一次函数的对称变换

合集下载

新42.一次函数的图像变换

新42.一次函数的图像变换
4/18
35. 【中】将直线 y = 2 x − 3 向下平移 4 个单位可得直线______,再向左平移 2 个单位可得 直线_______ 【答案】 y = 2 x − 7 , y = 2 x − 3 36. 【中】将直线 y = 2 x + 1 向下平移 3 个单位,得到的直线应为_______,关于 y 轴对称的 直线为________ 【答案】 y = 2 x − 2 , y = −2 x − 2 37. 【中】 (沈阳)将 y = −3x + 4 先向左平移 3 个单位,再向下平移 5 个单位,得到的直线 为__________. 【答案】 y = −3x − 10 38. 【中】 (2009 青海)直线 y = x + 2 向右平移 3 个单位,再向下平移 2 个单位所得直线的 解析式为________ 【答案】 y = x − 3 39. 【中】若直线 y = kx + b 平行直线 y = 3x + 4 ,且过点 (1,− 2 ) ,则将 y = kx + b 向下平移
3 个单位的直线是______. 【答案】 y = 3x − 8
1) ,则平移后的直线的函数关系式为 40. 【中】将直线 y = −3x + 5 平移,使它经过点 ( −1,
________ 【答案】 y = −3x − 2
41. 【中】已知一次函数 y = −3x + 2 ,它的图象不经过第____象限,将直线 y = 2 x − 4 向上 平移 5 个单位后,所得直线的表达式为________ 【答案】三, y = 2 x + 1 42. 【中】 (2010 人大附初二上统练)若直线 y = − mx + 1 + n 沿着 x 轴向左平移 3 个单位得 到 y = − x + 1 ,则 m − n = __________. 【答案】 −2 43. 【中】 (2009 枣庄)在直角坐标系中有两条直线 l1 、 l2 ,直线 l1 所对应的的函数关系式 为 y = x − 2 ,如果将坐标纸折叠,使 l1 与 l2 重合,此时点 ( −1,0 ) 与点 ( 0 ,− 1) 也重合, 则直线 l2 所对应的函数关系式为______________ 【答案】 y = x + 2

一次函数旋转规律口诀

一次函数旋转规律口诀

一次函数旋转规律口诀1.引言1.1 概述一次函数旋转规律是数学中一个重要的概念,特指一次函数旋转后的图像和性质的变化规律。

一次函数,也称为线性函数,是指函数的表达式为f(x) = ax + b,其中a和b为常数,且a不等于0。

在研究一次函数旋转规律之前,我们先了解一次函数的基本定义和特点。

一次函数的图像在坐标平面上呈现为一条直线,具有以下几个特点:1. 斜率:一次函数的斜率表示函数图像的倾斜程度,斜率的绝对值越大,图像离纵轴的距离变化越快。

斜率可以用来表示一次函数的变化速率,它等于函数定义中的系数a。

2. 截距:一次函数的截距表示函数图像与纵轴的交点位置,即x轴截距和y轴截距。

x轴截距为函数定义中的常数b除以系数a的相反数,y 轴截距为常数b。

3. 单调性:一次函数的图像在整个定义域上是单调递增或单调递减的。

当斜率a大于0时,函数图像递增;当斜率a小于0时,函数图像递减。

了解了一次函数的定义和特点后,我们可以进一步研究一次函数的旋转规律。

一次函数的旋转规律指的是当一次函数的图像沿着一定规律进行旋转后,新的图像所呈现的变化规律。

在这篇文章中,我们将详细探讨一次函数旋转规律的性质和应用实例。

通过深入研究这一规律,我们可以更好地理解和应用一次函数的概念,并在解决实际问题时能够灵活运用相关知识。

接下来,我们将首先介绍一次函数的定义和特点,然后详细讨论一次函数的图像和性质,最后总结一次函数的旋转规律,并给出一些实际应用的例子。

通过阅读本文,读者将能够全面了解一次函数旋转规律的重要性和实际应用的意义,为进一步深入学习数学奠定坚实的基础。

1.2 文章结构文章结构部分的内容可以按照以下方式进行编写:文章结构本文分为引言、正文和结论三个部分。

引言部分主要包括概述、文章结构和目的三个方面内容。

概述部分简要介绍了本文要讨论的主题——一次函数旋转规律,以及该主题的重要性;文章结构部分介绍了本文的整体结构,包括引言、正文和结论,并指出各部分内容的主要目标;目的部分明确了本文要达到的目标,即通过介绍一次函数旋转规律,帮助读者更好地理解和掌握一次函数的性质和图像变化规律。

一次函数图象的变换--对称

一次函数图象的变换--对称

一次函数图象的变换——对称求一次函数图像关于某条直线对称后的解析式是一类重要题型,同学们在做时经常做错,下面我介绍一种简便的方法:抓住对称点的坐标解决问题。

知识点:1、与直线y=kx+b关于x轴对称的直线l,每个点与它的对应点都关于x轴对称,横坐标不变纵坐标互为相反数。

设l上任一点的坐标为(x,y),则(x, -y)应当在直线y=kx+b上,于是有-y=kx+b,即l:y=-kx-b。

2、与直线y=kx+b关于y轴对称的直线l,每个点与它的对应点都关于y轴对称,纵坐标不变横坐标互为相反数。

设l上任一点的坐标为(x,y),则(-x, y)应当在直线y=kx+b上,于是有y=-kx+b,即l:y=-kx+b。

下面我们通过例题的讲解来反馈知识的应用:例:已知直线y=2x+6.分别求与直线y=2x+6关于x轴,y轴和直线x=5对称的直线l的解析式。

分析:关于x轴对称时,横坐标不变纵坐标互为相反数;关于y轴对称时,纵坐标不变横坐标互为相反数;关于某条直线(垂直坐标轴)对称时,则相关点解:1、关于x轴对称设点( x , y )在直线l上,则点( x , -y )在直线y=2x+6上。

