小学奥数仁华思维导引解析六年级
旧版华数思维导引补充7:六年级第17讲赛况分析

第17讲 赛况分析内容概述赛况分析是一些学校近年考试的热点,我们再给出几例,希望大家在掌握了下面的知识点以后,多多练习.常见的体育比赛模式:N 个队进行淘汰赛,至少要打N-1场比赛:每场比赛淘汰一名选手;N 个队进行循环赛,一共要打2N N N-1C 2=()场比赛:每个队要打N-1场比赛. 循环赛中常见的积分方式:①两分制:胜一场得2分,平一场得1分,负一场得0分;核心关系:总积分=2×比赛场次;②三分制:胜一场得3分,平一场得1分。
负一场得0分;核心关系:总计分=3×比赛场次一1×赛平场次.典型问题2.一次围棋比赛共有10名选手参加,他们分别来自甲、乙、丙三个队,每队不少于2人,每个人都与其他的9人比赛,每盘胜者得2分,负者得0分,平居各得1分.结果乙队平均得分为5.2分,丙队平均分17分,试求甲队的平均分.【分析与解】 因为每队的总分均为整数,所以乙队为5人,那么乙队的总为26分.考虑丙队的情况:选手所能得到的最高分为18分,而丙队中的最高不少于17分.当最高分为18分,次高分至多为16分,第三名至多14分,……,前两名的平均分为17分. 当最高分为17分,次高分至多为17分,第三名至多14分,……,第一名/前两名的平均分为17分.因为丙队不少于2人,所以丙队2人,则丙队的总分为34分.所以甲队有10-5-2=3人,总分为210C 2263430⨯--=分,所以平均分为30÷3=10分.4.五支足球队进行单循环赛,每两队之间进行一场比赛.胜一场得3分,平一场得1分,负一场得0分.最后发现各队得分都不相同,第三名得了7分,并且和第一名打平,那么这五支球队的得分从高到低依次是多少?【分析与解】 每个队各赛4场,共赛5×4÷2:10场.第三名得7分,与第一名打平,那么剩下的3场,得6分,只能是3+3+0,即第二名的比赛输了,所以只能是1+0+/+3+3.那么,第一名为/+3+1+3+3,第二名为0+/+3+3+3,第三名为1+0+/+3+第四名为0+0+0+/+3,第五名为0+0+0+0+/.所以,这五支球队的得分从高到低依次是10、9、7、3、0.6. 有五支足球队进行循环赛,每两个队之间进行一场比赛,胜者得3分,平者各得1分,负者得0分.现在还有一些比赛没有进行,各个队目前的得分恰好是五个连续的偶数,其中甲队积2分,并且负于乙队,那么乙队现在积多少分?【分析与解】 最高分为3×4=12,而赛完后5支队伍的最高分为25C ×3=30分,因为出现2分,所以5个连续的偶数,可能是0、2、4、6、8;2、4、6、8、10.但是,2+4+6+8+10=30分,而还有些比赛没有进行,所以只能是0、2、4、6、8. 甲:1+0+1+1+~,乙:3+1+~,丙:1+~,丁:1+~,戊:~所以,只能是戊为0分.①当乙为8分时,只能是3+/+1+1+3,因为丙、丁在我们看来完全等价,当丁为6分时1+1+~+1+3,此时丙只能是4分,只能是1+1+~+1+1,而这时戊一定有得分.所以不满足.②当乙为6分时,只能是3+/+0+0+3,当丙为8分时1+3+/+1+3,此时丁只能是4分,但是只能是1+3+1+/+~,超过4分.所以不满足.③当乙为4分时,只能是3+/+l+0+~,当丁为8分时l+3+1+/+3,此时丙只能为6分,为1+1+/+l+3.满足.所以,乙的得分为4.8.五支足球队A、B、C、D、E进行单循环比赛,即每两队之间都比赛一场.每场比赛胜者得2分,负者得0分,平局各得1分.已知:(1)4队获得了冠军;(2)B队、C队和D队的得分相同,且无其它并列情况;(3)在C队参加的比赛中,平局只有一场,那场的对手是B队;(4)D队战胜了A队.请你根据上述信息,分析出每场比赛的胜、平、负情况.【分析与解】根据已知条件可以画出如下赛况图:C×2=20分.因为每场比赛2个队共得2分,所以5个队的总分为25(1)当B、C、D均得2分,而A最多得到6分,E最少得到20-2×3-6=8分,超过A,而A是冠军,所以不满足;(2)当B、C、D均得3分,此时E的得分最少为20-3×3-6=5分,所以此时只能是A得6分,B、C、D 均得3分,E得5分.于是,A的另外三场均是A胜E于是只能一场平,另外的2场为胜.由条件3知,E不可能与C平,所以只能是与B或D打平.①当E与D平,有,有如左下图的赛况表.②当E与B平,有,有如右上图的赛况表.(3)当B、C、D均得4分,因为C只能平一场得到1分,而其他情况,要么得到2分,要么不得分,所以不可能;(4)当B、C、D均得5分,那么只能是A得5分,E得0分,不满足.综上所述,有2种赛况表满足,。
