控制工程实验报告剖析

合集下载

北京工业大学控制工程实验报告

北京工业大学控制工程实验报告

控制工程基础课程实验报告北京工业大学机电学院班号彩虹人实验一 控制系统的阶跃响应实验二、实验内容1、传递函数102102)(1++=s s G s图像结果:代码: num=[10]; den=[1 2 10];damp(den)Eigenvalue Damping Frequency -1.00e+00 + 3.00e+00i 3.16e-01 3.16e+00-1.00e+00 - 3.00e+00i 3.16e-01 3.16e+00 (Frequencies expressed in rad/TimeUnit)step(num,den)理论值计算:%13.12%100445147.3%%07.16%10033518.2%%21.0%100047.1047.10492.1%%0074.0%100351.1351.13509.1%4/43/3047.11/351.11212121/maxth 2=⨯-==⨯-==⨯-==⨯-======-==+=--ath ath p n ath n ath n pth t t t c st s t s t eC ΔΔΔΔξωξωωξπξξπ2、3、4、1022123)s (3+++=s s s G :102431234)(4++++=s s s s G s :七、实验报告要求:(1)分析系统的阻尼比和无阻尼振荡频率对系统阶跃响应的影响 答:阻尼比决定了振荡特性,0<ξ<1越小,其阶跃响应超调量越大,上升时间越长。

,0<ξ<1, 有振荡ξ>1,无振荡。

系统无阻尼振荡频率越大,阶跃响应的反应速度越快.(2)分析响应曲线的零初值,非零初值与系统模型的关系答:当分子、分母多项式阶数相等时响应曲线初值不为0,当分子多项式的阶数低于分母多项式的结束时相应曲线的初值为零初值。

(3)分析响应曲线的稳态值与系统模型的关系答:当分子、分母多项式阶数相等时响应曲线稳态值为零;当分子多项式的阶数低于分母多项式的结束时相应曲线的稳态值为1.八、思考题:分析系统零点对阶跃响应的影响答:当系统存在不稳定零点时,系统的阶跃响应可能有向下的峰值,,零点的存在使振荡响应增加。

南京理工大学控制工程基础实验报告

南京理工大学控制工程基础实验报告

《控制工程基础》实验报告姓名欧宇涵 914000720206周竹青 914000720215 学院教育实验学院指导老师蔡晨晓南京理工大学自动化学院2017年1月实验1:典型环节的模拟研究一、实验目的与要求:1、学习构建典型环节的模拟电路;2、研究阻、容参数对典型环节阶跃响应的影响;3、学习典型环节阶跃响应的测量方法,并计算其典型环节的传递函数。

二、实验内容:完成比例环节、积分环节、比例积分环节、惯性环节的电路模拟实验,并研究参数变化对其阶跃响应特性的影响。

三、实验步骤与方法(1)比例环节图1-1 比例环节模拟电路图比例环节的传递函数为:K s U s U i O =)()(,其中12R RK =,参数取R 2=200K ,R 1=100K 。

步骤: 1、连接好实验台,按上图接好线。

2、调节阶跃信号幅值(用万用表测),此处以1V 为例。

调节完成后恢复初始。

3、Ui 接阶跃信号、Uo 接IN 采集信号。

4、打开上端软件,设置采集速率为“1800uS”,取消“自动采集”选项。

5、点击上端软件“开始”按键,随后向上拨动阶跃信号开关,采集数据如下图。

图1-2 比例环节阶跃响应(2)积分环节图1-3 积分环节模拟电路图积分环节的传递函数为:ST V V I I O 1-=,其中T I =RC ,参数取R=100K ,C=0.1µf 。

步骤:同比例环节,采集数据如下图。

图1-4 积分环节阶跃响应(3)微分环节图1-5 微分环节模拟电路图200KRV IVoC2CR 1V IVo200K微分环节的传递函数为:K S T S T V V D D I O +-=1,其中 T D =R 1C 、K=12R R。

参数取:R 1=100K ,R 2=200K ,C=1µf 。

步骤:同比例环节,采集数据如下图。

图1-6 微分环节阶跃响应(4)惯性环节图1-7 惯性环节模拟电路图惯性环节的传递函数为:1+-=TS K V V I O ,其中2T R C =,21RK R =-。