即:-y=2x+6y=-2x-6所以关于x轴对称的直线l的解析式为:y=-2x-6.关于直线对称。

2、关于y轴对称设点(x,y)在直线l上,则点(-x,y)在直线y=2x+6上。

即:y=2(-x) +6y=-2x+6所以关于y轴对称的直线l的解析式为:y=-2x+6.3、关于直线x=5对称(作图)由图可知:AB=BC则C点横坐标:-x+5+5=-x+10所以点C (-x+10, y)设点(x,y)在直线l上,则点(-x+10, y)在直线y=2x+6上。

即:y=2(-x+10)+6y=-2x+26所以关于直线x=5对称的直线l的解析式为:y=-2x+26.总结:根据对称求直线的解析式关键在找对称的坐标点。

关于x轴对称,横坐标不变纵坐标互为相反数;关于y轴对称,纵坐标不变横坐标互为相反数;关于某条直线(垂直对称轴)对称,可见例题中分析的方法去求对称点。

一次函数图像性质总结

一次函数图像性质总结

一次函数图像性质总结
一次函数是数学中常见的函数之一,它是一类函数的集合,表示把一个实数x映射到另一个实数y上。

一次函数可以形象地用一个图像表示出来,而这些图像有其独特的特性。

本文将着重总结一次函数图像的性质。

首先,一次函数的图像具有单调性,从正负无穷连续变化,从图像来看,即x增加,y也增加,或者x减少,y也减少,而不存在拐点,其性质取决于与x的关系,如一次函数 y= ax+b (a 0),当a> 0,则y随着x的单调递增,而当a< 0,则y随着x的单调递减。

其次,一次函数的图像具有翻转对称性,以一次函数 y= ax+b 为例,令b=0,即y= ax,将它和y轴做对称变换,即当x增加,y减少,或者x减少,y增加,则函数图像会翻转180度,即变成一次函数 y=-ax (a 0),而与y轴做对称变换时,它也会将原来的函数图像翻转180度,即变成一次函数 y= ax+b 。

此外,一次函数的图像具有错切性,以一次函数 y= ax+b 为例,当a> 0,则函数图像是以x轴正方向为逆时针错切,而当a< 0,则函数图像是以x轴正方向为顺时针错切,即当x增加,y不变时,x 轴正方向顺时针方向会发生旋转;当x减少,y不变时,x轴正方向顺时针方向会发生旋转。

最后,一次函数的图像还有斜率性,以一次函数 y= ax+b 为例,函数的斜率可由它的导数表示,即函数图像在原点的斜率可表示为a,也就是说斜率a就是函数图像的斜率,而斜率越大,函数图像越陡,
而斜率越小,则函数图像越平缓。

综上所述,一次函数图像具有单调性、翻转对称性、错切性和斜率性这四种基本性质,理解这四种性质有助于更好地理解一次函数图像的特征以及函数的变化特点。

一次函数所有知识点

一次函数所有知识点

一次函数所有知识点
一次函数是数学中的一个重要概念,它表示一个函数在某一点附近的变化情况。

一次函数的知识点包括以下几个方面:
1. 一次函数的定义:一次函数是形如 y=ax+b 的函数,其中 a 和 b 是常数,表示函数在某一点附近的变化情况。

2. 一次函数的性质:一次函数具有以下几个性质:
- 对称性:一次函数在 x=a 处取得最大值或最小值,在 y=a 处取得最大值或最小值。

- 平移性:一次函数可以通过平移操作得到其他形式的一次函数。

- 单调性:一次函数在某一区间上单调增加或减少。

3. 一次函数的图像:一次函数的图像通常可以通过以下方法得到:
- 将 y=ax+b 代入 x=0,y=0 中,得到 a=0,b=0,从而得到 y=ax。

- 将 y=ax+b 的图像向上或向下平移 b 个单位,得到 y=ax 的
图像。

- 将 y=ax 的图像向左或向右平移 a 个单位,得到 y=ax+b 的
图像。

4. 一次函数的应用:一次函数在数学中有着广泛的应用,比如
在求解抛物线的焦点坐标、求解抛物线的标准式等方面。

此外,一次函数还可以用于求解运动的加速度、速度等物理量。

拓展:
- 一次函数的系数 a 和 b 可以用图像法或定义法求解,其中图
像法更为简单。

- 一次函数的最高次项是二次项,因此一次函数的图像永远不会是抛物线。

- 一次函数可以通过移项和配方变换成 y=ax^2+bx+c 的形式,其中 a、b、c 是常数。

这种形式可以用于求解抛物线的焦点坐标和标准式。

专题12 一次函数(知识点串讲)(解析版)

专题12 一次函数(知识点串讲)(解析版)

