护细胞原有的遗传信息。
由于这种切割作用是在DNA分子内部进行的,故名限制性内切酶(简称限制酶)。
限制酶是基因工程中所用的重要切割工具。
科学家已从原核生物中分离出了许多种限制酶,并且已经商品化,在基因工程中广泛使用。
根据限制酶切割的特点,可将它们分为两大类:一类是切割部位无特异性的;另一类是可特异性地识别核苷酸序列,即只能在一定的DNA序列上进行切割。
这种能被特异性识别的切割部位都具有回文序列,也就是在切割部位,一条链正向读的碱基顺序与另一条链反向读的顺序完全一致,在基因工程中使用的多数是后一类酶。
限制酶在特定切割部位进行切割时,按照切割的方式,又可以分为错位切和平切两种。
错位切一般是在两条链的不同部位切割,中间相隔几个核苷酸,切下后的两端形成一种回文式的单链末端,这个末端能
与具有互补碱基的目的基因的DNA片段连结,故称为黏性末端。
这种酶在基因工程中应用最多。
另一种是在两条链的特定序列的相同部位切割,形成一个无黏性末端的平口。
在基因操作过程中,除了限制酶以外,还要用一系列的酶类,才能完成全过程。
例如,碱性磷酸酯酶、DNA多聚酶、末端转移酶、多核苷酸酶、逆转录酶等。
限制性内切酶酶切位点汇总

限制性内切酶酶切位点汇总限制性内切酶(Restriction Endonuclease)是一类存在于细菌体内的酶,它能够识别特定的酶切位点,并在该位点上切割DNA链。
限制性内切酶起源于细菌,原本作为细菌对抗噬菌体感染的防御机制,但现在被广泛应用于分子生物学和基因工程领域。
限制性内切酶的分类和命名依据它们发现的第一个类型的噬菌体。
如EcoRI是从大肠杆菌中分离出的内切酶,与T4噬菌体相关;HindIII是与T4噬菌体有关的内切酶等。
酶名中的缩写首字母通常是酶切位点的首字母,比如EcoRI是指E.coli的RY粘性末端的切点。
现在限制性内切酶已被发现有超过3000多个类型。
下面是一些常见的限制性内切酶的切割位点汇总:1. EcoRI:切割位点为G↓AATTC(↓表示切割位点),产生的切割后的两个DNA片段是G-AATTC和CTTAA-G。
2. HindIII:切割位点为A↓AGCTT,产生的切割后的两个DNA片段是A-AGCTT和TTCGA-A。
3. SmaI:切割位点为CCC↓GGG,产生的切割后的两个DNA片段是CCC-GGG和GGG-CCC。
4. BamHI:切割位点为G↓GATCC,产生的切割后的两个DNA片段是G-GATCC和CCTAG-G。
5. XhoI:切割位点为C↓TCGAG,产生的切割后的两个DNA片段是C-TCGAG和GAGCT-C。
6. NotI:切割位点为GC×GGCCGC,产生的切割后的两个DNA片段是GC-GGCCGC和CGC-GC。
7. EcoRV:切割位点为GAT↓ATC,产生的切割后的两个DNA片段是GAT-ATC和TAC-TAG。
8. KpnI:切割位点为GGTAC↓C,产生的切割后的两个DNA片段是GGTAC-C和CCATG-G。
9. SalI:切割位点为G↓TCGAC,产生的切割后的两个DNA片段是G-TCGAC和CAGCT-G。
10. PstI:切割位点为CTGCA↓G,产生的切割后的两个DNA片段是CTGC-AG和GACG-T。
限制性核酸内切酶名词解释

限制性核酸内切酶名词解释限制性核酸内切酶(RestrictionNucleases,RNases)是一类重要的核酸分子分析工具,是由胞壁杆菌和放线菌等微生物中编码的特定核酸酶类别。
它可以特异性的切割DNA和RNA的特定序列,对研究DNA和RNA的结构和功能有着重要的作用。
