南理工控制工程基础实验报告

合集下载

控制工程基础仿真实验报告

控制工程基础仿真实验报告

本科生课程论文控制工程基础仿真实验报告实验一一阶系统的单位阶跃响应一、实验目的1、学会使用ATLABM编程绘制控制系统的单位阶跃响应曲线;2、掌握准确读取动态特征指标的方法;3、研究时间常数T对系统性能的影响;4、掌握一阶系统11Ts+时间响应分析的一般方法;5、通过仿真实验,直观了解各典型环节的时间响应和频率响应,巩固课程中所学的基本概念和基本原理;二、实验要求1、输入3个不同的时间常数T,观察一阶系统11Ts+的单位阶跃响应曲线的变化,绘制响应曲线图,并分析时间常数T对系统性能的影响。

2、若通过实验已测得一阶系统11Ts+的单位阶跃响应曲线,试说明如何通过该曲线确定系统的时间常数T。

三、实验内容(一)实验设备计算机;WINDOWS操作系统,并安装Matlab语言编程环境。

(二)实验原理通过对各种典型环节的仿真实验,可以直观的看到各种环节的时间响应和频率响应的图像。

通过对所得图像的分析可以得出各种参数如何影响系统的性能。

四、实验过程在Matlab平台对一阶系统11Ts+的单位阶跃响应进行仿真。

(1)输入3个不同的时间常数T,观察一阶系统单位阶跃响应曲线的变化,绘制响应曲线图,并分析时间常数T对系统性能的影响。

在Matlab中进行操作,其代码如下:1.num=1;2.den=[11];3.g=tf(num,den)4.5.g =6.7.18. -----9. s + 110.11.Continuous-time transfer function.12.13.>> step(g)14.hold on15.>> step(tf(1,[21]))16.>> step(tf(1,[41]))17.>> legend('T=1','T=2','T=4');(2)对于已测得的一阶系统的单位阶跃响应曲线,分析通过该曲线确定系统的时间常数T的方法。

南京理工大学控制工程基础实验报告

南京理工大学控制工程基础实验报告

《控制工程基础》实验报告姓名欧宇涵 914000720206周竹青 914000720215 学院教育实验学院指导老师蔡晨晓南京理工大学自动化学院2017年1月实验1:典型环节的模拟研究一、实验目的与要求:1、学习构建典型环节的模拟电路;2、研究阻、容参数对典型环节阶跃响应的影响;3、学习典型环节阶跃响应的测量方法,并计算其典型环节的传递函数。

二、实验内容:完成比例环节、积分环节、比例积分环节、惯性环节的电路模拟实验,并研究参数变化对其阶跃响应特性的影响。

三、实验步骤与方法(1)比例环节图1-1 比例环节模拟电路图比例环节的传递函数为:K s U s U i O =)()(,其中12R RK =,参数取R 2=200K ,R 1=100K 。

步骤: 1、连接好实验台,按上图接好线。

2、调节阶跃信号幅值(用万用表测),此处以1V 为例。

调节完成后恢复初始。

3、Ui 接阶跃信号、Uo 接IN 采集信号。

4、打开上端软件,设置采集速率为“1800uS”,取消“自动采集”选项。

5、点击上端软件“开始”按键,随后向上拨动阶跃信号开关,采集数据如下图。

图1-2 比例环节阶跃响应(2)积分环节图1-3 积分环节模拟电路图积分环节的传递函数为:ST V V I I O 1-=,其中T I =RC ,参数取R=100K ,C=0.1µf 。

步骤:同比例环节,采集数据如下图。

图1-4 积分环节阶跃响应(3)微分环节图1-5 微分环节模拟电路图200KRV IVoC2CR 1V IVo200K微分环节的传递函数为:K S T S T V V D D I O +-=1,其中 T D =R 1C 、K=12R R。