专题12 一次函数知识网络重难突破一. 一次函数的认识一般地,形如y=kx+b(k、b为常数,且k≠0)的函数叫做一次函数.正比例函数也是一次函数,是一次函数的特殊形式.典例1.(2018春•青龙县期末)下列关系式中:y=﹣3x+1、y、y=x2+1、y x,y是x的一次函数的有()A.1个B.2个C.3个D.4个【答案】B【解析】解:函数y=﹣3x+1,y,y=x2+1,y x中,是一次函数的是:y=﹣3x+1、y x,共2个.故选:B.【点睛】利用一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数,进而判断得出答案.本题主要考查了一次函数的定义,正确把握一次函数的定义是解题关键.典例2.(2018春•颍东区期末)已知函数y=(m﹣1)x|m|+5m是一次函数,则m的值为()A.1 B.﹣1 C.0或﹣1 D.1或﹣1【答案】B【解析】解:由题意可知:解得:m =﹣1 故选:B .典例3.(2018秋•浦东新区期末)已知函数y =(m ﹣1)x+m 2﹣1是正比例函数,则m =____. 【答案】﹣1【解析】解:由正比例函数的定义可得:m 2﹣1=0,且m ﹣1≠0, 解得:m =﹣1, 故答案为:﹣1.【点睛】由正比例函数的定义可得m 2﹣1=0,且m ﹣1≠0.本题考查了正比例函数的定义.解题关键是掌握正比例函数的定义条件:正比例函数y =kx 的定义条件是:k 为常数且k ≠0,自变量次数为1. 典例4.(2017秋•沙坪坝区校级期末)若函数y =(k ﹣2)x |k|﹣1是正比例函数,则k =____.【答案】-2【解析】解:∵函数y =(k ﹣2)x |k|﹣1是正比例函数,∴,解得k =﹣2, 故答案为:﹣2.【点睛】根据正比例函数的定义可得|k|﹣1=1,且k ﹣2≠0,再解方程即可.此题主要考查了正比例函数的定义,关键是掌握形如y =kx (k 是常数,k ≠0)的函数叫做正比例函数.二. 一次函数的图象与性质1.一次函数y =kx +b(k≠0)的图象是一条经过点(0,b )、()的直线,一次函数y =kx +b 的图象也称为直线y =kx +b. 2.一次函数y =kx +b 的性质(1)增减性⎩⎪⎨⎪⎧k >0,y 随x 的增大而增大k <0,y 随x 的增大而减小(2)图象所过象限⎩⎪⎨⎪⎧k >0,b >0:第一、二、三象限k >0,b <0:第一、三、四象限k <0,b >0:第一、二、四象限k <0,b <0:第二、三、四象限(3)倾斜度⎩⎪⎨⎪⎧|k|越大,直线越接近y 轴|k|越小,直线越远离y 轴典例1.(2017秋•太仓市期末)如图,三个正比例函数的图象分别对应函数关系式:①y =ax ,②y =bx ,③y =cx ,将a ,b ,c 从小到大排列并用“<”连接为( )A .a <b <cB .c <a <bC .c <b <aD .a <c <b【答案】D【解析】解:根据三个函数图象所在象限可得a <0,b >0,c >0, 再根据直线越陡,|k|越大,则b >c . 则b >c >a , 即a <c <b . 故选:D .【点睛】根据直线所过象限可得a <0,b >0,c >0,再根据直线陡的情况可判断出b >c ,进而得到答案.此题主要考查了正比例函数图象,关键是掌握:当k >0时,图象经过一、三象限,y 随x 的增大而增大;当k <0时,图象经过二、四象限,y 随x 的增大而减小.同时注意直线越陡,则|k|越大典例2 .(2018秋•雅安期末)直线l 1:y =kx+b 与直线l 2:y =bx+k 在同一坐标系中的大致位置是( )A .B .C.D.【答案】C【解析】解:根据一次函数的系数与图象的关系依次分析选项可得:A、由图可得,y1=kx+b中,k<0,b<0,y2=bx+k中,b>0,k<0,b、k的取值矛盾,故本选项错误;B、由图可得,y1=kx+b中,k>0,b<0,y2=bx+k中,b>0,k>0,b的取值相矛盾,故本选项错误;C、由图可得,y1=kx+b中,k>0,b<0,y2=bx+k中,b<0,k>0,k的取值相一致,故本选项正确;D、由图可得,y1=kx+b中,k>0,b<0,y2=bx+k中,b<0,k<0,k的取值相矛盾,故本选项错误;故选:C.【点睛】根据一次函数的系数与图象的关系依次分析选项,找k、b取值范围相同的即得答案.本题主要考查了一次函数的图象性质,要掌握它们的性质才能灵活解题.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.典例3.(2018春•武昌区期末)已知一次函数y=(m﹣4)x+2m+1的图象不经过第三象限,则m的取值范围是()A.m<4 B.m<4 C.m≤4 D.m【答案】B【解析】解:根据题意得,解得m<4.故选:B.【点睛】依据一次函数y=(m﹣4)x+2m+1的图象不经过第三象限,可得函数表达式中一次项系数小于0,常数项不小于0,进而得到m的取值范围.本题考查了一次函数与系数的关系:对于一次函数y =kx+b(k≠0),k>0,b>0⇔y=kx+b的图象在一、二、三象限;k>0,b<0⇔y=kx+b的图象在一、三、四象限;k<0,b>0⇔y=kx+b的图象在一、二、四象限;k<0,b<0⇔y=kx+b的图象在二、三、四象限.典例4.(2018春•德阳期末)若实数a,b,c满足a+b+c=0,且a<b<c,则函数y=cx+a的图象一定不经过()A.