(完整版)初二年级数学之一次函数(平移、对称和面积)

合集下载

人教版八年级数学下册 19.2.4 一次函数图像的性质与平移 课件

人教版八年级数学下册 19.2.4 一次函数图像的性质与平移 课件

(2,0)
∴S△= 1 ×2 ×4=4 2
1、阅读材料:我们学过一次函数的图象 的平移,如:将一次函数y=2x的图象沿x 轴向右平移1个单位长度可得到函数y=2 (x-1)的图象,再沿y轴向上平移1个单 位长度,得到函数y=2(x-1)+1的图象, 解决问题:
(1)将一次函数y=-x的图象沿x轴向右 平移2个单位长度,再沿y轴向上平移3个 单位长度,得到函数( )的图象;
1、直线y=2x+1与y=3x-1的交点P的坐标为(_2,_5_) _, 点P到x轴的距离为____5 ___,点P到y轴的距离为 ___2___。
2.一次函数的图象过点(0,3) ,且与 两坐标轴围成的三角形面积为
9/4,一次函数的解析式为_________________。
y=±2x+3
3.如图,将直线OA向上平移1个单位, 得到一个一次函数的图像,那么这个一次 函数的解析式是____y=_2_x_+_1____________
若函数y=kx+b的图象平行于y= -2x的图象且经 过点(0,4), 则直线y=kx+b与两坐标轴围成 的三角形的面积是:
解:∵y=kx+b图象与y= - 2x图象平行 ∴k=-2
∵图像经过点(0,4) ∴b=4
∴此函数的解析式为y= - 2x+4
∵函数y= - 2x+4与两坐标轴的交点为(0,4)
(3)将直线AB向上平移6个单位,求原点到
平移后的直线的距离.
5、一次函数y=kx+b(k≠0)的图 象过点A(0,2),B(3,0), 若将该图象沿x轴向左平移2个单 位,则新图象对应的解析式为
(.y=- 2/3x+ 2/3)

北师大八年级数学一次函数知识点总结

北师大八年级数学一次函数知识点总结

北师大八年级数学一次函数知识点总结北师大八年级数学一次函数知识点总结初中数学一次函数知识点总结一次函数:一次函数图像与性质是中考必考的内容之一。

中考试题中分值约为10分左右题型多样,形式灵活,综合应用性强。

甚至有存在探究题目出现。

主要考察内容:①会画一次函数的图像,并掌握其性质。

②会根据已知条件,利用待定系数法确定一次函数的解析式。

③能用一次函数解决实际问题。

④考察一ic函数与二元一次方程组,一元一次不等式的关系。

突破方法:①正确理解掌握一次函数的概念,图像和性质。

②运用数学结合的思想解与一次函数图像有关的问题。

③掌握用待定系数法球一次函数解析式。

④做一些综合题的训练,提高分析问题的能力。

函数性质:1.y的变化值与对应的x的变化值成正比例,比值为k.即:y=kx+b (k,b为常数,k≠0),∵当x增加m,k(x+m)+b=y+km,km/m=k。

2.当x=0时,b为函数在y轴上的点,坐标为(0,b)。

3当b=0时(即y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数。

4.在两个一次函数表达式中:当两一次函数表达式中的k相同,b也相同时,两一次函数图像重合;当两一次函数表达式中的k相同,b不相同时,两一次函数图像平行;当两一次函数表达式中的k不相同,b不相同时,两一次函数图像相交;当两一次函数表达式中的k不相同,b相同时,两一次函数图像交于y轴上的同一点(0,b)。

若两个变量x,y间的关系式可以表示成Y=KX+b(k,b为常数,k不等于0)则称y是x的一次函数图像性质1.作法与图形:通过如下3个步骤:(1)列表.(2)描点;[一般取两个点,根据“两点确定一条直线”的道理,也可叫“两点法”。

一般的y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点画直线即可。

正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点。

(3)连线,可以作出一次函数的图象一条直线。

八年级数学之一次函数的图像知识点最新5篇

八年级数学之一次函数的图像知识点最新5篇

八年级数学之一次函数的图像知识点最新5篇数学一次函数知识点篇一一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。

特别地,当b=0时,y是x的正比例函数。

即:y=kx(k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b(k为任意不为零的实数b取任何实数)2、当x=0时,b为函数在y轴上的截距。

三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。

因此,作一次函数的图像只需知道2点,并连成直线即可。

(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b.(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。