仁华思维导引解析8讲:几何图形认知

THSHtWWff. fSttfiae VHMll VM3mI«S^S> t*t»<l ☆ I.b & :cttJiati*nii tmut. e* A ・ LU AR . S9KM*/»cM»an*•■鼻《••4・ C4k» --■ . euyAVM ■细r«»<i ☆I ■・":•汁,AS«・GH ・《 n-tAftVMII. SBIKWItta■aswwtn”人«nai«・n2个o ••■■■SA[«々*■] ☆ ☆K ■・•】・ H3WMi*eT<XJW. UBS 初•・ WRM —tt*Pi It^tfwnMUt WnW- ■i ・MH ■汪 RH 吟費・"f FRi »ix ・i -ttArtfl. natTm. ■«£2r 正乃DST ・ AfleRii^tum. ■!我 £W»«4>O. IMdCWri. ・*・f ■ lllMl -iltftCTJB. 妞方*上敬十 14KI •兰叙•*, 卄代I It«*«»<• •£徘MM 巧2下■,QHt 柑E*••丽4*4x ・》«««/■■«,■ tfl»«£rftwr. MW ・r ・・4 ・2»eMR ・fiT ・.■«" £杠z 心IW 卜HI孔Kom ☆4.tfWMinffiAAO ®^0 ® △ FMM 小 N 4 4 ZHIRIH 心9l«»«l ☆ ☆弘・U・■ ■自■- S-ffiCfA-MIft ■»$><*- rt««e-^atw金一<MM*卜匸力dtmr- nelwr* ••VMIS* ■ ■ t* 2^ ETamAteft ft 2• 3■•n・i ifiUKKM. wm lyb ・・0^14- ■冲、■m&9S7・・ > B. X. HU只**«Mil «*<u a・ fi. 5?*we> mu^uxe^iiUK^*nu± >e*n*T^BUe<-S・・・GZA・B・t・a处*4輸1. 1 4. s. Mtft- WfltftIH-wHtnSl・Bs4 «*evhii«Bx?»»-w»««. fta»«n*ft±BmtCMVTkIX MM AfSii*tr< iaB4R2R< 十:.:WttAR, snium—i jtM—■丰*从A««*. «i>Tii- • A •只lUM%■•}«• H CS«PiSw->-4. ・gr—i7y Mmftan-..■•»,niM rawaaVKL "MlWKlvrim*、t«*<l ☆7- ab7nM4w«. *~f^*2muNnHr ■丄atc*M«*n.9i»«^vi nrcio. • d ®weuM-+iw». MTHj.4<tttMjivnt-ul4A*at ☆☆L EtiMx# "rXirSitayh 呎最■・机》・4 «IUT*«i£Q><l4^U«IHxtt-1xUtll -»a- <H1■T^HNEnV "VIlW2/V-«tHBWKUm *<¥74WIUT»4a ms 找射丄■衣粉WSm: .qiHHlkS依■*■(«-t«a£B -WMhM4^=iDWV4*Kn -Wir-WT® g:mr・>aix・c—丄岑•七・■«i^Mt*fM(MU74^l«9irr«SH 3te—”*fJMU?•卜•BHTVtfZ祢卑yRFUV+卯•fW>9*^:4ilA*・^BK+-V苹Tit■01 eiI””lH.glMKMW «M«a«n«■・ W < '佢lea丄•审*W4<ltf ・・fel44«*<H -MU -*«44avW:fW(T«tH«ai ■■ WWeVZH '•«•(!