BP神经网络计算的题目

合集下载

BP神经网络作业

BP神经网络作业

•二、网络训练失败的可能性较大
a 从数学角度看,BP算法为一种局部搜索的优化方法,但它要解决的问题为求解复 杂非线性函数的全局极值,因此,算法很有可能陷入局部极值,使训练失败; b 网络的逼近、推广能力同学习样本的典型性密切相关,而从问题中选取典型样本 实例组成训练集是一个很困难的问题。
2012-11-6
x1
x2 … xn
2012-11-6
o1
o2 …
… … … … 输出层

om
输入层
隐藏层
7
约定 :
输出层的层号为该网络的层数:n层网络,或n级网 络。 第j-1层到第j层的联接矩阵为第j层联接矩阵,输出 层对应的矩阵叫输出层联接矩阵。今后,在需要 的时候,一般我们用W(j)表示第j层矩阵。
W(1)
17
BP网络模型的优化策略
• • • • • (1)学习因子h 的优化 采用变步长法根据输出误差大小自动调整学习因子,来减少迭代次数和加快收敛速度。 h =h +a×(Ep(n)- Ep(n-1))/ Ep(n) a为调整步长,0~1之间取值 (2)隐层节点数的优化 隐 节点数的多少对网络性能的影响较大,当隐节点数太多时,会导致网络学习时间 过长,甚至不能收敛;而当隐节点数过小时,网络的容错能力差。利用逐步回归分析 法并进行参数的显著性检验来动态删除一些线形相关的隐节点,节点删除标准:当由 该节点出发指向下一层节点的所有权值和阈值均落于死区(通常取±0.1、±0.05等区 间)之中,则该节点可删除。最佳隐节点数L可参考下面公式计算: L=(m+n)1/2+c (7) m-输入节点数;n-输出节点数;c-介于1~10的常数。 (3)输入和输出神经元的确定 利用多元回归分析法对神经网络的输入参数进行处理,删除相关性强的输入参数,来 减少输入节点数。 (4)算法优化 由于BP算法采用的是剃度下降法,因而易陷于局部最小并且训练时间较长。用基于生 物免疫机制地既能全局搜索又能避免未成熟收敛的免疫遗传算法IGA取代传统BP算法 来克服此缺点。

人工神经网络例题

人工神经网络例题

1、什么是BP 网络的泛化能力?如何保证BP 网络具有较好的泛化能力?(5分)解:(1)BP网络训练后将所提取的样本对中的非线性映射关系存储在权值矩阵中,在其后的工作阶段,当向网络输入训练时未曾见过的非样本数据时,网络也能完成由输入空间向输出空间的正确映射。

这种能力称为多层感知器的泛化能力,它是衡量多层感知器性能优劣的一个重要方面。

(2)网络的性能好坏主要看其是否具有很好的泛化能力,而对泛化能力的测试不能用训练集的数据进行,要用训练集以外的测试数据来进行检验。

在隐节点数一定的情况下,为获得更好的泛化能力,存在着一个最佳训练次数t0,训练时将训练与测试交替进行,每训练一次记录一训练均方误差,然后保持网络权值不变,用测试数据正向运行网络,记录测试均方误差,利用两种误差数据得出两条均方误差随训练次数变化的曲线,测试、训练数据均方误差曲线如下图1所示。

训练次数t0称为最佳训练次数,当超过这个训练次数后,训练误差次数减小而测试误差则开始上升,在此之前停止训练称为训练不足,在此之后称为训练过度。

图1. 测试、训练数据均方误差曲线2、什么是LVQ 网络?它与SOM 网络有什么区别和联系?(10 分)解:(1)学习向量量化(learning vector quantization,LVQ)网络是在竞争网络结构的基础上提出的,LVQ将竞争学习思想和监督学习算法相结合,减少计算量和储存量,其特点是网络的输出层采用监督学习算法而隐层采用竞争学习策略,结构是由输入层、竞争层、输出层组成。

(2)在LVQ网络学习过程中通过教师信号对输入样本的分配类别进行规定,从而克服了自组织网络采用无监督学习算法带来的缺乏分类信息的弱点。

自组织映射可以起到聚类的作用,但还不能直接分类和识别,因此这只是自适应解决模式分类问题中的第一步,第二步是学习向量量化,采用有监督方法,在训练中加入教师信号作为分类信息对权值进行细调,并对输出神经元预先指定其类别。