当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。

特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限四、确定一次函数的)○(表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。

(1)设一次函数的表达式(也叫解析式)为y=kx+b.(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b.所以可以列出2个方程:y1=kx1+b……①和y2=kx2+b……②(3)解这个二元一次方程,得到k,b的值。

(4)最后得到一次函数的表达式。

五、一次函数在生活中的应用:1、当时间t一定,距离s是速度v的一次函数。

s=vt.2、当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。

初二数学《一次函数》课件

初二数学《一次函数》课件

进阶习题
01
A. (4,4) 或 (-4,-4)
02
B. (4,-4) 或 (-4,4)
03
C. (-4,8) 或 (4,-8)
04
D. (-4,-8) 或 (4,8)
高阶习题
1
高阶习题1:已知一次函数 y = kx + b(k≠0) 经过点 (0,2),且与坐标轴围成的三角形的面积为 4,求这个一次函数的解析式.
2
A. y = x + 2 或 y = -x + 2
3
B. y = x - 2 或 y = -x + 2
高阶习题
01
C. y = x + 2 或 y = -x - 2
02
D. 以上都不对
03
高阶习题2:已知一次函数 y = kx + b(k≠0)的图象经过点 P(3,4),它与 x、 y 轴的正半轴分别相交于 A、B 两点,且 OA+OB=15,求此一次函数的解析式 .
详细描述
斜截式为 $y = mx + b$,其中 $m$ 是斜率,$b$ 是截距。这种形式简洁 地表示了直线方程的斜率和截距,便 于理解和计算。
一次函数的点斜式
总结词
点斜式是一次函数的另一种表达方式,用于描述通过某一点的直线方程。
详细描述
点斜式为 $y - y_1 = m(x - x_1)$,其中 $(x_1, y_1)$ 是直线上的一个点,$m$ 是斜率。该形式通过一个已知点和斜率来表示直线方程,具有更强的实际应用价 值。
注重理解而非死记硬背
函数的性质和特点应通过理解来掌握,而不是简单地记忆公式。
多做练习
通过大量的练习,可以更好地掌握一次函数的运用,提高解题能力 。

苏版初二下册数学第19章《一次函数》讲义第19讲一次函数的图象及性质(1)(有解析)

苏版初二下册数学第19章《一次函数》讲义第19讲一次函数的图象及性质(1)(有解析)

苏版初二下册数学第19章《一次函数》讲义第19讲一次函数的图象及性质(1)(有解析)第一部分知识梳理知识点一:一次函数(正比例)的定义(1)形如y=kx+b (k,b是常数,k≠0),那么y叫做x的一次函数.因为当b=0时,y=kx,那么y叫做x的正比例函数,因此“正比例函数是专门的一次函数”。