>■甘■■vilfi IK««IZQ A OI < I ♦ Is5*aW«M«W ■y. 'FW I W积WC fc.XF 击"Ffl. •♦|4A,・1 ☆☆n. «Et^«iB3tmimiE:m. XMtMta <.«.*. ii. M m£fr£r»«M«»«9b«卜DM.r1*1nafrbDr»・《■”卜EM7WW>"gpf,aRWl ■■“■wi”• I aiw.mfr-fl "P卄卄,■« + 3号nMUWBranMX ”"OmMOtMT^d亠亠〜2.・5・1儿》4・“+4・^・II. e»-»tM・nn・TT >>iuw0f ffioat-tiQwwuMti 2上匕kK・■WaAIMK・i ・W・ >i.AI(•■•■I fliTB. m«M4a金N*er ■益««•上annH'EWiWttincch i»mx0«M-上MiFbe «««*■• M■上■■C«*+S枷h(M-& ftV ■••MhMUetr卜ZA*九«*-o-(*<*<1 ☆☆☆M. 一•4**A 篌蓦vM—««I••匕■} snvm n>»・RffiR♦•丄fnaa lUVCliHac育W・-c-A-r-r*9-*-r- 4«K*7・, l*4*al ☆☆☆Ik «■< IB - £RMA>c・a❷.KC<0© BPtfACZHfcCe. - %iafi/dC'i«e.知liWw—Mimi■祈t ■ueas苔9t・»v,BZAMK as斤MMTWMM,HwmusffSMM,Ktwtl■上■ mwnww-fi dJM.AleiAwv] «ii«mu-ABi»eti*%u- KWUIHWK■二IIC>4U・ HBdMtUI FU・OKQBnW. MKItfOMIft. «X<A. mrinjvnixnfiinw. a 瓠■Pt・vr 抄恠■■mH. M—t«K.ft-f <4, z赛it・iaMflMc・rTgaDauBMu»r・ym”《> ea«.。
《仁华学校数学思维训练导引》解析(六年级)

仁华学校数学思维训练导引》解析(六年级)仁华思维导引解析1讲:计算综合仁华思维导引解析2讲:比例与百分数仁华思维导引解析3讲:工程问题仁华思维导引解析4讲:不定方程与整数分拆仁华思维导引解析5讲:数论综合之一仁华思维导引解析6讲:立体图形仁华思维导引解析7讲:几何综合之一仁华思维导引解析8讲:数字谜综合之三仁华思维导引解析9讲:计数综合之二仁华思维导引解析10讲:逻辑推理之二仁华思维导引解析11讲:方程与方程组仁华思维导引解析12讲:行程与工程仁华思维导引解析13讲:应用题综合之二仁华思维导引解析14讲:数论综合之二仁华思维导引解析15讲:数论综合之三仁华思维导引解析16讲:几何综合之二仁华思维导引解析17讲:计数综合之三仁华思维导引解析18讲:最值问题仁华思维导引解析19讲:构造与论证之二仁华思维导引解析20讲:构造与论证之三仁华思维导引解析1讲:计算综合仁华思维导引解析2讲:比例与百分数仁华思维导引解析3讲:工程问题仁华思维导引解析4讲:不定方程与整数分拆仁华思维导引解析5讲:数论综合之一仁华思维导引解析6讲:立体图形仁华思维导引解析7讲:几何综合之一[分新与解I以下用E tS惡示E部舒播向的扶度・E菱表示EsE分竖向的长胆其曲下嫌富义粪饥耳f⅛%=E A tS B fl(T2.i^⅛+⅛=D fi+⅛,翩育吋D fll A m B fli="412∙HT1 A∣j+B橈+C1懂=E懂+州|对应为5+1 ~6<那么C.对应⅛⅛3.而积CE积=1:2X 所以 A fi=B fi-C fi-^+c S対应肉岔所以桂=C整对应为3・那么快;⅛形的竖边渝^C S对应知,∙K方形笹也拘Eβ+!5*D fll对应天只6+4F5. 所以檢右形的妖导宽陆比丸5 9=5 3.第54页共179页仁华思维导引解析8讲:数字谜综合之三。
六年级思维导引1-3讲答案

22
第三讲 递推计数
提高巩固 1. 一个楼梯共有 10 级台阶,规定每步可以迈一级台阶或二级台阶.走完这 10 级台阶,一共可以有 多少种不同的走法?