第四象限B.第三象限C.第二象限D.第一象限【答案】C【解析】解:∵a+b+c=0,且a<b<c,∴a<0,c>0,(b的正负情况不能确定),∵a<0,∴函数y=cx+a的图象与y轴负半轴相交,∵c>0,∴函数y=cx+a的图象经过第一、三、四象限.故选:C.【点睛】先判断出a是负数,c是正数,然后根据一次函数图象与系数的关系确定图象经过的象限以及与y轴的交点的位置即可得解.本题主要考查了一次函数图象与系数的关系,先确定出a、c的正负情况是解题的关键,也是本题的难点.典例5.(2018春•大余县期末)下图中表示一次函数y=mx+n与正比例函数y=nx(m,n是常数,且mn <0)图象的是()A.B.C.D.【答案】B【解析】解:A、根据图中正比例函数y=nx的图象知,n<0;∵m,n是常数,且mn<0,∴m>0,∴一次函数y=mx+n的图象经过第一、三、四象限;故本选项错误;B、根据图中正比例函数y=nx的图象知,n>0;∵m,n是常数,且mn<0,∴m<0,∴一次函数y=mx+n的图象经过第一、二、四象限;故本选项正确;C、根据图中正比例函数y=nx的图象知,n<0;∵m,n是常数,且mn<0,∴m>0,∴一次函数y=mx+n的图象经过第一、三、四象限;故本选项错误;D、根据图中正比例函数y=nx的图象知,n>0;∵m,n是常数,且mn<0,∴m<0,∴一次函数y=mx+n的图象经过第一、二、四象限;故本选项错误;故选:B.【点睛】根据正比例函数的图象确定n的符号,然后由“两数相乘,同号得正,异号得负”判断出n的符号,再根据一次函数的性质进行判断.本题综合考查了正比例函数、一次函数图象与系数的关系.一次函数y=kx+b(k≠0)的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.典例6.(2018春•镇原县期末)已知函数y=(2m+1)x+m﹣3;(1)若函数图象经过原点,求m的值;(2)若函数图象在y轴的截距为﹣2,求m的值;(3)若函数的图象平行直线y=3x﹣3,求m的值;(4)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.【答案】见解析【解析】解:(1)∵函数图象经过原点,∴m﹣3=0,且2m+1≠0,解得:m=3;(2)∵函数图象在y轴的截距为﹣2,∴m﹣3=﹣2,且2m+1≠0,解得:m=1;(3)∵函数的图象平行直线y=3x﹣3,∴2m+1=3,解得:m=1;(4)∵y随着x的增大而减小,∴2m+1<0,解得:m.【点睛】(1)根据函数图象经过原点可得m﹣3=0,且2m+1≠0,再解即可;(2)根据题意可得m﹣3=﹣2,解方程即可;(3)根据两函数图象平行,k值相等可得2m+1=3;(4)根据一次函数的性质可得2m+1<0,再解不等式即可.此题主要考查了一次函数的性质,关键是掌握与y轴的交点就是y=kx+b中,b的值,k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.典例7.(2018春•确山县期末)小慧根据学习函数的经验,对函数y=|x﹣1|的图象与性质进行了研究,下面是小慧的研究过程,请补充完成:(1)函数y=|x﹣1|的自变量x的取值范围是______;(2)列表,找出y与x的几组对应值.其中,b=___;(3)在平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点,并画出该函数的图象;(4)写出该函数的一条性质:__________.【答案】见解析【解析】解:(1)∵x无论为何值,函数均有意义,∴x为任意实数.故答案为:任意实数;(2)∵当x=﹣1时,y=|﹣1﹣1|=2,∴b=2.故答案为:2;(3)如图所示;(4)由函数图象可知,函数的最小值为0.故答案为:函数的最小值为0(答案不唯一).【点睛】(1)根据一次函数的性质即可得出结论;(2)把x=﹣1代入函数解析式,求出y的值即可;(3)在坐标系内描出各点,再顺次连接即可;(4)根据函数图象即可得出结论.本题考查的是一次函数的性质,根据题意画出函数图象,利用数形结合求解是解答此题的关键.三. 待定系数法求一次函数解析式用待定系数法时需要根据两个条件列二元一次方程组(以k和b为未知数),解方程组后就能具体写出一次函数的解析式.用待定系数法求一次函数解析式的步骤如下:①设一次函数解析y=kx+b(k≠0);②代入两个已知点的坐标,得到关于k、b的方程组;③解方程组得到k、b的值;④写出一次函数的解析式.若一次函数为正比例函数,则b=0,只需代入一个点的坐标,求出系数k即可.典例1.(2018秋•蚌埠期末)已知y与(x﹣2)成正比例,当x=1时,y=﹣2.则当x=3时,y的值为()A.2 B.﹣2 C.3 D.﹣3【答案】A【解析】解:∵y与(x﹣2)成正比例,∴设y=k(x﹣2),由题意得,﹣2=k(1﹣2),解得,k=2,则y=2x﹣4,当x=3时,y=2×3﹣4=2,故选:A.【点睛】本题考查的是待定系数法求一次函数解析式,掌握待定系数法求一次函数解析式一般步骤是解题的关键.典例2.(2018春•泸县期末)如图,已知直线y=x+4与x轴、y轴交于A,B两点,直线l经过原点,与线段AB交于点C,并把△AOB的面积分为2:3两部分,求直线l的解析式.