(2)正比例函数与一次函数图象之间的关系一次函数y=kx+b的图象是一条直线,它能够看作是由直线y=kx平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移,)上加下减,左加右减知识点二:正比例函数的图象及性质一样地,形如y=kx (k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.注:正比例函数一样形式y=kx (k不为零)①k不为零;②x指数为1;③b取零当k>0时,直线y=kx通过三、一象限,从左向右上升,即随x的增大y也增大;当k<0时,•直线y=kx通过二、四象限,从左向右下降,即随x 增大y反而减小.解析式:y=kx(k是常数,k≠0)必过点:(0,0)、(1,k)走向:k>0时,图像通过一、三象限;k<0时,•图像通过二、四象限增减性:k>0,y随x的增大而增大;k<0,y随x增大而减小倾斜度:|k|越大,越接近y轴;|k|越小,越接近x轴知识点三:一次函数的图象及性质一样地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.注:一次函数一样形式y=kx+b (k不为零)①k不为零;②x指数为1;③b取任意实数一次函数y=kx+b 的图象是通过(0,b )和(-k b,0)两点的一条直线,我们称它为直线y=kx+b,它能够看作由直线y=kx 平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)(1)解析式:y=kx+b (k 、b 是常数,k ≠0)(2)必过点:(0,b )和(-k b ,0)(3)走向: k>0,图象通过第一、三象限;k<0,图象通过第二、四象限b>0,图象通过第一、二象限;b<0,图象通过第三、四象限 ⇔⎩⎨⎧>>00b k 直线通过第一、二、三象限 ⇔⎩⎨⎧<>00b k 直线通过第一、三、四象限 ⇔⎩⎨⎧><00b k 直线通过第一、二、四象限 ⇔⎩⎨⎧<<00b k 直线通过第二、三、四象限(4)增减性: k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小.(5)倾斜度:|k|越大,图象越接近于y 轴;|k|越小,图象越接近于x 轴.(6)图像的平移: 当b>0时,将直线y=kx 的图象向上平移b 个单位; 当b<0时,将直线y=kx 的图象向下平移b 个单位.知识点四:函数图象与系数的关系第二部分考点精讲精练考点1、一次函数(正比例)的定义例1、在糖水中连续放入糖x(g)、水y(g),并使糖完全溶解,假如甜度保持不变,那么y与x的函的函数关系一定是()A、正比例函数B、反比例函数C、图象不通过原点的一次函数D、二次函数例2、直角三角形两个锐角∠A与∠B的函数关系是()A、正比例函数B、一次函数C、反比例函数D、二次函数例3、若y=(m-3)x+1是一次函数,则()A、m=3B、m=-3C、m≠3D、m ≠-3例4、下列问题中,是正比例函数的是()A、矩形面积固定,长和宽的关系B、正方形面积和边长之间的关系C、三角形的面积一定,底边和底边上的高之间的关系D、匀速运动中,速度固定时,路程和时刻的关系例5、若函数y=-2xm+2+n-2是正比例函数,则m的值是_____,n 的值为_____.例6、我们明白,海拔高度每上升1km,温度下降6℃.某时刻测量我市地面温度为20℃.设高出地面xkm处的温度为y℃,则y与x的函数关系式为,y_____x的一次函数(填“是”或“不是”).例7、已知y=(k-1)xIkI+(k2-4)是一次函数.(1)求k的值;(2)求x=3时,y的值;(3)当y=0时,x的值.例8、红星机械厂有煤80吨,每天需烧煤5吨,求工厂余煤量y(吨)与烧煤天数x(天)之间的函数表达式,指出y是不是x的一次函数,并求自变量x的取值范畴.例9、举一反三:1、下列函数中,是一次函数的有( ) A 、x y 2= B 、X -1=0 C 、y=2(x -1) D 、y=x2+12、y=(m -1)x|m|+3m 表示一次函数,则m 等于( )A 、1B 、-1C 、0或-1D 、1或-13、若函数y=(k -1)x+k2-1是正比例函数,则k 的值是( )A 、-1B 、1C 、-1或1D 、任意实数4、当自变量x= 时,正比例函数y=(n+2)xn 的函数值为3.5、已知函数y=3x+1,当自变量增加3时,相应的函数值增加______。

八年级上册数学书一次函数知识点优选篇

八年级上册数学书一次函数知识点优选篇

八年级上册数学书一次函数知识点优选篇八年级上册数学书一次函数知识点 1一般地,形如y=kx+b(k、b是常数,k≠0)函数,叫做一次函数。

当b=0时,y=kx+b即y=kx,所以正比例函数是一种特殊的一次函数。

一次函数的图象及性质一次函数y=kx+b的图象是经过(0,b)和(―b/k,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx平移|b|个单位长度得到。

(当b0时,向上平移;当b0时,向下平移)(1)解析式:y=kx+b(k、b是常数,k≠0)(2)必过点:(0,b)和(―b/k,0)(3)走向:k0,图象经过第一、三象限;k0,图象经过第二、四象限b0,图象经过第一、二象限;b0,图象经过第三、四象限k0,b0;=直线经过第一、二、三象限k0,b0;=直线经过第一、三、四象限K0,b0;=直线经过第一、二、四象限K0,b0;=直线经过第二、三、四象限(4)增减性:k0,y随x的增大而增大;k0,y随x增大而减小。

(5)倾斜度:|k|越大,图象越接近于y轴;|k|越小,图象越接近于x轴。

(6)图像的平移:当b0时,将直线y=kx的图象向上平移b个单位;当b0时,将直线y=kx的图象向下平移b个单位。

直线y=k1x+b1与y=k2x+b2的位置关系(1)两直线平行:k1=k2且b1≠b2(2)两直线相交:k1≠k2(3)两直线重合:k1=k2且b1=b2确定一次函数解析式的方法(1)根据已知条件写出含有待定系数的函数解析式;(2)将x、y的几对值或图象上的几个点的坐标代入上述函数解析式中得到以待定系数为未知数的方程;(3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数解析式中得出结果。