参数取:R 1=100K ,R 2=200K ,C=1µf 。

步骤:同比例环节,采集数据如下图。

图1-6 微分环节阶跃响应(4)惯性环节图1-7 惯性环节模拟电路图惯性环节的传递函数为:1+-=TS K V V I O ,其中2T R C =,21RK R =-。

控制工程实验报告

控制工程实验报告

《控制工程基础》实验任务实验一 系统时域响应分析1. 实验目的本实验的主要目的是:通过实验使学生进一步理解系统参数对时域响应的影响,理解系统参数与时域性能指标之间的关系,同时了解系统稳定性的充要条件。

本实验的内容覆盖了教材第3、4、5章的内容。

2. 实验内容完成一阶、二阶系统在典型输入信号作用下的响应,求取二阶系统的性能指标,记录试验结果并对此进行分析。

3. 实验要求要求掌握应用MATLAB 软件的相应功能,实现一阶、二阶系统在典型输入信号(包括单位脉冲信号、单位阶跃信号、单位斜坡信号、正弦信号等)作用下的响应;记录实验结果并对结果进行分析,要求用实验结果来分析系统特征参数对系统时间响应的影响。

4. 实验地点工字楼127。

5. 实验过程一、系统的传递函数及其MATLAB 表达 (1)一阶系统 传递函数为:1)(+=Ts Ks G 传递函数的MATLAB 表达: num=[k];den=[T,1];G(s)=tf(num,den) (2)二阶系统 传递函数为:2222)(nn n w s w s w s G ++=ξ传递函数的MATLAB 表达: num=[wn^2];den=[1,2*s* wn ,wn^2];G(s)=tf(num,den) (3)任意的高阶系统传递函数为:nn n n m m m m a s a s a s a b s b s b s b s G ++++++++=----11101110)(传递函数的MATLAB 表达:num=[m m b b b b ,,,110- ];den=[n n a a a a ,,,110- ];G(s)=tf(num,den) 若传递函数表示为:)())(()())(()(1010n m p s p s p s z s z s z s Ks G ------=则传递函数的MATLAB 表达:z=[m z z z ,,,10 ];p=[n p p p ,,,10 ];K=[K];G(s)=zpk(z,p,k) 二、 各种时间输入信号响应的表达 (1)单位脉冲信号响应:[y,x]=impulse(sys,t) (2)单位阶跃信号响应:[y,x]=step(sys,t) (3)任意输入信号响应:[y,x]=lsim(sys,u,t)其中,y 为输出响应,x 为状态响应(可选);sys 为建立的模型;t 为仿真时间区段(可选),u 为给定输入信号(列向量)。

控制工程基础实验报告

控制工程基础实验报告

控制工程基础[英]实验实验一.典型环节的模拟研究:已知一个小车、倒单摆系统非线性系统方程为:( 2.92)0.008x x u =-+20.004sin 36cos n n x θωθωθθ=-+-其中假设 (0)0;(0)0.2x x ==,(0)0;(0); 6.781,n θθπω===(1)要求绘出系统[0,10]t ∈的状态响应曲线(2)并将上述系统在0θ≈的条件下线性化,并要求绘出线性化后系统[0,10]t ∈的状态响应曲线,并与非线性系统状态响应曲线相比较。

(1)下面利用Simulink 对该系统进行仿真如下图所示。

图1.倒单摆系统仿真图在图中已经对主要信号进行了标注下面给出每个未标注信号后加入放大器的增益:008.092.2=阶跃K 008.01-=一阶微分x K 98.45=二阶微分θK通过示波器Scope 和Scope1观察x(t)和θ(t)的波形图如下所示。

图2.x(t)波形图3.θ(t)波形(2)将上述系统在0θ≈的条件下线性化,则方程组改写成如下形式:( 2.92)0.008x x u=-+20.004sin36n n xθωθωθ=-+-在Simulink中对系统仿真如下所示。