控制工程实验报告

控制工程实验报告

控制工程实验报告1. 引言控制工程是一门研究如何通过设计和操作系统来达到预期目标的学科。

实验是控制工程学习过程中重要的一部分,通过实验可以加深对控制理论的理解,提高实际操作能力。

本实验报告旨在总结和分析在进行控制工程实验时所遇到的问题和解决方法。

2. 实验背景本次实验旨在研究单输入单输出(SISO)的控制系统。

通过建模、设计和实施控制器,我们将探讨如何使系统达到期望的性能指标。

在实验过程中,我们使用了控制工程中常用的方法和工具,如PID控制器、校正方法和稳定性分析等。

3. 实验目标本实验的主要目标是设计一个PID控制器来控制一个特定的系统,使其满足给定的性能要求。

具体目标如下: - 理解PID控制器的原理和工作方式; - 利用实验数据建立系统的数学模型; - 利用系统模型设计优化的PID控制器; - 分析和评估实验结果,判断控制系统的稳定性和性能。

4. 实验过程实验分为以下几个步骤: ### 4.1 建立系统模型首先,我们需要对所控制的系统进行建模。

使用传感器收集系统的输入和输出数据,并通过系统辨识方法分析这些数据,得到系统的数学模型。

常用的辨识方法包括最小二乘法和频域分析法。

4.2 设计PID控制器基于系统模型的分析,我们可以设计PID控制器。

通过调整PID控制器的参数,如比例增益、积分时间常数和微分时间常数,我们可以优化控制系统的性能。

4.3 实施控制器将设计好的PID控制器实施到实际系统中。

在实验中,我们需要将传感器和控制器与被控对象连接,并配置合适的控制策略。

4.4 性能评估通过收集系统的输入和输出数据,并利用系统模型进行仿真和分析,我们可以评估控制系统的性能。

常见的评估指标包括超调量、上升时间和稳态误差等。

5. 实验结果与分析根据实验数据和分析结果,我们得到了以下结论: - PID控制器可以有效地控制被控对象,使其稳定在期望值附近; - 通过适当调整PID控制器的参数,我们可以优化控制系统的性能; - 预测模型与实际系统存在一定差异,可能需要进一步改进和校正。

控制工程实验报告

控制工程实验报告

《控制工程基础》实验任务实验一 系统时域响应分析1. 实验目的本实验的主要目的是:通过实验使学生进一步理解系统参数对时域响应的影响,理解系统参数与时域性能指标之间的关系,同时了解系统稳定性的充要条件。

本实验的内容覆盖了教材第3、4、5章的内容。

2. 实验内容完成一阶、二阶系统在典型输入信号作用下的响应,求取二阶系统的性能指标,记录试验结果并对此进行分析。

3. 实验要求要求掌握应用MATLAB 软件的相应功能,实现一阶、二阶系统在典型输入信号(包括单位脉冲信号、单位阶跃信号、单位斜坡信号、正弦信号等)作用下的响应;记录实验结果并对结果进行分析,要求用实验结果来分析系统特征参数对系统时间响应的影响。

4. 实验地点工字楼127。

5. 实验过程一、系统的传递函数及其MATLAB 表达 (1)一阶系统 传递函数为:1)(+=Ts Ks G 传递函数的MATLAB 表达: num=[k];den=[T,1];G(s)=tf(num,den) (2)二阶系统 传递函数为:2222)(nn n w s w s w s G ++=ξ传递函数的MATLAB 表达: num=[wn^2];den=[1,2*s* wn ,wn^2];G(s)=tf(num,den) (3)任意的高阶系统传递函数为:nn n n m m m m a s a s a s a b s b s b s b s G ++++++++=----11101110)(传递函数的MATLAB 表达:num=[m m b b b b ,,,110- ];den=[n n a a a a ,,,110- ];G(s)=tf(num,den) 若传递函数表示为:)())(()())(()(1010n m p s p s p s z s z s z s Ks G ------=则传递函数的MATLAB 表达:z=[m z z z ,,,10 ];p=[n p p p ,,,10 ];K=[K];G(s)=zpk(z,p,k) 二、 各种时间输入信号响应的表达 (1)单位脉冲信号响应:[y,x]=impulse(sys,t) (2)单位阶跃信号响应:[y,x]=step(sys,t) (3)任意输入信号响应:[y,x]=lsim(sys,u,t)其中,y 为输出响应,x 为状态响应(可选);sys 为建立的模型;t 为仿真时间区段(可选),u 为给定输入信号(列向量)。