限制性核酸内切酶的分子结构基本上是由多聚腺苷酸(polypeptide)和双聚腺苷酸(dipeptide)组成的。
此外,它们还包含辅酶(cofactor),例如Mg2+或Ca2+、K+等,并且需要这些辅酶才能激活其具有酶活性。
一个限制性核酸内切酶在一次反应中可以检测出多个DNA序列,而且能够辨识具有同系特征特异性碱基对,尽量减少大量的氧化废物产生。
与其他核酸分子分析工具不同的是,限制性核酸内切酶具有单端可切或双端可切的特性,可以选择性地切割DNA分子的特定序列,其切割后的片段可以进一步用于分子生物学技术,如DNA测序、PCR及DNA杂交等。
例如,细菌DNA内切酶BamHI以TGT^AAT为切割位点,能有效地将DNA分子切断,切割后可以得到二条内切片段,分别以TGT和AAT为3端,以及一条5末端非切片段;而HpaII以C^CGG为切割位点,切割后可以得到二条内切片段,分别以C和CGG为5端,以及一条3末端的非切片段。
此外,限制性核酸内切酶还可用于检测DNA片段的克隆和定位,以及调控基因表达,控制蛋白质翻译等用途,因此,它们在遗传学、分子生物学研究中起着重要的作用。
它们能够解析特定DNA序列,同时保留它们的原始特征,有助于研究者对其进行详细的调查。
在生物技术的应用中,使用限制性核酸内切酶可以改变DNA序列,实现重组DNA的目的,创造各种抗性等目的。
因此,限制性核酸内切酶的重要性不言而喻。
它们是研究 DNARNA 构和功能的重要工具,同时也是实现技术转化的重要基础。
它们可以用于检测DNA片段,改变序列,以及调控基因表达等多种用途,同时也可以做出有意义的蛋白质和重要生物体系。
限制性内切酶小知识

制作人:*** 日 期:*****
简介
限制性核酸内切酶 (restriction endonuclease):识别并切割 特异的双链DNA序列的一种内 切核酸酶。 [别名] Endodeoxyribonuclease [酶反应] 限制性内切酶能分 裂DNA分子在一限定数目的专 一部位上。它能识别外源DNA 并将其降解。 [单位定义] 在指明pH与37℃,在0.05mL反应混合物中, 1小时消化1μg的λDNA的酶量为1单位。
特征和种类
1.限制与修饰现象 早在 50 年代初,有许多学者发现了限制与修饰现象,当时称作寄主 控制的专一性(host controlled specificity)。 l 噬菌体表现的现 象便具有代表性和普遍性,其在不同宿主中的转染频率可说明这一问题 (表 2-1)。 l 在感染某一宿主后,再去感染其它宿主时会受到限制。 E.coli 菌株 λ噬菌体感染率 lK lB lC E.coli K 1 10-4 10-4 E.coli B 10-4 1 10-4 E.coli C 1 1 1 说明 K 和 B 菌株中存在一种限制系统,可排除外来的 DNA 。 104 的存活率是由宿主修饰系统作用的结果,此时限制系统还未起作用。 而在 C 菌株不能限制来自 K 和 B 菌株的 DNA 。限制作用实际就是限 制酶降解外源 DNA ,维护宿主遗传稳定的保护机制。甲基化是常见的 修饰作用,可使腺嘌呤 A 成为 N6 甲基-腺膘呤,胞嘧啶 C 成为 5' 甲 基胞嘧啶。通过甲基化作用达到识别自身遗传物质和外来遗传物质的目 的。