函数建模的关键是将实际问题数学化,从而解决最佳方案、最佳策略等问题。

建立一次函数模型解决实际问题,就是要从实际问题中抽象出两个变量,再寻求出两个变量之间的关系,构建函数模型,从而利用数学知识解决实际问题。

八年级数学一次函数课件-一次函数的图象与性质

八年级数学一次函数课件-一次函数的图象与性质

【变式2】已知一次函数y=(2m-3)x+2,y随x的增大而减 小,则m的取值范围是( D ) A.m<32B.m>-32 C.m>32D.m<32
数学
八年级 ቤተ መጻሕፍቲ ባይዱ册
人教版
第3课时一次函数的 图象与性质
知识点3 一次函数性质的综合运用 【例题3】已知函数y=(2m+1)x+m-3. (1)若函数图象经过原点,求m的值; (2)若函数图象在y轴上的截距为-2,求m的值; (3)若函数图象平行于直线y=3x-3,求m的值; (4)若这个函数是一次函数,且y随x的增大而减小,求m的取 值范围.
数学
八年级 下册
人教版
第3课时一次函数的 图象与性质
1.一次函数y=kx+b(k≠0)的图象是一条直线,其性质如下:
图象
k,b的符号 经过的象限 增减性
b>__0_ k>0
b<0
第一、__二__、__三_ y随x的增
象限
大而增大
第 一_、__三__、__四_ y随x的增
象限
大而 增大
数学
八年级 下册
4
0
人教版
第3课时一次函数的 图象与性质
数学
八年级 下册
人教版
第3课时一次函数的 图象与性质
【变式1】在同一平面直角坐标系内,画出下列函数的图象. (1)y=-3x+4. (2)y=3x+4.
数学
八年级 下册
人教版
第3课时一次函数的 图象与性质
解:(1)当x=0时,y=0+4=4, 当y=-2时,x=2, 因此一次函数y=-3x+4的图象经过(2,-2)和(0,4); (2)当x=0时,y=0+4=4, 当y=-2时,x=-2, 因此一次函数y=3x+4的图象经过 (-2,-2)和(0,4); 如图所示:

完整)北师大版八年级数学上册一次函数

完整)北师大版八年级数学上册一次函数

完整)北师大版八年级数学上册一次函数基础知识回顾】一次函数的定义:一般地,如果y=kx+b,那么y就是x 的一次函数。

特殊地,当b=0时,y就是x的正比例函数;当k=0时,y就是常数函数。

一次函数与二元一次方程组:两条直线的交点坐标即为两个一次函数列二元一次方程组的解,反之根据方程组的解可求两条直线的交点坐标。

名师提醒:1、一次函数与三者之间的关系问题一定要结合图像去解决。

2、在一次函数中讨论交点问题即是讨论一元一次不等式的解集或二元一次方程组解的问题。

】一次函数的同象及性质:一次函数y=kx+b的图像经过点(0,b)和(-b/k,0);正比例函数y=kx的图像经过原点;当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小。

名师提醒:正比例函数是一次函数,反之不一定成立,只有当b=0时,它才是正比例函数。

】用系数法求一次函数解析式:关键是确定一次函数y=kx+b中的k和b的值。

步骤:1、设一次函数表达式;2、将x,y的对应值或点的坐标代入表达式;3、解关于系数的方程或方程组;4、将所求的系数代入等设函数表达式中。

一次函数与一元一次方程、一元一次不等式和二元一次方程组:一般地,将x=或y=解一元一次方程求直线与坐标轴的交点坐标,代入y=kx+b中;对于一元一次不等式kx+b>0或kx+b<0,即一次函数同象位于x轴上方或下方,利用函数性质解决问题;对于二元一次方程组,求解两条直线的交点坐标即为方程组的解。

名师提醒:一次函数的应用多与二元一次方程组或一元一次不等式(组)相联系,经常涉及交点问题、方程涉及问题等。

】重点考点例析】考点一:一次函数的同象和性质例1(2012•黄石)已知反比例函数y=x/b,若一次函数y=kx+2与其同象,则k的取值范围是多少?解析:反比例函数y=x/b的图像经过点(b,1)和(1,b),因此一次函数y=kx+2的图像也经过这两点。

将这两点代入一次函数的解析式,得到k的取值范围为k≠-2b。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档