【答案】y x或y x【解析】解:直线l的解析式为:y=kx,对于直线y=x+4的解析式,当x=0时,y=4,y=0时,x=﹣4,∴A(﹣4,0)、B(0,4),∴OA=4,OB=4,∴S△AOB4×4=8,当直线l把△AOB的面积分为S△AOC:S△BOC=2:3时,S△AOC,作CF⊥OA于F,CE⊥OB于E,∴AO•CF,即4×CF,∴CF.当y时,x,则k,解得,k,∴直线l的解析式为y x;当直线l把△ABO的面积分为S△AOC:S△BOC=3:2时,同理求得CF,解得直线l的解析式为y x.故答案为y x或y x.【点睛】根据直线y=x+4的解析式可求出A、B两点的坐标,当直线l把△ABO的面积分为S△AOC:S=2:3时,作CF⊥OA于F,CE⊥OB于E,可分别求出△AOB与△AOC的面积,再根据其面积△BOC公式可求出两直线交点的坐标,从而求出其解析式;当直线l把△ABO的面积分为S△AOC:S△BOC=2:3时,同(1).本题考查的是待定系数法求一次函数的解析式,掌握待定系数法求一次函数解析式的一般步骤是解题的关键,涉及到三角形的面积公式及分类讨论的方法.典例3.(2018春•茌平县期末)已知一次函数y=kx+b的图象经过点A(﹣1,﹣1)和点B(1,﹣3).求:(1)求一次函数的表达式;(2)求直线AB与坐标轴围成的三角形的面积;(3)请在x轴上找到一点P,使得PA+PB最小,并求出P的坐标.【答案】见解析【解析】解:(1)设y与x的函数关系式为y=kx+b,把A(﹣1,﹣1)B(1,﹣3)带入得:﹣k+b=﹣1,k+b=﹣3,解得:k=﹣1,b=﹣2,∴一次函数表达式为:y=﹣x﹣2;(2)设直线与x轴交于C,与y轴交于D,把y=0代入y=﹣x﹣2,解得x=﹣2,∴OC=2,把x=0代入y=﹣x﹣2,解得:y=﹣2,∴OD=2,∴S△COD OC×OD2×2=2;(3)作A与A1关于x轴对称,连接A1B交x轴于P,则P即为所求,由对称知:A1(﹣1,1),设直线A1B解析式为y=ax+c,得﹣k+b=1,k+b=﹣3,解得:k=﹣2,b=﹣1,∴y=﹣2x﹣1,另y=0得﹣2x﹣1=0,解得:x,∴P(,0).【点睛】(1)设y=kx+b,把A与B坐标代入求出k与b的值,即可确定出一次函数解析式;(2)分别令x与y为0求出y与x的值,确定出OC与OD的长,即可求出三角形COD面积;(3)作A与A1关于x轴对称,连接A1B交x轴于P,则P即为所求,利用待定系数法求出直线A1B 解析式,确定出P点坐标即可.此题考查了待定系数法求一次函数解析式,一次函数图象上的点的坐标特征,以及轴对称﹣最短线路问题,熟练掌握待定系数法是解本题的关键.典例4.(2018春•郾城区期末)如图,过点A(3,0)的两条直线l1,l2分别交y轴于点B,C,其中点B 在原点上方,点C在原点下方,已知AB=5.(1)求点B的坐标;(2)若△ABC的面积为9,求直线l2的解析式.【答案】见解析【解析】解:(1)∵点A(3,0),AB=5∴BO 4∴点B的坐标为(0,4);(2)∵△ABC的面积为9∴BC×AO=9∴BC×3=9,即BC=6∵BO=4∴CO=2∴C(0,﹣2)设l2的解析式为y=kx+b,则,解得∴l2的解析式为y x﹣2.【点睛】(1)先根据勾股定理求得BO的长,再写出点B的坐标;(2)先根据△ABC的面积为9,求得CO的长,再根据点A、C的坐标,运用待定系数法求得直线l2的解析式.本题主要考查了两条直线的交点问题,解题的关键是掌握勾股定理以及待定系数法.注意:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解,反之也成立.四. 一次函数的图象变换1.一次函数平移的方法:左加右减,上加下减.2.一次函数图象的常见对称变换:对于直线y=kx+b(k≠0,且k,b为常数),①关于x轴对称,就是x不变,y变成﹣y:﹣y=kx+b,即y=﹣kx﹣b(关于x轴对称,横坐标不变,纵坐标是原来的相反数);②关于y轴对称,就是y不变,x变成﹣x:y=k(﹣x)+b,即y=﹣kx+b(关于y轴对称,纵坐标不变,横坐标是原来的相反数);③关于原点对称,就是x和y都变成相反数:﹣y=k(﹣x)+b,即y=kx﹣b(关于原点对称,横、纵坐标都变为原来的相反数).典例1.(2018春•永清县期末)若一次函数y=kx+b(x≠0)(k≠0)与一次函数y的图象关于x 轴对称,则一次函数y=kx+b的解析式为_____.【答案】y x﹣1【解析】解:∵y=kx+b与y x+1关于x轴对称,∴b=﹣1,∴k,∴y x﹣1.故答案为:y x﹣1.【点睛】根据一次函数y=kx+b(k≠0)与函数y x+1的图象关于x轴对称,解答即可.本题考查的是一次函数的图象与几何变换,熟知关于x轴对称的点的坐标特点是解答此题的关键.典例2.(2018春•松滋市期末)在同一直角坐标系中,将一次函数y=x﹣3(x>1)的图象,在直线x=2(横坐标为2的所有点构成该直线)的左侧部分沿直线x=2翻折,图象的其余部分保持不变,得到一个新图象.若关于x的函数y=2x+b的图象与此图象有两个公共点,则b的取值范围是()A.8>b>5 B.﹣8<b<﹣5 C.﹣8≤b≤﹣5 D.﹣8<b≤﹣5【答案】B【解析】解:在y=x﹣3(x>1)中,令x=2,则y=﹣1,若直线y=2x+b经过(2,﹣1),则﹣1=4+b,解得b=﹣5;在y=x﹣3(x>1)中,令x=1,则y=﹣2,点(1,﹣2)关于x=2对称的点为(3,﹣2),若直线y=2x+b经过(3,﹣2),则﹣2=6+b,解得b=﹣8,∵关于x的函数y=2x+b的图象与此图象有两个公共点,∴b的取值范围是﹣8<b<﹣5,故选:B.