回归分析和BP神经网络模型练习

回归分析和BP神经网络模型练习

回归分析和神经网络模型练习——基于R语言##设置工作路径setwd('D:\\LuckyDog')#读取数据Data<-read.csv('R语言数据.csv',header=FALSE,,stringsAsFactors=FALSE)[c(-1,-2),] colnames(Data)<-c('Time','SSE','Growth','IR','CPI','M2','M1','X','M','FDI','REER','Foreign') Time<-paste0(substr(Data$Time,1,4),'.',substr(Data$Time,6,7))temp<-apply(Data[,-1],2,as.numeric)Data<-as.data.frame(temp)rownames(Data)<-Time#保存数据(时间轴有小问题,对数据没有影响)write.csv(Data,"RData.csv",s=TRUE)##检查变量间的相关性require(corrgram)require(car)options(digits=2)cor(Data)#计算相关系数#因变量与各自变量之间的关系图for(i in2:11){title<-paste0("SSE与",colnames(Data)[i],"的二元关系")png(paste0(title,'.png'),width=700,height=600)scatterplot(SSE~Data[,i],data=Data,spread=FALSE,lty=2,pch=19,xlab=colnames(Data)[i])title(title)dev.off()}#数据的散点图矩阵dev.new()scatterplotMatrix(Data,spread=FALSE,lty=2,pch=20,cex=0.1,main="数据的散点图矩阵")#数据间的相关关系图corrgram(Data,lower.panel=panel.shade,upper.panel=panel.pie,text.panel=panel.txt,main="数据间的相关关系图")##多元线性回归fit1<-lm(SSE~Growth+IR+CPI+M2+M1+X+M+FDI+REER+Foreign,data=Data)summary(fit)#将变量foreign转化为其平方项fit2<-lm(SSE~Growth+IR+CPI+M2+M1+X+M+FDI+REER+I(Foreign^2),data=Data)summary(fit2)#将变量X,M,foreign分别转化为其平方项fit3<-lm (SSE ~Growth +IR +CPI +M2+M1+I (X ^2)+I (M ^2)+FDI +REER +I (Foreign ^2),data =Data )summary (fit3)#将结果输出到outcome.doc#sink("outcome.doc",append =TRUE,split =TRUE)#summary(fit3)#AIC,BIC 准则判断三个模型拟合好坏(指标越小越好)AIC (fit1,fit2,fit3)BIC (fit1,fit2,fit3)#对fit3生成评价模型拟合情况的四幅图dev.new ()par (mfrow =c (2,2))plot (fit3)Call:lm(formula =SSE ~Growth +IR +CPI +M2+M1+I(X^2)+I(M^2)+FDI +REER +I(Foreign^2),data =Data)Residuals:Min 1Q Median 3Q Max -901.52195-315.18587-66.52143260.556221519.90405Coefficients:Estimate Std.Error t value Pr(>|t|)(Intercept)-10901.31459191461005271.5636725478871-2.067950.04158091*Growth 89.242872504368931.3448989843775 2.847130.00548969**IR -143.767694734867570.2548563880102-2.046370.04370374*CPI 93.949657629355245.7121742067872 2.055240.04281991*M2-77.252789604684833.2406560718311-2.324050.02242680*M140.062978773398513.7880195934089 2.905640.00463512**I(X^2)0.00020247133590.0001139036851 1.777570.07892986.I(M^2)-0.00044115559280.0001666573468-2.647080.00961917**FDI 8.9724175649034 2.7704019845048 3.238670.00169474**REER 34.41054967081669.7916449456622 3.514280.00069890***I(Foreign^2)-0.00000036862410.0000001059603-3.478890.00078512***---Signif.codes:0‘***’0.001‘**’0.01‘*’0.05‘.’0.1‘’1Residual standard error:490.3584on 88degrees of freedom Multiple R-squared:0.501946,Adjusted R-squared:0.4453489F-statistic:8.868766on 10and 88DF,p-value:0.0000000006470952df AIC fit1121537.337fit2121523.922fit3121519.926df BIC fit1121568.479fit2121555.064fit3121551.068#残差自相关检验durbinWatsonTest (fit3)#不相关#多重共线性检验(TURE 为可能存在多重共线问题)vif (fit3)>5##变量选择#向后回归require (MASS )stepAIC (fit3,direction ="backward")#结果显示经过变量变换后的fit3不需变量选择#全子集回归第一幅(左上):若因变量与自变量线性相关,那残差值与拟合值就没有任何系统关联。