2. 小悦买了 10 块巧克力,她每天最少吃一块,最多吃 3 块,直到吃完,共有多少种吃法?
将来的你,一定会感激现在拼搏的自己!
23
3. 用 l×2 的小方格覆盖 2×7 的长方形,共有多少种不同的覆盖方法?
将来的你,一定会感激现在拼搏的自己!
20
3. 10 名选手参加象棋比赛,每两名选手间都要比赛一次,已知胜一场得 2 分,平一场得 1 分,负一 场不得分.比赛结果:选手们所得分数各不相同,前两名选手都没输过,前两名的总分比第三名 多 20 分,第四名得分与后四名所得总分相等,问:前六名的分数各为多少?
2
5.定义运算符号“△”满足: ab
ab 计算下列各式: ab
(3) (1 2)3 1(23)
(1) 100△102;
(2) (3△4) △5
6.已知 333
111 54 55 56 57 58 :□ 37 : ,那么方框所代表的数是什么? 112 4567 8
将来的你,一定会感激现在拼搏的自己!
6
超常挑战
6 9 11 6 3 17 4 2 3 13 13 12 1. 1 (2 ) 7 3 2 33 4 17 3 4 3 2 1 7 11 21
2. 定义运算“Ω”满足: ①a1 a, ②an 2 [a(n 1)] a. 已知m4 30 。问: (1)m 等于多少? (2)m Ω 8 等于多少?
将来的你,一定会感激现在拼搏的自己!
26
2. 用 10 个 1×3 的长方形纸片覆盖一个 10×3 的方格表,共有多少种覆盖方法?
仁华学校 6 年级奥数导引

仁华学校 6 年级奥数思维导引 上 学生版
习题 计算 17×18+18×19+19×20+…+29×30 的值. 提示:可有两种方法,整数裂项,利用 1 到 n 的平方和的公式.
多位数的运算,涉及利用 999 ⋯ 9 =10k-1,提出公因数,递推等方法求解问题. � ��� �
k个9
仁华学校 6 年级奥数思维导引 上 学生版
5.有男女同学 325 人,新学年男生增加 25 人,女生减少 5%,总人数增加 16 人.那么现有男同学多 少人?
6.有一堆糖果,其中奶糖占 45%,再放人 16 块水果糖后,奶糖就只占 25%那么,这堆糖果中有奶 糖多少块?
12.计算: (1 −
1 1 1 )×( 1− ) × ... × (1 − ) 2× 2 3×3 10 × 10
13.已知 a=
11× 66 + 12 × 67 + 13 × 68 + 14 × 69 + 15 × 70 × 100 .问 a 的整数部分是多少? 11× 65 + 12 × 66 + 13 × 67 + 14 × 68 + 15 × 69
仁华学校 6 年级奥数思维导引 上 学生版
ቤተ መጻሕፍቲ ባይዱ
14.问
1 3 5 7 99 1 × × × × ...× 与 相比,哪个更大,为什么? 2 4 6 8 100 10
15.下面是两个 1989 位整数相乘: 111...11 � ��� � ×111...11 � ��� � .问:乘积的各位数字之和是多少?
仁华学校 6 年级奥数思维导引 上 学生版
8. 规定 (3) =2×3×4, (4) =3×4×5, (5)=4×5×6, (10)=9×10×11, …. 如果 那么方框内应填的数是多少?