3.限制酶切割的位置 限制酶对 DNA 的切割位置大多数在内部,但也有在外部的。在外部的, 又有两端、两侧和单侧之别。切点在两端的有 Sau3AⅠ(↓GATC)、 NlaⅢ(CATG↓)和 EcoRⅡ(↓CCWGG) 等;在两侧的有 BcgⅠ[(10/12)CGA(N)6TGC(12/10)]和 TspRⅠ (CASTGNN↓), BcgⅠ 酶的切割特性与其它酶不同,它们在识别位点 的两端各切开一个断点,而不是只产生一个断点。切点在识别位点外侧的还 有 BbvⅠ[GCAGC(8/12)] 和 BspMⅠ[ACCTGC(4/8)] 等。 BcgⅠ ↓10(N)CGA(N)6TGC(N)12↓; ↑12(N)CGA(N)6ACG(N)10↑ TspRⅠ NNCAC(G)TGNN↓ ↑NNGTG(C)ACNN
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
特征和种类
1.限制与修饰现象 早在 50 年代初,有许多学者发现了限制与修饰现象,当时称作寄主 控制的专一性(host controlled specificity)。 l 噬菌体表现的现 象便具有代表性和普遍性,其在不同宿主中的转染频率可明这一问题 (表 2-1)。 l 在感染某一宿主后,再去感染其它宿主时会受到限制。 E.coli 菌株 λ噬菌体感染率 lK lB lC E.coli K 1 10-4 10-4 E.coli B 10-4 1 10-4 E.coli C 1 1 1 说明 K 和 B 菌株中存在一种限制系统,可排除外来的 DNA 。 104 的存活率是由宿主修饰系统作用的结果,此时限制系统还未起作用。 而在 C 菌株不能限制来自 K 和 B 菌株的 DNA 。限制作用实际就是限 制酶降解外源 DNA ,维护宿主遗传稳定的保护机制。甲基化是常见的 修饰作用,可使腺嘌呤 A 成为 N6 甲基-腺膘呤,胞嘧啶 C 成为 5' 甲 基胞嘧啶。通过甲基化作用达到识别自身遗传物质和外来遗传物质的目 的。
Ⅰ 型(type Ⅰ)限制与修饰系统的种类很少,只占 1% ,能识别 专一的核苷酸顺序,并在识别点附近的一些核苷酸上切割DNA分子中的 双链,但是切割的核苷酸顺序没有专一性,是随机的。如 EcoK 和 EcoB。其限制酶和甲基化酶 (即 R 亚基和 M 亚基) 各作为一个亚基 存在于酶分子中,另外还有负责识别 DNA 序列的 S 亚基,分别由 hsdR、hsdM 和 hsdS 基因编码,属于同一操纵子(转录单位)。 EcoK 编码基因的结构为 R2M2S。 EcoB 编码基因的结构为 R2M4S2 。 EcoB 酶的识别位点如下,其中两条链中的 A 为甲基化位点, N 表示任意碱基。 TGA*(N)8TGCT EcoK 酶的识别位点如下,其中两条链中的 A 为可能的甲基化位点。 AA°C(N)6GTGC 但是 EcoB 酶和 EcoK 酶的切割位点在识别位点 1000bp 以外, 且无特异性。 Ⅲ 型(type Ⅲ)限制与修饰系统的种类更少,所占比例不到 1% , 也有专一的识别顺序,但不是对称的回文顺序。它在识别顺序旁边几个 核苷酸对的固定位置上切割双链。但这几个核苷酸对则是任意的,如 EcoP1 和 EcoP15 。它们的识别位点分别是 AGACC 和 CAGCAG , 切割位点则在下游 24-26bp 处。 在基因操作中,一般所说的限制酶或修饰酶,除非特指,均指 Ⅱ 型 系统中的种类。