基于神经网络的学习练习题

基于神经网络的学习练习题

基于神经网络的学习练习题某BP 神经网络如下图。

其中输入为⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡3121x x ; 期望输出为⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡05.095.021d d ;第一层权值矩阵为⎢⎣⎡−=211W ⎥⎦⎤02;第一层阈值⎥⎦⎤⎢⎣⎡−=13θ 第二层权值矩阵为⎢⎣⎡=012W ⎥⎦⎤−21;第二层阈值⎥⎦⎤⎢⎣⎡=32r传输函数均为Sigmoid 函数,试训练该网络。

1 用最基本的BP 算法训练网络1.1 只改变学习率,比较学习率的改变对最后训练结果的影响 步骤:1)程序设计:第一步:定义输入向量和目标向量 p=[1 3]';t=[0.95 0.05]';第二步:创建BP 网络,设置训练函数为最速下降BP 算法 netbp=newff([-1 1;-1 1],[2 2],{'logsig' 'logsig'},'traingd');第三步:初始化权值阈值 netbp.IW{1}=[1 2;-2 0]; netbp.LW{2}=[1 1;0 -2]; netbp.b{1}=[-3 1]'; netbp.b{2}=[2 3]';第四步:设置训练函数参数netbp.trainParam.lr=1; //设置学习率netbp.trainParam.goal=0.0001; //设置最后达到的均方误差为0.0001 netbp.trainParam.epochs=5000; //设置最大训练步长d1d2第五步:训练神经网络 [netbp,tr]=train(netbp,p,t);程序运行的结果如下:经过346步运算达到设定的均方误差范围内。

最后输出⎥⎦⎤⎢⎣⎡=0.05140.9640Out训练后权值⎢⎣⎡= 1.5291-1.01071W ⎥⎦⎤1.41282.0322 ⎢⎣⎡= 1.4789-0.77132W ⎥⎦⎤2.9992-0.77392)分别改变学习率为1.5和0.5,观察结果 学习率5.1=α 5.0=α训练步长 263 786输出⎥⎦⎤⎢⎣⎡=0.05160.9640Out⎥⎦⎤⎢⎣⎡=0.05160.9640Out第一层权值 ⎢⎣⎡= 1.6030-1.01301W ⎥⎦⎤1.19092.0391⎢⎣⎡= 1.6078-1.01351W ⎥⎦⎤1.17662.0405第二层权值 ⎢⎣⎡= 1.4443-0.7744 2W ⎥⎦⎤3.1252-0.7806 ⎢⎣⎡= 1.4343-0.77512W ⎥⎦⎤3.1505-0.7816误差性能曲线结论1:学习率增大,所需的训练步长变短,即误差收敛速度快。

BP神经网络matlab例题集合

BP神经网络matlab例题集合

只需模仿即可。

就能轻松掌握。

1、BP网络构建(1)生成BP网络net newff PR S S SNl TF TF TFNl BTF BLF PF=(,[1 2...],{ 1 2...},,,)R⨯维矩阵。