全国通用六年级下册数学试题-小升初:第二讲 几何之五大模型及其应用(解析版)

第二讲 几何之五大模型及其应用1. 回顾几何图形中的倍比关系; 2. 精讲五大模型及其应用。
【例1】 ★★★(思维训练导引)如图,平行四边形ABCD 周长为75厘米,以BC 为底时高是14厘米;以CD 为底时高是16厘米。
求平行四边形ABCD 的面积。
解:BC ×14=CD ×16,BC :CD=16:14, BC+CD=752,BC=752×161614=20 ABCD 面积=14×20=280(平方厘米)【例2】 ★★★(小学数学奥林匹克)如图,一个长方形被切成8块,其中三块的面积分别为12,23,32,则图中阴影部分的面积为( )ABCDEF平面几何也是小升初考试的必考内容,而且常常以大题形式出现(分值一般在10分~16分),名牌中学的选拔考试面积题目,有逐步增加难度的趋势,这一部分的分值又较高,希望同学们重视并好好总结归纳,本讲重点研讨几何问题中直线型面积问题,尤其强调奥数几何题中的五大模型及应用。
教学目标专题回顾【解】如右图,已知a+b+x=23+a+32+12+b 所以 x=23+32+12x=67.【点评】本题渗透等量代换思想,方程中有相抵成份,不必害怕未知数太多。
【例3】 三个正方形ABCD ,BEFG ,HKPF 如图所示放置在一起,图中正方形BEFG 的周长等于14厘米。
求图中阴影部分的面积。
【解】如图,连接KF ,EG ,BD 。
设KG ,EF 相交于O ,DE ,BG 相交于V ,由KF ∥EG ∥BD , S △KEG =S △FGE ,S △DEG =S △BGE 。
设阴影阴影的面积为S,则S= S △KGE + S △DEG = S △FGE + S △BGE = S BEFG正方形BEFG 的周长为14厘米,边长为3.5厘米。
所以S BEFG =3.52=12.25(平方厘米)【点评】等积变形方法的最常见形式是在一组平行线内,两个三角形同底等高的情况。
华数思维导引六年级第十五讲:数论综合3

第28讲数论综合3内容概述具有相当难度,需要灵活运用各种整数知识,或与其他方面内容相综合的数论同题.典型问题2.有3个自然数,其中每一个数都不能被另外两个数整除,而其中任意两个数的乘积却能被第三个数整除.那么这样的3个自然数的和的最小值是多少?【分析与解】设这三个自然数为A,B,C,且A=a×b,B=b×c,C=c×a,当a、b、c均是质数时显然满足题意,为了使A,B,C的和最小,则质数a、b、c应尽可能的取较小值,显然当a、b、c为2、3、5时最小,有A=2×3=6, B=3×5=15,C=5×2=10.于是,满足这样的3个自然数的和的最小值是6+15+10=31.4.对于两个不同的整数,如果它们的积能被和整除,就称为一对“好数”,例如70与30.那么在1,2,…,16这16个整数中,有“好数”多少对?【分析与解】设这两个数为a、b,且a<b,有a b=k×(a+b),即111a b k +=.当k=2时,有1112a b+=,即(a-2)×(b-2)=22=4,有34,64a ab b==⎧⎧⎨⎨==⎩⎩,但是要求a≠b.所以只有36ab=⎧⎨=⎩满足;当k=3时,有1113a b+=,即(a-3)×(b-3)=32=9,有46,126a ab b==⎧⎧⎨⎨==⎩⎩,但是要求a≠b.所以只有412ab=⎧⎨=⎩满足;……逐个验证k的值,“好数”对有3与6,4与12,6与12,10与15.所以“好数”对有4个.6.甲、乙两人进行下面的游戏:两人先约定一个自然数N,然后由甲开始,轮流把0,1,2,3,4,5,6,7,8,9这10个数字中的一个填入图28-1的某个方格中,每一方格只能填一个数字,但各方格所填的数字可以重复.当6个方格都填有数字后,就形成一个六位数.如果这个六位数能被N整除,那么乙获胜;如果这个六位数不能被N整除,那么甲获胜.设N小于15,问当N取哪几个数时.乙能取胜?【分析与解】当N取2,4,6,8,10,12,14这7个偶数时,当甲将某个奇数放到最右边的方格中,则这个六位数一定是奇数,奇数显然不能被偶数整除,所以此时乙无法取胜;而当N取5时,当甲在最右边的方格内填人一个非0非5的数字时,则这个六位数一定不能被5整除,所以此时乙无法获胜:此时还剩下1,3,7,9,11,13这6个数,显然当N取l时,乙一定获胜;当N取3或9时,只要数字对应是3或9的倍数时,这个六位数就能被对应的3或9整除,显然乙可以做到;当N取7,1l或13时,只要前三位数字和与后三位数字和的差对应是7,11,13的倍数时,这个六位数就对应是7,11,13的倍数,乙可以做到.于是,当N取1,3,7,9,11,13时,乙适当的操作能保证自己一定获胜.8.已知a与b的最大公约数是12,a与c的最小公倍数是300,b与c的最小公倍数也是300.那么满足上述条件的自然数a,b,c共有多少组?【分析与解】300=12×25,是a、b的倍数,而12是a、b的最大公约数,所以a、b有5种可能,即a12 12×5 12×25 12 12b 12 12 12 12×5 12×25由于a、b中总有一个为12,则c=2x×3y×5z,其中x可以取0、1、2中的任意一个,y可以取0、1中的任意一个,这样满足条件的自然数a、b、c共有5×3×2=30组.10.