4.同裂酶(isoschizomer) 识别相同序列的限制酶称同裂酶,但它们的切割位点可能不同。具体可分 为以下几种情况。 ① 同序同切酶 这些酶识别序列和切割位置都相同,如 HindⅡ 与 HincⅡ 识别切割位点为 GTY↓RAC , HpaⅡ 与 HapⅡ 识别切割位点为 C↓CGG , MobⅠ 与 Sau3AⅠ 识别切割位点为 ↓GATC 。 ② 同序异切酶 KpnⅠ 和 Acc65Ⅰ 识别的序列是相同的,但它们的 切割位点不同,分别为 GGTAC↓C 和 G↓GTACC 。另外, Asp718Ⅰ 识 别和切割位点为 G↓GTACC 。 ③“同功多位”许多识别简并序列的限制酶包含了另一种限制酶的功能。 如 EcoRⅠ 识别和切割位点为 G↓AATTC , ApoⅠ 识别和切割位点为 R↓AATTY ,后者可识别前者的序列。另外, HpaⅠ 和 HincⅡ 的识别位 点也有交叉,它们的识别和切割位点分别为 GTT↓AAC 和 HincⅡ 。 ④ 其它有些限制酶识别的序列有交叉,如在 pUC 系列质粒的多克隆位 点中有一个 SalⅠ 位点(识别切割位点为 G↓TCGAC),该位点也可被 AccⅠ(识别切割位点为 GT↓MKAC)和 HincⅡ(识别切割位点为 GTY↓RAC)切割。
限制性核酸内切酶
制作人:郜原 日 期:2010-3-31
简介
限制性核酸内切酶 (restriction endonuclease):识别并切割 特异的双链DNA序列的一种内 切核酸酶。 [别名] Endodeoxyribonuclease [酶反应] 限制性内切酶能分 裂DNA分子在一限定数目的专 一部位上。它能识别外源DNA 并将其降解。 [单位定义] 在指明pH与37℃,在0.05mL反应混合物中, 1小时消化1μg的λDNA的酶量为1单位。
3.限制酶产生非对称突出端 许多限制酶切割 DNA 产生非对称突出端。当识别序列为非对称序列时, 切割的 DNA 产物的末端是不同的,如 BbvCⅠ,它的识别切割位点如下: CC↓TCAGC GGAGT↑CG 有些限制酶识别简并序列,其识别的序列中有几种是非对称的。如 AccⅠ,它的识别切割位点如下,其中 GTAGAC 和 GTCTAC 为非对称: GT↓AT/CGAC CATA/GC↑TG 有些限制酶识别间隔序列,间隔区域的序列是任意的,如 DraⅢ 和 EarⅠ,它们的识别切割位点分别是 CAC↑NNN↓GTG 和 CTCTTC (1/4)。
5.同尾酶 许多不同的限制酶切割 DNA 产生的末端是相同的,且是对称的,即它们 可产生相同的粘性突出末端。这些酶统称为同尾酶。这些酶切割 DNA 得到 的产物可进行粘端连接。以下几种酶产生的末端是相同的。通过表 4-3 很容 易判断哪些酶可产生相同的 DNA 末端。 · EcoRⅠ G↓AATCC MfeⅠ C↓AATTC ApoⅠ R↓AATTY · SpeⅠ A↓CTAGT NheⅠ G↓CTAGC XbaⅠ T↓CTAGA · BamHⅠ G↓GATCC Sau3AⅠ ↓GATC StyⅠ C↓CWWGG · ClaⅠ AT↓CGAT AccⅠ GT↓MKAC (pUC19)
2.限制与修饰系统的种类 根据酶的亚单位组成、识别序列的种类和是否需要辅助因子,限制 与修饰系统主要分成三大类。表 2-1 是各种限制与修饰系统的比较。 Ⅱ 型(type Ⅱ)限制与修饰系统所占的比例最大,达 93% 。Ⅱ 型酶相对来说最简单,它们识别回文对称序列,在回文序列内部或附近 切割 DNA ,产生带 3'- 羟基和 5'- 磷酸基团的 DNA 产物,需 Mg2+ 的存在才能发挥活性,相应的修饰酶只需 SAM 。识别序列主要为 46bp ,或更长且呈二重对称的特殊序列,但有少数酶识别更长的序列或 简并序列,切割位置因酶而异,有些是隔开的。 Ⅱs 型(type Ⅱs)限制与修饰系统,占 5% ,与 Ⅱ 型具有相似 的辅因子要求,但识别位点是非对称,也是非间断的,长度为 4-7bp , 切割位点可能在识别位点一侧的 20bp 范围内。 Ⅱ 型限制酶一般是同源二聚体(homodimer),由两个彼此按相 反方向结合在一起的相同亚单位组成,每个亚单位作用在 DNA 链的两 个互补位点上。修饰酶是单体,修饰作用一般由两个甲基转移酶来完成, 分别作用于其中一条链,但甲基化的碱基在两条链上是不同的。 在 Ⅱ 型限制酶中还有一类特殊的类型,该酶只切割双链 DNA 中的 一条链,造成一个切口,这类限制酶也称切口酶 (nicking enzyme), 如 N.Bst NBI 。