控制工程基础实验报告

控制工程基础实验报告

控制工程基础实验报告控制工程基础实验报告引言:控制工程是一门涉及自动化、电子、计算机等多个学科的交叉学科,其实验是培养学生动手能力和实践能力的重要环节。

本篇文章将以控制工程基础实验为主题,探讨实验的目的、过程和结果等方面。

实验目的:控制工程基础实验的目的是让学生通过实践了解控制系统的基本原理和方法,培养其分析和解决问题的能力。

通过实验,学生可以掌握闭环控制系统的设计与调试技巧,加深对控制理论的理解。

实验内容:本次实验的内容是设计一个简单的温度控制系统。

系统由温度传感器、控制器和加热器组成。

温度传感器采集环境温度,控制器根据设定的温度值来控制加热器的工作状态,以维持温度在设定值附近。

实验步骤:1. 搭建实验平台:将温度传感器、控制器和加热器按照实验要求连接起来,确保电路正常工作。

2. 设计控制算法:根据控制系统的要求,设计合适的控制算法。

可以采用比例控制、积分控制或者PID控制等方法。

3. 参数调试:根据实验平台和控制算法的特点,调试控制器的参数,使系统能够快速、稳定地响应设定值的变化。

4. 实验数据采集:通过实验平台上的数据采集器,记录系统的输入和输出数据,以便后续分析和评估。

实验结果:经过实验,我们得到了一组温度控制系统的数据。

通过对这些数据的分析,我们可以评估系统的控制性能和稳定性。

在实验中,我们使用PID控制算法,经过参数调试,得到了较好的控制效果。

系统能够在设定值附近稳定工作,并且对设定值的变化能够快速响应。

实验总结:通过这次实验,我们深入了解了控制工程的基本原理和方法。

实践中遇到的问题和挑战,锻炼了我们的动手能力和解决问题的能力。

实验结果表明,合适的控制算法和参数调试是实现良好控制效果的关键。

控制工程实验的重要性不言而喻,它不仅是理论学习的延伸,更是培养学生实践能力的重要途径。

结语:控制工程基础实验是掌握控制工程理论和方法的重要环节。

通过实践,学生能够更好地理解和应用所学知识,提高解决实际问题的能力。

燕山大学控制工程基础实验报告(带数据)

燕山大学控制工程基础实验报告(带数据)

自动控制理论实验报告实验一典型环节的时域响应院系:班级:学号:姓名:实验一 典型环节的时域响应一、 实验目的1.掌握典型环节模拟电路的构成方法,传递函数及输出时域函数的表达式。

2.熟悉各种典型环节的阶跃响应曲线。

3.了解各项参数变化对典型环节动态特性的影响。

二、 实验设备PC 机一台,TD-ACC+教学实验系统一套。

三、 实验步骤1、按图1-2比例环节的模拟电路图将线接好。

检查无误后开启设备电源。

注:图中运算放大器的正相输入端已经对地接了100k 电阻。

不需再接。

2、将信号源单元的“ST ”端插针与“S ”端插针用“短路块”接好。

将信号形式开关设为“方波”档,分别调节调幅和调频电位器,使得“OUT ”端输出的方波幅值为1V ,周期为10s 左右。

3、将方波信号加至比例环节的输入端R(t), 用示波器的“CH1”和“CH2”表笔分别监测模拟电路的输入R(t)端和输出C(t)端。

记录实验波形及结果。

4、用同样的方法分别得出积分环节、比例积分环节、惯性环节对阶跃信号的实际响应曲线。

5、再将各环节实验数据改为如下:比例环节:;,k R k R 20020010== 积分环节:;,u C k R 22000==比例环节:;,,u C k R k R 220010010=== 惯性环节:。