图4.线性化后仿真系统通过示波器模块可以观察输出信号,图形如下图所示。

图5.x(t)输出波形图6.θ(t )输出波形实验二.典型系统时域响应动、静态性能和稳定性研究; 已知系统的开环传递函数为2()11G s s s =++(1)利用已知的知识判断该开环系统的稳定性(系统的特征方程根、系统零极点表示法)。

(2)判别系统在单位负反馈下的稳定性,并求出闭环系统在[0,10]t ∈内的脉冲响应和单位阶跃响应,分别绘制出相应响应曲线。

(1)该系统的特征方程的根、零极点表示的求解代码如下:输出结果如下图所示。

图7.特征方程求根结果图8.零极点分布图从图中可以看出两个极点在虚轴上,所以该系统处于临界稳定状态。

控制工程基础实验报告

控制工程基础实验报告

控制工程基础实验报告控制工程基础实验报告引言:控制工程是一门涉及自动化、电子、计算机等多个学科的交叉学科,其实验是培养学生动手能力和实践能力的重要环节。

本篇文章将以控制工程基础实验为主题,探讨实验的目的、过程和结果等方面。

实验目的:控制工程基础实验的目的是让学生通过实践了解控制系统的基本原理和方法,培养其分析和解决问题的能力。

通过实验,学生可以掌握闭环控制系统的设计与调试技巧,加深对控制理论的理解。

实验内容:本次实验的内容是设计一个简单的温度控制系统。

系统由温度传感器、控制器和加热器组成。

温度传感器采集环境温度,控制器根据设定的温度值来控制加热器的工作状态,以维持温度在设定值附近。

实验步骤:1. 搭建实验平台:将温度传感器、控制器和加热器按照实验要求连接起来,确保电路正常工作。

2. 设计控制算法:根据控制系统的要求,设计合适的控制算法。

可以采用比例控制、积分控制或者PID控制等方法。

3. 参数调试:根据实验平台和控制算法的特点,调试控制器的参数,使系统能够快速、稳定地响应设定值的变化。

4. 实验数据采集:通过实验平台上的数据采集器,记录系统的输入和输出数据,以便后续分析和评估。

实验结果:经过实验,我们得到了一组温度控制系统的数据。

通过对这些数据的分析,我们可以评估系统的控制性能和稳定性。

在实验中,我们使用PID控制算法,经过参数调试,得到了较好的控制效果。

系统能够在设定值附近稳定工作,并且对设定值的变化能够快速响应。

实验总结:通过这次实验,我们深入了解了控制工程的基本原理和方法。

实践中遇到的问题和挑战,锻炼了我们的动手能力和解决问题的能力。

实验结果表明,合适的控制算法和参数调试是实现良好控制效果的关键。

控制工程实验的重要性不言而喻,它不仅是理论学习的延伸,更是培养学生实践能力的重要途径。

结语:控制工程基础实验是掌握控制工程理论和方法的重要环节。

通过实践,学生能够更好地理解和应用所学知识,提高解决实际问题的能力。

控制工程基础实验报告

控制工程基础实验报告

实验报告课程名称:______化工原理实验___________指导老师:________________成绩:__________________ 实验名称:_____流体流动阻力测定和离心泵的特性曲线测定______实验类型:________________同组学生姓名:___叶天壮、温茂林_______ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得实验一 流体流动阻力测定一.实验目的和要求。