【点睛】根据直线y=2x+b经过(2,﹣1),可得b=﹣5;根据直线y=2x+b经过(3,﹣2),即可得到b=﹣8,依据关于x的函数y=2x+b的图象与此图象有两个公共点,即可得出b的取值范围是﹣8<b<﹣5.解决问题给的关键是掌握一次函数图象上点的坐标特征:直线上任意一点的坐标都满足函数关系式y=kx+b.巩固练习1.(2017秋•简阳市期末)下列函数关系中表示一次函数的有()①y=2x+1 ②③④s=60t⑤y=100﹣25x.A.1个B.2个C.3个D.4个【答案】D【解析】解:①y=2x+1是一次函数;②y自变量次数不为1,不是一次函数;③y x是一次函数;④s=60t是正比例函数,也是一次函数;⑤y=100﹣25x是一次函数.故选:D.2.(2018春•柳林县期末)已知一次函数y=kx+b,若k•b<0,则该函数的图象可能()A.B.C.D.【答案】A【解析】解:∵在一次函数y=kx+b中k•b<0,∴y=kx+b的图象在一、三、四象限或一、二、四象限.故选:A.3.(2018春•德阳期末)对于函数y下列说法正确的是()A.当x<3时,y随x的增大而增大B.当x>3时,y随x的增大而减小C.当x<0时,y随x的增大而减小D.当x=4时,y=﹣2【答案】C【解析】解:A、当x<3时,y随x的增大而减小,错误;B、当x>3时,y随x的增大而增大,错误;C、当x<0时,y随x的增大而减小,正确;D、当x=4时,y=1,错误;故选:C.4.(2018春•遵义期末)函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置是()A.B.C.D.【答案】B【解析】解:分四种情况:①当a>0,b>0时,y=ax+b的图象经过第一、二、三象限,y=bx+a的图象经过第一、二、三象限,无选项符合;②当a>0,b<0时,y=ax+b的图象经过第一、三、四象限;y=bx+a的图象经过第一、二、四象限,B选项符合;③当a<0,b>0时,y=ax+b的图象经过第一、二、四象限;y=bx+a的图象经过第一、三、四象限,B选项符合;④当a<0,b<0时,y=ax+b的图象经过第二、三、四象限;y=bx+a的图象经过第二、三、四象限,无选项符合.故选:B.5.(2018春•诸城市期末)若一次函数y=(3﹣m)x+5的函数值y随x的增大而减小,则()A.m>0 B.m<0 C.m>3 D.m<3【答案】C【解析】解:根据题意得3﹣m<0,解得m>3.故选:C.6.(2017秋•蜀山区期末)已知n>m,在同一平面直角坐标系内画出一次函数y=nx+m与y=mx+n的图象,则有一组m,n的取值,使得下列4个图中的一个为正确的是()A.B.C.D.【答案】B【解析】解:A、m<0,n>0,则y=mx+n过第一、二、四象限,y=nx+m经过第一、三、四象限;所以A错误;B、m>0,n>0,则y=mx+n过第一、二、三象限,y=nx+m经过第一、二、三象限;所以B正确;C、两直线与x轴的交点坐标为(,0)和(,0),所以C错误;D、m>0,n>0,则y=mx+n过第一、二、三象限,y=nx+m经过第一、二、三象限;所以D错误.故选:B.7.(2018春•繁昌县期末)八个边长为1的正方形如图所示的位置摆放在平面直角坐标系中,经过原点的直线l将这八个正方形分成面积相等的两部分,则这条直线的解析式是___.【答案】y x【解析】解:设直线l和八个正方形的最上面交点为A,过点A作AB⊥y轴于点B,过点A作AC⊥x 轴于点C,如图所示.∵正方形的边长为1,∴OB=3.∵经过原点的一条直线l将这八个正方形分成面积相等的两部分,∴两边分别是4,∴三角形ABO面积是5,∴OB•AB=5,∴AB,∴OC,∴点A的坐标为(,3).设直线l的解析式为y=kx,∵点A(,3)在直线l上,∴3k,解得:k,∴直线l解析式为y x.故答案为:y x.8.(2018春•营山县期末)如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=10,点A、B 的坐标分别为(2,0)、(8,0),将△ABC沿x轴向右平移,当点C落在直线y=x﹣5上时,线段BC 扫过的面积为()A.80 B.88 C.96 D.100【答案】B【解析】解:∵点A、B的坐标分别为(2,0)、(8,0),∴AB=6,∵∠CAB=90°,BC=10,∴CA8,∴C点纵坐标为:8,∵将△ABC沿x轴向右平移,当点C落在直线y=x﹣5上时,∴y=8时,8=x﹣5,解得:x=13,即A点向右平移13﹣2=11个单位,∴线段BC扫过的面积为:11×8=88.故选:B.9.(2018春•廉江市期末)已知:如图,正比例函数y=kx的图象经过点A,(1)请你求出该正比例函数的解析式;(2)若这个函数的图象还经过点B(m,m+3),请你求出m的值;(3)请你判断点P(,1)是否在这个函数的图象上,为什么?12 【答案】见解析【解析】解:(1)由图可知点A(﹣1,2),代入y=kx得:﹣k=2,k=﹣2,则正比例函数解析式为y=﹣2x;(2)将点B(m,m+3)代入y=﹣2x,得:﹣2m=m+3,解得:m=﹣1;(3)当x时,y=﹣2×()=3≠1,所以点P不在这个函数图象上.。