,u C k R R 220010=== 用同样的步骤方法重复一遍。

四、 实验原理、内容、记录曲线及分析下面列出了各典型环节的结构框图、传递函数、阶跃响应、模拟电路、记录曲线及理论分析。

1.比例环节 (1) 结构框图:图1-1 比例环节的结构框图(2) 传递函数:K S R S C =)()( KR(S)C(S)(3) 阶跃响应:C(t = K ( t ≥0 ) 其中K = R 1 / R 0 (4) 模拟电路:图1-2 比例环节的模拟电路图(5)记录曲线:(6)k R k R 20020010==,时的记录曲线:_R0=200kR1=100k_ 10K10KC(t)反相器 比例环节 R(t)(7)曲线分析:比例放大倍数K 与1R 的阻值成正比。

南昌大学控制工程实验报告

南昌大学控制工程实验报告

实验报告实验课程:机械工程控制基础学生姓名:周栋学号:5902110054专业班级:热能101班实验一典型环节的电路模拟与软件仿真研究一.实验目的1.通过实验熟悉并掌握实验装置和上位机软件的使用方法。

2.通过实验熟悉各种典型环节的传递函数及其特性,掌握电路模拟和软件仿真研究方法。

二.实验内容1.设计各种典型环节的模拟电路。

2.完成各种典型环节模拟电路的阶跃特性测试,并研究参数变化对典型环节阶跃特性的影响。

3.在上位机界面上,填入各个环节的实际(非理想)传递函数参数,完成典型环节阶跃特性的软件仿真研究,并与电路模拟研究的结果作比较。

三.实验步骤1.熟悉实验箱,利用实验箱上的模拟电路单元,参考本实验附录设计并连接各种典型环节(包括比例、积分、比例积分、比例微分、比例积分微分以及惯性环节)的模拟电路。

注意实验接线前必须先将实验箱上电,以对运放仔细调零。

然后断电,再接线。

接线时要注意不同环节、不同测试信号对运放锁零的要求。

在输入阶跃信号时,除比例环节运放可不锁零(G可接-15V)也可锁零外,其余环节都需要考虑运放锁零。

2.利用实验设备完成各典型环节模拟电路的阶跃特性测试,并研究参数变化对典型环节阶跃特性的影响。

必须在熟悉上位机界面操作的基础上,充分利用上位机提供的虚拟示波器与信号发生器功能。

以比例环节为例,此时将Ui连到实验箱 U3单元的O1(D/A 通道的输出端),将Uo连到实验箱 U3单元的I1(A/D通道的输入端),将运放的锁零G连到实验箱 U3单元的G1(与O1同步),并连好U3单元至上位机的并口通信线。

接线完成,经检查无误,再给实验箱上电后,启动上位机程序,进入主界面。

界面上的操作步骤如下:①按通道接线情况完成“通道设置”:在界面左下方“通道设置”框内,“信号发生通道”选择“通道O1#”,“采样通道X”选择“通道I1#”,“采样通道Y”选择“不采集”。

②进行“系统连接”(见界面左下角),如连接正常即可按动态状态框内的提示(在界面正下方)“进入实验模式”;如连接失败,检查并口连线和实验箱电源后再连接,如再失败则请求指导教师帮助。