1) 掌握测定流体流经直管、管件(阀门)时阻力损失的一般实验方法。

2) 测定直管摩擦系数λ与雷诺准数Re 的关系,验证在一般湍流区内λ与Re 的关系曲线。

3) 测定流体流经管件(阀门)时的局部阻力系数ξ。

4) 识辨组成管路的各种管件、阀门,并了解其作用。

二.实验仪器和设备1)实验装置如下图所示1—水箱 2—离心泵 3、10、11、12、13、14—压差传感器 4—温度计 5—涡轮流量计 6—孔板(或文丘里)流量计 7、8、9—转子流量计 15—层流管实验段 16—粗糙管实验段 17—光滑关实验段 18—闸阀 19—截止阀 20—引水漏斗 21、22—调节阀 23—泵出口阀 24—旁路阀(流量校核) a b c d e f g h — 取压点专业:过程装备与控制工程 姓名:____郝春永________学号:____3140104498__ 日期:____2016.12.2__ 地点:____教十1208__实验名称:___流体流动阻力测定____ 姓名:__郝春永___ 学号:______3140104498_________ 2三.实验内容和原理1).雷诺数:Re du ρμ= ⑴2900Vu dπ=⑵ 采用涡轮流量计测流体流量V (m 3/h ) 2).直管阻力摩擦系数λ的测定流体在水平等径直管中稳定流动时,阻力损失为:2122ff p p p l u h d λρρ∆-=== ⑶即22fd p luλρ∆=⑷f p ∆-直管(长度l )的压降。

控制工程实验报告经典控制部分 南理工

控制工程实验报告经典控制部分 南理工

成绩:《控制工程基础》课程实验报告班级:11102002学号:1110200208姓名:汤国苑南京理工大学2013年12月《控制工程基础》课程仿真实验一、 已知某单位负反馈系统的开环传递函数如下 (25分)210()525G s s s =++ 借助MATLAB 和Simulink 完成以下要求:(1) 把G(s)转换成零极点形式的传递函数,判断开环系统稳定性。

MATLAB 程序: clear; num=[10]; den=[1 5 25]; sys=tf(num,den); [Z,P,K]=tf2zp(num,den)零极点形式的传递函数: )43301.05.2)(4401.45.2(10)(j s j s s G ++-+=由于极点均在左半平面,所以开环系统稳定。

(2) 计算闭环特征根并判别系统的稳定性,并求出闭环系统在0~10秒内的脉冲响应和单位阶跃响应,分别绘出响应曲线。

闭环传递函数 35510)(2++=s s s T特征方程355)(2++=s s s q 特征根 211551j s +-=211552j s --= 由于根在左半平面,所以系统稳定。

用simulink 仿真: 脉冲响应:结果:012345678910 -0.04-0.020.020.040.060.080.1仿真时间(s)幅值阶跃响应:结果:123456789100.050.10.150.20.250.30.350.4仿真时间(s )幅值(3) 当系统输入()sin5r t t 时,运用Simulink 搭建系统并仿真,用示波器观察系统的输出,绘出响应曲线。

曲线:二、 (25分)某单位负反馈系统的开环传递函数为:32432626620()3422s s s G s s s s s +++=++++ 频率范围[0.1,100]ω∈ (1) 绘制频率响应曲线,包括Bode 图和幅相曲线(Nyquist 图)。

Matlab 语句: clear;num=[6 26 6 20]; den=[1 3 4 2 2]; sys=tf(num,den); bode(sys,{0.1,100}) Bode 图:Matlab语句:clear;num=[6 26 6 20];den=[1 3 4 2 2];sys=tf(num,den);[z , p , k] = tf2zp(num, den) nyquist(sys)Nyquist图:(2)根据Nyquist判据判定系统的稳定性。

控制工程基础实验报告

控制工程基础实验报告

控制工程基础实验报告实验一 典型环节及其阶跃响应实验目的1.学习构成典型环节的模拟电路。

2.熟悉各种典型环节的阶跃响应曲线,了解参数变化对典型环节动态特性的影响。

3.学会由阶跃响应曲线计算典型环节的传递函数。

4.熟悉仿真分析软件。

实验内容各典型环节的模拟电路如下:1. 比例环节 12)(R R s G -=2. 惯性环节 RC T Tss G =-=1)(3. 积分环节 1221)(R R K C R T Ts Ks G ==+-=4. 微分环节 RCs s G -=)(改进微分环节1)(12+-=Cs R Cs R s G 5. 比例微分环节)41()(212s C R R R s G +-=实验步骤1.用Workbench 连接好比例环节的电路图,将阶跃信号接入输入端,此时使用理想运放;2.用示波器观察输出端的阶跃响应曲线,测量有关参数;改变电路参数后,再重新测量,观察曲线的变化。