高三函数对称性知识点总结

高三函数对称性知识点总结

高三函数对称性知识点总结一、函数对称性的概念与重要性函数作为数学中描述变化规律的重要工具,其图像的对称性是解析几何中一个非常有趣且具有实际意义的课题。

在高中数学的学习中,掌握函数图像的对称性对于理解和运用函数知识至关重要。

对称性不仅能够帮助我们快速识别函数的性质,还能在解决实际问题时提供直观的解题思路。

本文将对高三数学中函数对称性的相关知识点进行总结和梳理。

二、函数图像的对称轴1. 轴对称性轴对称性是函数对称性中最基本也是最常见的一种形式。

对于一个函数图像来说,如果存在一条直线,使得图像上任意一点关于这条直线对称,那么这个函数就具有轴对称性。

对于二次函数,其对称轴通常为 x = -b/2a,这里的 a 和 b 分别是二次项和一次项的系数。

2. 中心对称性除了轴对称性,函数图像还可能具有中心对称性。

如果图像上任意一点 P(x, y) 关于某一点 (a, b) 对称,即存在点 P'(2a-x, 2b-y) 也在图像上,那么这个函数就具有中心对称性。

例如,反比例函数 y =k/x (k 为常数) 的图像就具有中心对称性,其对称中心为原点。

三、常见函数的对称性质1. 二次函数的对称性二次函数 y = ax^2 + bx + c 的图像是一个抛物线。

根据 a 的正负,抛物线的开口方向不同,但其对称轴始终为直线 x = -b/2a。

当 a >0 时,抛物线开口向上;当 a < 0 时,抛物线开口向下。

此外,二次函数的图像可以通过平移、伸缩等变换保持其对称性质。

2. 一次函数的对称性一次函数 y = kx + b 的图像是一条直线。

直线的对称性较为简单,它关于垂直于其斜率 k 的直线具有轴对称性。

当 k 为正时,直线向右上方倾斜;当 k 为负时,直线向右下方倾斜。

一次函数的图像是对称的,但不是中心对称的。

3. 反比例函数的对称性反比例函数y = k/x (k ≠ 0) 的图像是一对双曲线。

2023年中考数学考点总结+题型专训专题15 一次函数的应用与综合篇(原卷版)

2023年中考数学考点总结+题型专训专题15 一次函数的应用与综合篇(原卷版)

知识回顾专题15一次函数的应用与综合1. 一次函数的图像与性质:一次函数与x 轴的交点坐标公式为:⎪⎭⎫ ⎝⎛-0 ,k;与y轴的交点坐标公式为:()b ,0。

2. 一次函数的平移:①左右平移,自变量上进行加减。

左加右减。

即若()0≠+=k b kx y 向左移动了m 个单位,则平移后的函数解析式为:()()0≠++=k b m x k y ;若()0≠+=k b kx y 向右移动了m 个单位,则平移后的函数解析式为:()()0≠+-=k b m x k y 。

②上下平移,解析式整体后面进行加减。

上加下减。

k 的取值 b 的取值 所在象限y 随x 的变化情况大致图像0>k0>b (图像交于y 轴正半轴)一二三象限y 随x 增大而增大0<b (图像交于y 轴负半轴)一三四象限0<k0>b (图像交于y 轴正半轴)一二四象限y 随x 减小而减小0<b (图像交于y 轴负半轴)二三四象限即若()0≠+=k b kx y 向上移动了m 个单位,则平移后的函数解析式为:()0≠++=k m b kx y ;若()0≠+=k b kx y 向下移动了m 个单位,则平移后的函数解析式为:()0≠-+=k m b kx y 。