自动控制原理实验报告分析

自动控制原理实验报告分析

自动控制原理实验报告分析自动控制原理实验报告分析引言:自动控制原理是现代工程领域中的重要学科,它研究的是如何设计和实现能够自动调节和控制系统的方法和技术。

在本次实验中,我们通过搭建一个简单的控制系统,来深入了解自动控制原理的基本概念和应用。

实验目的:本次实验的主要目的是通过实际操作,掌握自动控制原理的基本原理和方法,包括PID控制器的调节和系统的稳定性分析。

实验过程:首先,我们搭建了一个简单的温度控制系统。

该系统由一个加热器、一个温度传感器和一个PID控制器组成。

我们通过调节PID控制器的参数,使得系统能够稳定地控制温度在一个设定值附近。

然后,我们进行了一系列的实验操作。

首先,我们调节了PID控制器的比例、积分和微分参数,观察系统的响应情况。

随后,我们分别增大和减小了设定温度值,观察系统的稳定性和响应速度。

最后,我们还对系统进行了干扰实验,通过给系统施加一个外部干扰,观察系统的抗干扰能力。

实验结果:通过实验,我们得到了一系列的实验结果。

首先,我们发现当PID控制器的比例参数过大时,系统会出现超调现象,温度会波动较大。

而当比例参数过小时,系统的响应速度会变慢,温度调节不及时。

接着,我们发现当积分参数过大时,系统会出现积分饱和现象,温度无法稳定。

而当积分参数过小时,系统的稳定性会变差,温度波动较大。

最后,我们发现当微分参数过大时,系统会对噪声产生较大的响应,温度调节不平稳。

而当微分参数过小时,系统的响应速度会变慢,温度调节不及时。

讨论与分析:通过对实验结果的分析,我们可以得出以下结论:PID控制器的参数调节对系统的稳定性和响应速度有着重要的影响。

比例参数决定了系统对误差的响应程度,积分参数决定了系统对误差的积累程度,微分参数决定了系统对误差变化率的响应程度。

因此,在实际应用中,我们需要根据系统的特点和要求,合理选择PID控制器的参数,以达到最佳的控制效果。

结论:通过本次实验,我们深入了解了自动控制原理的基本概念和应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机械工程控制基础实验报告
实验课程:机械工程控制基础
学生姓名:
学号:
专业班级:
实验一典型环节的电路模拟与软件仿真研究一.实验目的
1.通过实验熟悉并掌握实验装置和上位机软件的使用方法。

2.通过实验熟悉各种典型环节的传递函数及其特性,掌握电路模拟和软件仿真研究方法。

二.实验内容
1.设计各种典型环节的模拟电路。

2.完成各种典型环节模拟电路的阶跃特性测试,并研究参数变化对典型环节阶跃特性的影响。

3.在上位机界面上,填入各个环节的实际(非理想)传递函数参数,完成典型环节阶跃特性的软件仿真研究,并与电路模拟研究的结果作比较。

三.实验步骤
1.熟悉实验箱,利用实验箱上的模拟电路单元,参考本实验附录设计并连接各种典型环节(包括比例、积分、比例积分、比例微分、比例积分微分以及惯性环节)的模拟电路。

注意实验接线前必须先将实验箱上电,以对运放仔细调零。

然后断电,再接线。

接线时要注意不同环节、不同测试信号对运放锁零的要求。

在输入阶跃信号时,除比例环节运放可不锁零(G可接-15V)也可锁零外,其余环节都需要考虑运放锁零。

2.利用实验设备完成各典型环节模拟电路的阶跃特性测试,并研究参数变化对典型环节阶跃特性的影响。

必须在熟悉上位机界面操作的基础上,充分利用上位机提供的虚拟示波器与信号发生器功能。

以比例环节为例,此时将Ui连到实验箱 U3单元的O1(D/A 通道的输出端),将Uo连到实验箱 U3单元的I1(A/D通道的输入端),将运放的锁零G连到实验箱 U3单元的G1(与O1同步),并连好U3单元至上位机的并口通信线。

接线完成,经检查无误,再给实验箱上电后,启动上位机程序,进入主界面。

界面上的操作步骤如下:
①按通道接线情况完成“通道设置”:在界面左下方“通道设置”框内,“信号发生通道”选择“通道O1#”,“采样通道X”选择“通道I1#”,“采样通道Y”选择“不采集”。

②进行“系统连接”(见界面左下角),如连接正常即可按动态状态框内的
提示(在界面正下方)“进入实验模式”;如连接失败,检查并口连线和实验箱电源后再连接,如再失败则请求指导教师帮助。

③进入实验模式后,先对显示进行设置:选择“显示模式”(在主界面左上角)为“X-t”;选择“量程”(在“显示模式”下方)为100ms/div;并在界面右方选择“显示”“系统输入信号”和“采样通道X”。

④完成实验设置,先选择“实验类别”(在主界面右上角)为“时域”,然后点击“实⑤以上设置完成后,按“实验启动”启动实验,动态波形得到显示,直至“持续时间”结束,实验也自动结束,如上述参数设置合理就可以在主界面中间得到环节的“阶跃响应”。

⑥利用“红线数值显示”功能(详见软件使用说明书)观测实验结果;改变实验箱上环节参数,重复⑤的操作;如发现实验参数设置不当,看不到“阶跃响应”全过程,可重复④、⑤的操作。

⑦按实验报告需要,将图形结果保存为位图文件,操作方法参阅软件使用说明书。

3.利用上位机完成环节阶跃特性软件仿真的操作,前①②步骤与2相同,其后操作步骤如下:
③进入实验模式后,先对显示进行设置:选择“显示模式”(在主界面左上角)为“X-t”;选择“量程”(在“显示模式”下方)为100ms/div;并在界面右方选择“显示”“系统仿真”。