3. 将运放改为实际元件,如采用“LM741",重复步骤2。

5.仿真其它电路,重复步骤2,3,4。

实验总结通过这次实验,我对典型环节的模拟电路有了更加深刻的了解,也熟悉了各种典型环节的阶跃响应曲线,了解参数变化对典型环节动态特性的影响;熟悉仿真分析软件。

这对以后的控制的学习有很大的帮助。

实验二 二阶系统阶跃响应实验目的1. 研究二阶系统的两个重要参数阻尼比ξ和无阻尼自然频率ωn 对系统动态性能的影响。

2. 学会根据阶跃响应曲线确定传递函数,熟悉二阶系统的阶跃响应曲线。

实验内容二阶系统模拟电路如图: 1)/(1)(12222++-=RCs R R s C R s G 思考:如何用电路参数表示ξ和ωn实验步骤1. 在workbench 下连接电路图;将阶跃信号接入输入端,用示波器观测记录响应信号;2.取ωn=10rad/s,即令R=100K,C=1uf :分别取ξ=0,0.25,0.5,0.7,1,2, 即取R1=100K,考虑R2应分别取何值,分别测量系统阶跃响应,并记录最大超调量δp%和调节时间ts 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南理工控制工程基础实验报告
成绩:《控制工程基础》课程实验报告班级:学号:姓名:南京理工大学2015年12月《控制工程基础》课程仿真实验一、已知某单位负反馈系统的开环传递函数如下G(s)?10 s2?5s?25借助MATLAB和Simulink完成以下要求:(1) 把G(s)转换成零极点形式的传递函数,判断开环系统稳定性。

>> num1=[10]; >> den1=[1 5 25]; >> sys1=tf(num1,den1) 零极点形式的传递函数:于极点都在左半平面,所以开环系统稳定。

(2) 计算闭环特征根并判别系统的稳定性,并求出闭环系统在0~10秒内的脉冲响应和单位阶跃响应,分别绘出响应曲线。

>> num=[10];den=[1,5,35]; >>
sys=tf(num,den); >> t=[0::10]; >> [y,t]=step(sys,t); >> plot(t,y),grid >> xlabel(‘time(s)’) >> ylabel(‘output’) >> hold on; >> [y1,x1,t]=impulse(num,den,t); >> plot(t,y1,’:’),grid (3) 当系统输入r(t)?sin5t时,运用Simulink搭建系统并仿真,用示波器观察系统的输出,绘出响应曲线。

曲线:二、某单位负反馈系统的开环传递函数为:6s3?26s2?6s?20G(s)?4频率范围??[,100] s?3s3?4s2?2s?2 绘制频率响应曲线,包括Bode图和幅相曲线。

>> num=[6 26 6 20]; >> den=[1 3 4 2 2]; >> sys=tf(num,den); >> bode(sys,{,100}) >> grid on >> clear; >> num=[6 26 6 20]; >> den=[1 3 4 2 2]; >> sys=tf(num,den); >> [z , p , k] = tf2zp(num, den); >> nyquist(sys) 根据Nyquist判据判定系统的稳定性。

P=0 N=0 Z=P+N=0 所以系统稳定根据Bode图求出系统的截止频率?c以及幅值裕度与相位裕度。

Matlab语句:Clear;num=[6 26 6 20]; den=[1 3 4 2 2]; sys=tf(num,den) margin(sys) 图形:
Bode DiagramGm = Inf , Pm = deg (at rad/sec)3020Magnitude (dB)Phase
(deg)100-10-20-300-45-90-135-18010-210 -1100101102Frequency (rad/sec) 图可得截止频率=/s,幅值裕度无穷大,相位裕度为三、某单位负反馈系统如下图所示,(1) 当比例控制器增益K=1时,在Simulink中搭建系统,当输入为单位阶跃函数时,用示波器观察系统的输出,绘出响应曲线,并求出系统在单位阶跃输入下的超调量(?%)和峰值时间(tp)。