圆周上放有N枚棋子,如图28-2所示,B点的那枚棋子紧邻A点的棋子.小洪首先拿走B点处的1枚棋子,然后沿顺时针方向每隔1枚拿走2枚棋子,这样连续转了10周,9次越过A.当将要第10次越过A处棋子取走其他棋子时,小洪发现圆周上余下20多枚棋子.若N是14的倍数,请精确算出圆周上现在还有多少枚棋子?【分析与解】设圆周上余a枚棋子,从第9次越过A处拿走2枚棋子到第10次将要越过A处棋子时,小洪拿了2a枚棋子,所以在第9次将要越过A处棋子时,圆周上有3a枚棋子..依次类推,在第8次将要越过A处棋子时,圆周上有32a枚棋子,…,在第1次将要越过A处棋子时,圆周上有39a枚棋子,在第1次将要越过A处棋子之间,小洪拿走了2(39a-1)+枚棋子,所以N=2(39a-1)+1+39a=310a-1.N=310a-1=59049a-l是14的倍数,N是2和7的公倍数,所以a必须是奇数;又N=(7×8435+4) a-1=7×8435a+4a-1,所以4a-1必须是7的倍数.当a=21,25,27,29时,4a-1不是7的倍数,当a=23时,4a-1=91=7×13,是7的倍数.所以.圆周上还有23枚棋子.12.是否存在一个六位数A,使得A,2A,3A,…,500000A中任意一个数的末尾6个数码不全相同?【分析与解】显然A的个位数字不能为偶数,不然500,000A的后6位为000,000;而A的个位数字也不能为5,不然200,000A的后6位为000,000.于是A的个位数字只能为1,3,7,9.=,使得t×A≡111,111(mod 对于任何一个六位数A(个位数字为1,3,7,9),均存在六位数t abcdef1,000,000).=>500,000,使得t×A≡111,111 (mod 1,000,000),那么那个A即为题中所求的如果存在t abcdef值.(说明见评注)当t=999,999,有A=888,889时,t A=888,888,111,111,显然满足上面的条件.所以888,889即为所求的A.= >500,000,使得t×A≡111,111(mod 1,000,000),那么那个A即评注:如果存在t abcdef为题中所求的值.这是因为如果对于上面的A,还存在一个六位数B,使得B×A=111,111(mod 1,000,000),那么有(t×A-B ×A)=0(mod 1,000,000),即(t-B)×A≡0(mod 1,000,000).因为A不含有质因数2、5,所以(t-B)为1,000,000的倍数,t-B≥1,000,000,那么t>1,000,000,与t为六位数矛盾.也就是说不存在小于等于500,000的t,使得t A的后六位为111,111,那么也不可能使得t A的后6位相同.14.已知m,n,k为自然数,m ≥ n ≥k,n2m+2n-2k是100的倍数,求m + n - k后的最小值.【分析与解】方法一:首先注意到100=22×52.如果n=k,那么2m是100的倍数,因而是5的倍数,这是不可能的.所以n-k≥1.m n k k m-k n-k2+2-2=2(2+2+1)被22整除,所以k≥2.设a=m-k,b=n-k,则a≥b,且都是整数.2a+2b-1被52整除,要求a+b+k=m+n-k的最小值.不难看出210+21-1=1025,能被25整除,所以a+b+k的最小值小于10+l+2=13.而且在a=10,b=1,k=2时,上式等号成立.还需证明在a+b≤10时,2a+2b-l不可能被25整除.有下表a≤3时,2a+2b-1<8+8=16不能被52整除.其他表中情况,不难逐一检验,均不满足a b2+2-1被25整除的要求.因此a+b-k即m+n-k的最小值是13.(2+2-2).方法二:注意到有100=2×2×5×5,4∣m n km n k k m-k n-k m-k n-k因为所以k最小为2.2+2-2=2(2+2-1)2+2-l,(2+2-1),令m-k=x, n-k=y还有25∣m-k n-k2+2≡l(mod 25)则有x y因为5去除2,22,23,24,25余数分别为2,4,3,1,2;余数是4个一周期.于是,x=4p+2,y=4q+1;或者是x=4P+3,y=4Q+3.(1)x=4p+2,y=4q+1时2+2-2=24+23-22=20不是100的倍数;当x=2,y=1,于是m n k2+2-2=28+23-22=260不是100的倍数;当x=6,y=l,于是m n k2+2-2=212+23-22=4100是 l00的倍数;当x=10,y=l,于是m n k(2)x=4P+3,y=4Q+32+2-2=25+25-22=60不是l00的倍数;当x=3,y=3,于是m n k2+2-2=29+25-22=540不是l00的倍数:当x=7,y=3,于是m n k其余的将超过(1)种情况,所以,最小为m+n-k=12+3-2=13.。
数学思维训练导引(六年级答案部分)

关注“艾麦思数学”公众号,听公益课,下载学霸秘籍资料!