④在上位机界面右上角“实验类别”中选择“软件仿真”。

⑤然后点击“实验参数设置”,在弹出的“仿真设置”框内,先作“系统仿真输入信号设定”,选择“输入波形类别”为“周期阶跃信号”,选择“输入波形幅值”为“1V”,选择“输入波形占空比”为50%,选择“输入波形周期”为“1000ms”,选择“输入持续时间”为“1000ms”, 选择波形不“连续”。

以上除必须选择“周期阶跃信号”外,其余的选择都不是唯一的。

要特别注意,除单个比例环节外,对其它环节和系统都必须考虑环节和系统的时间常数,如仍选择“输入波形占空比”为50%,那么“输入波形周期”至少是环节或系统中最大时间常数的6~8倍。

⑥在“仿真设置”框内的“传递函数”栏目中填入各个环节的实际(非理想)传递函数参数。

完成典型环节阶跃特性的软件仿真研究,并与电路模拟研究的结果作比较。

⑦在“仿真设置”框内的“其它设置”栏目中选择“时域仿真”。

⑧以上设置完成后,按“实验启动”启动实验,动态波形得到显示,直至“持续时间”结束,实验也自动结束,如设置合理就可以在主界面中间得到环节的“阶跃响应”。

⑨利用“红线数值显示”功能(详见软件使用说明书)观测实验结果;在“仿真设置”框内的“传递函数”栏目中改变原填入的环节传递函数参数,重复⑧的操作;如发现“系统仿真输入信号设定”中的实验参数设置不当,看不到“阶跃
响应”全过程,可重复⑤、⑧的操作。

⑩按实验报告需要,将图形结果保存为位图文件,操作方法参阅软件使用说明书。

4.分析实验结果,完成实验报告。

四.实验图像及结果分析
1.比例(P)环节的传递函数、方块图、模拟电路和阶跃响应
比例环节的传递函数为:
K s U s U i O =)
()
(
2.积分(I)环节的传递函数、方块图、模拟电路和阶跃响应 积分环节的传递函数为:
Ts
s U s U i O 1
)()(=
其方块图、模拟电路和阶跃响应,分别如图1.2.1、图1.2.2和图1.2.3所
图1.2.2
C I
+u i R 0-+
+R R -+
u o
图1.2.30u o t t
Ts 图1.2.1
1U i s
U o s
12
1212
233112030
()()(1)o U s R R R R Cs R R Cs R =+⎢⎥++=+
1.典型二阶系统
典型二阶系统的方块结构图如图2.1.1所示: 其开环传递函数为o
T K
K s T s K s G 111,)1()(=+=

其闭环传递函数为2
22
2)(n
n n s s s W ωξωω++=,其中,111121,T K T T T K o
o n ==ξω
图2.1.3a
c t
t
图2.1.3c
c t
t
+
图2.1.2200k
200k
r(t)-+
+200k
1u C
200k
R 0
-
+
+
+
C 100k
R 1
-
R x
1u
R
+-+R
c(t)
结果分析:
1) 比例环节 输出与输入信号就是在幅值上发生了个大的放大,而在相位上并没有发生变化。

与理论结果相符合。

2) 积分环节 (1/TS)与1/S 的乘积等于1/TS 2,将1/TS 2拉氏逆变换得到在时域
图2.1.3b
c t
t
的输出函数。

即为t/T这与实验图像几乎完全符合。

3)比例积分集合了比例环节和积分环节的两种图像特点图像曲线先经放大,然后再曲线倾斜。

4)比例微分与1/S的乘积为k/s+kt,在经过逆拉式变换为kt加上
一个瞬时脉冲,所以最终结果还是像比例环节。

5)典型二阶系统实验结果不够理想,可能是线连接的不够准确。

五、实验总结
通过此次实验,我们对几个典型的输入环节输出特性做了进一步了解,而且在实验过程中熟悉了相关学习软件的使用方法,通过自己动手实践对书本理论知识有了更深入的认知,另外,听过小组合作培养了小组成员间团结合作的能力,使我们受益匪浅。

相关文档
最新文档