3. 一次函数的对称变换:①若一次函数关于x 轴对称,则自变量不变,函数值变为相反数。

即()0≠+=k b kx y 关于x 轴的函数解析式为:()0≠+=-k b kx y ,即()0≠--=k b kx y 。

②若一次函数关于y 轴对称,则函数值不变,自变量变成相反数。

即()0≠+=k b kx y 关于y 轴的函数解析式为:()()0≠+-=k b x k y ,即()0≠+-=k b kx y 。

③若一次函数关于原点对称,则自变量与函数值均变成相反数。

即()0≠+=k b kx y 关于原点的函数解析式为:()()0≠+-=-k b x k y ,即()0≠-=k b kx y 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的平移与对称变换“三系列”之一:
一次函数的对称变换
一、直线型函数的关于“坐标轴”呈轴对称的变换
1、求直线3x 2y -=关于y 轴对称的新直线的表达式?
①、〈小明同学的解法〉:设旧直线3x 2y
-=与x 、y 轴分别相交于A 、B 两点, 则点A 为(2
3,0),点B 为(0,3-), 又设新直线与x 轴交于点
A ',则点A '与点A 关于y 轴对称,∴ 点A '为(23-,0), 设新直线的表达式为:b kx y +=,把
B (0,3-)、A '(2
3-,0)代入之得: ,解之得:2k -=,3b -=
∴ 所求新直线的表达式为:3x 2y --=
2、求直线3x 2y -=关于x 轴对称的新直线的表达式?
请你模仿“小明同学”,写出解答过程:
⎪⎩⎪⎨⎧=+=+⨯0b k 233b 0k --
②、〈小通同学的解法〉:设点E (0,m ),点F (1,n )是旧直线3x 2y
-=上的两点,则易求点E 为(0,3-),点F 为(1,1-)
, 由题意知:点E 、F 关于y 轴的对称点1E (0-,3-)、1F (1-,1-)必在新直线上, 设新直线的表达式为:b kx y +=,把1E (0,3-)、1F (1-,1-)代入之得:
,解之得:2k -=,3b -=
∴ 所求新直线的表达式为:3x 2y
--=
〈老师〉问:为什么要把点E 、F 的横坐标分别预设为“0,1”?
〈小通〉答:因为原表达式中,自变量的取值范围是“一切实数”,并且由这些“简单横坐标”很容易算出对应的“纵坐标”!
〈小通〉自叹:我懂方法,也懂变通!
4、求直线3x 2y -=关于x 轴对称的新直线的表达式?
请你模仿“小通同学”,写出解答过程:
5、求直线3x 2y -=关于y 轴对称的新直线的表达式?
②、〈小王同学的解法〉:设点P (x ,y )是所求新直线上的任意一个点,
则点P 关于y 轴的对称点Q (x -,y ),必定在旧直线3x 2y
-=的图像上 ∴ 把Q (x -,y )代入3x 2y
-=得:()3x 2y --•= 整理得:3x 2y
--=,即为所求新直线的表达式。

⎩⎨⎧=+=+⨯1b k 3b 0k ---
请你模仿“小王同学”,写出解答过程:
二、直线型函数的关于“原点”呈中心对称的变换
1、求直线3x 2y -=关于原点呈中心对称的新直线表达式?
①、〈小明同学的解法〉:设旧直线3x 2y
-=与x 、y 轴分别相交于A 、B 两点, 则点A 为 ,点B 为 ;
则A 、B 两点关于原点的对称点的坐标为:
1A , 1B ; 设新直线的表达式为:b kx y +=,把1A 、1B 两点坐标代入之得:
,解之得:=k
,=b ;
∴ 所求新直线的表达式为:=y ;
〈点评〉:小明抓住“常规点”来求待定系数,当然允许!
2、求直线3x 2y -=关于原点呈中心对称的新直线表达式?
②、〈小通同学的解法〉:设点E (0,m ),点F (2,n )是旧直线3x 2y
-=上的两点,则易求点E 为 ,点F 为 ;
由题意知:点E 、F 关于原点的对称点1E , 1F 必在新直线上,
设新直线的表达式为:b kx y +=,把1E 、1F 两点坐标代入之
得: ,解之得:=k ,=b ;
∴ 所求新直线的表达式为:=y ;
〈点评〉:小通抓住“易算点”来求待定系数,当然快哉!
⎪⎩⎪⎨⎧K K K K K K K K K K K K K K K K K K K K K K K K ⎪⎩
⎪⎨⎧K K K K K K K K K K K K K K K K K K K K K K K K
3、求直线3x 2y -=关于原点呈中心对称的新直线表达式?
①、〈小王同学的解法〉:设点P (x ,y )是所求新直线上的任意一个点,
则点P 关于 的对称点Q ,必定在旧直线
3x 2y -=的图像上,∴ 把点Q 坐标代入旧表达式3x 2y -=得:

整理得: ,即为所求新直线的表达式。

〈点评〉:小王借助“变量点”的变换代入,直取结果,大道至简,王者风范!
三、“小巧”同学来进行规律总结
1、函数b kx y +=关于“x 轴”对称的直线的表达式,只需把 量换成 ,而 量不变,最后整理为: ;
2、函数b kx y +=关于“y 轴”对称的直线的表达式,只需把 量换成 ,而 量不变,最后整理为: ;
3、函数b kx y +=关于“原点”对称的直线的表达式,既需把 量换成 ,又需 把 量换成 ,最后整理为: ; 〈小巧〉自叹:我善总结技巧,会用这些“雕虫小技”来“又快、又准”地抓分!
四、应用练习(首推“巧”之规律,若不方便,就用“王”之方法!)
1、直线1x 3y +=-关于“y 轴”对称的直线的表达式为 ;
2、直线1x 2y --=关于“x 轴”对称的直线的表达式为 ;
3、直线3x y -=关于“原点”对称的直线的表达式为 ;
4、函数1x 2y
2-=关于“x 轴”对称的直线的表达式为 ; 5、函数()52x 3y 2
+=--关于“y 轴”对称的直线的表达式为 ; 6、函数3x x y 2
--=关于“原点”对称的直线的表达式为 ; 7、函数x
2y -
=关于“x 轴”对称的直线的表达式为 ; 8、函数x 2y -=关于“原点”对称的直线的表达式为 ; 9、直线1x 3y +=-关于“直线2y -=”对称的直线的表达式为 ;
10、直线1x 3y +=-关于“点(2,3-)”对称的直线的表达式为 ;。

相关文档
最新文档