PR:由R维的输入样本最小最大值构成的2S S SNl:各层的神经元个数。

[1 2...]TF TF TFNl:各层的神经元传递函数。

{ 1 2...}BTF:训练用函数的名称。

(2)网络训练net tr Y E Pf Af train net P T Pi Ai VV TV=[,,,,,] (,,,,,,)(3)网络仿真=[,,,,] (,,,,)Y Pf Af E perf sim net P Pi Ai TBP网络的训练函数训练方法训练函数梯度下降法traingd有动量的梯度下降法traingdm自适应lr梯度下降法traingda自适应lr动量梯度下降法traingdx弹性梯度下降法trainrpFletcher-Reeves共轭梯度法traincgfPloak-Ribiere共轭梯度法traincgpPowell-Beale共轭梯度法traincgb量化共轭梯度法trainscg拟牛顿算法trainbfg一步正割算法trainossLevenberg-Marquardt trainlmBP网络训练参数训练参数参数介绍训练函数net.trainParam.epochs最大训练次数(缺省为10)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlm net.trainParam.goal训练要求精度(缺省为0)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlm net.trainParam.lr学习率(缺省为0.01)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlm net.trainParam.max_fail 最大失败次数(缺省为5)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlmnet.trainParam.min_grad 最小梯度要求(缺省为1e-10)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlmnet.trainParam.show显示训练迭代过程(NaN表示不显示,缺省为25)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlmnet.trainParam.time 最大训练时间(缺省为inf)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlm net.trainParam.mc 动量因子(缺省0.9)traingdm、traingdxnet.trainParam.lr_inc 学习率lr增长比(缺省为1.05)traingda、traingdxnet.trainParam.lr_dec 学习率lr下降比(缺省为0.7)traingda、traingdxnet.trainParam.max_perf_inc 表现函数增加最大比(缺省为1.04)traingda、traingdxnet.trainParam.delt_inc 权值变化增加量(缺省为1.2)trainrpnet.trainParam.delt_dec 权值变化减小量(缺省为0.5)trainrpnet.trainParam.delt0 初始权值变化(缺省为0.07)trainrpnet.trainParam.deltamax 权值变化最大值(缺省为50.0)trainrpnet.trainParam.searchFcn 一维线性搜索方法(缺省为srchcha)traincgf、traincgp、traincgb、trainbfg、trainossnet.trainParam.sigma 因为二次求导对权值调整的影响参数(缺省值5.0e-5)trainscg mbda Hessian矩阵不确定性调节参数(缺省为5.0e-7)trainscg net.trainParam.men_reduc 控制计算机内存/速度的参量,内存较大设为1,否则设为2(缺省为1)trainlmnet.trainParam.mu μ的初始值(缺省为0.001)trainlm net.trainParam.mu_dec μ的减小率(缺省为0.1)trainlm net.trainParam.mu_inc μ的增长率(缺省为10)trainlmnet.trainParam.mu_maxμ的最大值(缺省为1e10) trainlm2、BP 网络举例 举例1、%traingd clear; clc;P=[-1 -1 2 2 4;0 5 0 5 7]; T=[-1 -1 1 1 -1];%利用minmax 函数求输入样本范围net = newff(minmax(P),[5,1],{'tansig','purelin'},'trainrp');net.trainParam.show=50;% net.trainParam.lr=0.05; net.trainParam.epochs=300; net.trainParam.goal=1e-5; [net,tr]=train(net,P,T);net.iw{1,1}%隐层权值 net.b{1}%隐层阈值net.lw{2,1}%输出层权值 net.b{2}%输出层阈值sim(net,P)举例2、利用三层BP 神经网络来完成非线性函数的逼近任务,其中隐层神经元个数为五个。

神经网络BP算法案例

神经网络BP算法案例

的记录是被我们所忽略的。
所有满足最小支持度3的1项频繁集如下 (其中巧克力、 香蕉、葡萄的支持度为1,不满足条件)
支持度
销售内容
3
4 4 5 7
冰淇淋
咖啡 果酱 牛奶 面包
所有满足最小支持度3的2项频繁集 如下 :
支持度 3 销售内容 面包 咖啡 面包 冰淇淋 面包 牛奶 面包 果酱
递 归 执 行
的,比如在一个超市中会存在这样的概念 层次:蒙牛牌牛奶是牛奶,伊利牌牛奶是 牛奶,王子牌饼干是饼干,康师傅牌饼干 是饼干等。
• 可以用有向无环图 (directed acyclic graph ) 表示概念层次,如下:
从有向无环图 (directed acyclic graph )可以 看出—— 如果我们只是在数据基本层发掘关系, {蒙牛牌牛奶,王子牌饼干},{蒙牛牌牛 奶,康师傅牌饼干},{伊利牌牛奶,王子 牌饼干},{伊利牌牛奶,康师傅牌饼干} 都不符合最小支持度。不过如果我们上升一 个层级,可能会发现{牛奶,饼干} 的关 联规则是有一定支持度的。这样我们就可以 在较高的概念层次上发现关联规则。
w14 4 w46 6 5 w35
. . ..
w34
w56
. . .
3
图1 两层前馈神经网络
2
神经网络BP算法案例
• 首先算出单元4、5、6的输入、输出,具体结果见 表1,然后计算4、5、6的误差,见表2;NT中每条 有向加权边的新权重、每个隐藏层与输出层单元 的新偏置见表3。
图2 两层前馈神经网络
W35
0.2+0.9×(-0.0065)×1=0.194
0.1+0.9×0.1311=0.218 0.2+0.9×(-0.0065)=0.194