>> num=[10]; den=[1 5 10]; >>
[num2,den2]=cloop(num,den,-1); >> sys2=tf(num2,den2); >> [y,t,x]=step(sys2); >> mp=max(y); >> tp=spline(y,t,mp); tp = >> cs=length(t); >> yss=y(cs) yss = >> ct=(mp-yss)/yss ct = 可得:系统阶跃响应的超调量为%。

系统的峰值时间tp为。

绘制当K?0??变化时,闭环系统的根轨迹。

>> clear; >> num=[10]; >> den=[1 5 10]; >> sys=tf(num,den); >> [r,K]=rlocus(sys); >> rlocus(sys) (2) 根据以上根轨迹,为使闭环系统在阶跃输入下超调量?%?30%且稳态误差ess?,确定控制器增益K的范围。

稳态误差公式=可知,要使 4 而下图可知,当K=时,?%=% >30%且随K 增大而增大,所以不存在符合的K值。

四、若某单位反馈控制系统的开环传递函数为G(s)?K s(s?1)(?1) 借助MATLAB和控制工具箱设计串联滞后校正网络,使校正后系统的静态
速度误差系数Kv?3,且相角裕度不低于450。

Matlab语句:>> clear; num=[3]; den=[ 1 0]; sys=tf(num,den); margin(sys) Bode图:Bode DiagramGm = dB (at rad/sec) , Pm = deg (at rad/sec)10050System: sysFrequency (rad/sec): (dB): (dB)0-50-100-150-90-135Phase
(deg)-180-225-270System: sysFrequency (rad/sec): (deg): -13010-210-1100101102Frequency
(rad/sec) = 上图得20log= =,z=*=,p=矫正后开环传递函数为G(s)=验证此时的相位裕度和幅值裕度。

Matlab程序:num=[3]; den=[ 1 0];
[num2,den2]=series(num,den,[ 1],[ 1]); G1=tf(num,den); G2=tf(num2,den2); figure(2); margin(G1); grid on hold on margin(G2); grid on hold on [Gm1,Pm1,Wcg1,Wcp1]=margin(G1)
[Gm2,Pm2,Wcg2,Wcp2]=margin(G2) 此时相角裕度为45度,符合要求。

Bode DiagramGm = 14 dB (at rad/sec) , Pm = deg (at rad/sec)150100System: G2Frequency (rad/sec): (dB): - (dB)Phase
(deg)500-50-100-150-90-135-180-225-270 System: G2Frequency (rad/sec): (deg): -13510-410-310-210-1100101102Frequen cy (rad/sec) 绘制系统在校正前后的单位阶跃响应曲线,计算校正前后的时域性能指标并进行对比分析。

校正前单位阶跃响应:num=[3]; den=[ 1 0]; G1=tf(num,den); step(feedback(G1,1),10) grid on 结果如下:Step : untitled1Time (sec): : (sec)678910 可见峰值时间为,于响应不稳定所以无超调量和调节时间校正后Step : untitled1Time (sec): : : untitled1Time (sec): : : untitled1Time (sec): : : untitled1Time
(sec): : (sec) 图可看出,超调量=27%,峰值时间调节时间为。

为,上升时间为,此可看出,采用串联滞后网络校正系统后截止频率变小,单位阶跃响应的峰值时间增大,并且响应变为稳定。

实验总结:以前虽然学习过MATLAB,但于课程结束后使用的机会比较少,对MATLAB的使用已有些生疏,经过这次试验,加强了对MATLAB的熟悉程度,也学会了用MATLAB涉及系统和绘制BODE图。

另外也让我对控制工程课程上的一些理论知识有了更加形象的认识,要想更好地掌握一门知识还是需要理论和实践相结合,另外学习课程相关工具也是十分重要的,只有理论和实践相结合,并熟练的使用相关工具,才能更好地把所学运用到生活中去解决问题。

相关文档
最新文档