2.限制酶识别序列的结构 限制酶识别的序列大多数为回文对称结构,切割位点在 DNA 两条链相 对称的位置。 EcoRⅠ 和 HindⅢ 的识别序列和切割位置如下: EcoRⅠ G↓AATTC;HindⅢ A↓AGCTT CTTAA↑G TTCGA↑A 有一些限制酶的识别序列不是对称的,如 AccBSⅠ[CCGCTC(-3/3)] 和 BssSⅠ[CTCGTG(-5/-1)]。识别序列后面括号内的数字表示在 两条链上的切割位置。 AccBSⅠ CCG↓CTC;BssSⅠ C↓TCGTG GGC↑GAG GAGCA↑C 有一些限制酶可识别多种序列,如 AccⅠ 识别的序列是 GT↓MKAC , 也就是说可识别 4 种序列,其中两种是对称的,另两种是非对称的。 HindⅡ 识别的序列是 GTY↓RAC 。 有一些限制酶识别的序列呈间断对称,对称序列之间含有若干个任意碱 基。如 AlwNⅠ 和 DdeⅠ ,它们的识别序列如下: AlwNⅠ CAGNNNC↓TG;DdeⅠ C↓TNAG GT↑CNNNGAC GANT↑C
定义和命名
DNA限制性内切酶: 生物体内能识别并切割特异的双链DNA序列的一种内切核酸 酶。它可以将外来的DNA切断的酶,即能够限制异源DNA 的侵入并使之失去活力,但对自己的DNA却无损害作用,这 样可以保护细胞原有的遗传信息。由于这种切割作用是在 DNA分子内部进行的,故名限制性内切酶(简称限制酶)。 限制性核酸内切酶的命名;一般是以微生物属名的第一个字母 和种名的前两个字母组成,第四个字母表示菌株(品系)。例 如,从Bacillus amylolique faciens H中提取的限制性 内切酶称为Bam H,在同一品系细菌中得到的识别不同碱基 顺序的几种不同特异性的酶,可以编成不同的号,如HindII、 HindIII,HpaI、HpaII,MboI、MboI等。
限制反应与甲基 化反应 限制作用是否需 用 ATP
限制酶识别的序列
1.限制酶识别序列的长度 限制酶识别序列的长度一般为 4-8 个碱基,最常见的为 6 个碱基 (表2-2)。当识别序列为 4 个和 6 个碱基时,它们可识别的序列在完 全随机的情况下,平均每 256 个和 4096 个碱基中会出现一个识别位点 (4^4=256,4^6=4096)。以下是几个有代表性的种类,箭头指切割 位置。 4 个碱基识别位点:Sau3AⅠ ↓GATC 5 个碱基识别位点:EcoRⅡ ↓CCWGG;NciⅠ CC↓SGG 6 个碱基识别位点:EcoRⅠ G↓AATTC; HindⅢ A↓AGCTT 7 个碱基识别位点:BbvCⅠ CC↓TCAGC; PpuMⅠ RG↓GWCCY 8 个碱基识别位点:NotⅠ GC↓GGCCGC SfiⅠ GGCCNNNN↓NGGCC 以上序列中部 分字母代表的碱基如下。 R=A 或 G Y=C 或 T M=A 或 C K=G 或 T S=C 或 G W=A 或 T H=A 或 C 或 T B=C 或 G 或 T V=A 或 C 或 G D=A 或 G 或 T N=A 或 C 或 G 或 T