人工神经网络试题及答案

人工神经网络试题及答案

The weight updating rules of the perceptron and Kohonen neural network are _____.The limitation of the perceptron is that it can only model linearly separable classes. The decision boundary of RBF is__________linear______________________whereas the decision boundary of FFNN is __________________non-linear___________________________.Question Three:The activation function of the neuron of the Perceptron, BP network and RBF network are respectively________________; ________________; ______________.Question Four:Please present the idea, objective function of the BP neural networks (FFNN) and the learning rule of the neuron at the output layer of FFNN. You are encouraged to write down the process to produce the learning rule.Question Five:Please describe the similarity and difference between Hopfield NN and Boltzmann machine.相同:Both of them are single-layer inter-connection NNs.They both have symmetric weight matrix whose diagonal elements are zeroes.不同:The number of the neurons of Hopfield NN is the same as the number of the dimension (K) of the vector data. On the other hand, Boltzmann machine will have K+L neurons. There are L hidden neuronsBoltzmann machine has K neurons that serves as both input neurons and output neurons (Auto-association Boltzmann machine).Question Six:Please explain the terms in the above equation in detail. Please describe the weight updating equations of each node in the following FFNN using the BP learning algorithm. (PPT原题y=φ(net)= φ(w0+w1x1+w2x2))W0=w0+W1=w1+W2=w2+Question Seven:Please try your best to present the characteristics of RBF NN.(1)RBF networks have one single hidden layer.(2)In RBF the neuron model of the hidden neurons is different from the one of the output nodes.(3)The hidden layer of RBF is non-linear, the output layer of RBF is linear.(4)The argument of activation function of each hidden neuron in a RBF NN computes the Euclidean distance between input vector and the center of that unit.(5)RBF NN uses Gaussian functions to construct local approximations to non-linear I/O mapping.Question Eight:Generally, the weight vectors of all neurons of SOM is adjusted in terms of the following rule:w j(n+1)=w j(n)+η(n)h i(x)(d i(x)j)(x(n)-w j(n)).Please explain each term in the above formula.: weight value of the j-th neuron at iteration n: neighborhood functiondji: lateral distance of neurons i and j: the learning rate: the winning neuron most adjacent to XX: one input example。

BP(BackPropagation)反向传播神经网络介绍及公式推导

BP(BackPropagation)反向传播神经网络介绍及公式推导

5. 链式法则
如果函数 u (t )及 v (t )都在 t 点可导,复合函数 z f(u,v)在对应点(u,v)具 有连续偏导数,z 在对应 t 点可导,则其导数可用下列公式计算:
dz z du z dv dt u dt v dt
6. 神经元误差
定义 l 层的第 i 个神经元上的误差为 il 即: (7)
5
附:激活函数
非线性: 当激活函数是线性的时候,一个两层的神经网络就可以逼近基 本上所有的函数了。但是,如果激活函数是恒等激活函数的时候(即 f(x)=x) ,就不满足这个性质了,而且如果 MLP 使用的是恒等激活函数, 那么其实整个网络跟单层神经网络是等价的。 可微性: 当优化方法是基于梯度的时候,这个性质是必须的。 单调性: 当激活函数是单调的时候,单层网络能够保证是凸函数。 f(x)≈x: 当激活函数满足这个性质的时候, 如果参数的初始化是 random 的很小的值, 那么神经网络的训练将会很高效; 如果不满足这个性质, 那 么就需要很用心的去设置初始值。 输出值的范围: 当激活函数输出值是 有限 的时候,基于梯度的优化方 法会更加 稳定,因为特征的表示受有限权值的影响更显著;当激活函数 的输出是 无限 的时候, 模型的训练会更加高效, 不过在这种情况小, 一 般需要更小的 learning rate.
l i

j
l 1 E x j x lj 1 xil

j
x lj 1 x
l i
jl 1 ,其中 l L
将公式(1) x j
l 1

w
k
l 1 l kj k
y blj 1
w
k
l 1 kj
f( xkl ) blj 1 ,对 x i 的求导
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档