关注“艾麦思数学”公众号,听公益课,下载学霸秘籍资料!
关注“艾麦思数学”公众号,听公益课,下载学霸秘籍资料!
关注“艾麦思数学”公众号,听公益课,下载学霸秘籍资料!
关注“艾麦思数学”公众号,听公益课,下载学霸秘籍资料!
关注“艾麦思数学”公众号,听公益课,下载学霸秘籍资料!
关注“艾麦思数学”公众号,听公益课,下载学霸秘籍资料!
关注“艾麦思数学”公众号,听公益课,下载学霸秘籍资料!
关注“艾麦思数学”公众号,听公益课,下载学霸秘籍资料!
关注“艾麦思数学”公众号,听公益课,下载学霸秘籍资料!
关注“艾麦思数学”公众号,听公益课,下载学霸秘籍资料!
关注“艾麦思数学”公众号,听公益课,下载学霸秘籍资料!
关注“艾麦思数学”公众号,听公益课,下载学霸秘籍资料!
关注“艾麦思数学”公众号,听公益课,下载学霸秘籍资料!
关注“艾麦思数学”公众号,听公益课,下载学霸秘籍资料!
关注“艾麦思数学”公众号,听公益课,下载学霸秘籍资料!
关注“艾麦思数学”公众号,听公益课,下载学霸秘籍资料!
关注“艾麦思数学”公众号,听公益课,下载学霸秘籍资料!
关注“艾麦思数学”公众号,听公益课,下载学霸秘籍资料!
数学思维训练导引(六年级答案部分)
关注“艾麦思数学”公众号,听公益课,下载学霸秘籍资料!
关注“艾麦思数学”公众号,听公益课,下载学霸秘籍资料!
关注“艾麦思数学”公众号,听公益课,下载学霸秘籍资料!
关注“艾麦思数学”公众号,听公益课,下载学霸秘籍资料!
关注“艾麦思数学”公众号,听公益课,下载学霸秘籍资料!
关注“艾麦思数学”公众号,听公益课,下载学霸秘籍资料!
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录
1. 仁华思维导引解析1讲:计算综合 (2)
2. 仁华思维导引解析2讲:比例与百分数 (10)
3. 仁华思维导引解析3讲:工程问题 (17)
4. 仁华思维导引解析4讲:不定方程与整数分拆 (27)
5. 仁华思维导引解析5讲:数论综合之一 (33)
6. 仁华思维导引解析6讲:立体图形 (39)
7. 仁华思维导引解析7讲:几何综合之一 (47)
8. 仁华思维导引解析8讲:数字谜综合之三 (59)
9. 仁华思维导引解析9讲:计数综合之二 (70)
10. 仁华思维导引解析10讲:逻辑推理之二 (82)
11. 仁华思维导引解析11讲:方程与方程组 (91)
12. 仁华思维导引解析12讲:行程与工程 (99)
13. 仁华思维导引解析13讲:应用题综合之二 (108)
14. 仁华思维导引解析14讲:数论综合之二 (116)
15. 仁华思维导引解析15讲:数论综合之三 (124)
16. 仁华思维导引解析16讲:几何综合之二 (131)
17. 仁华思维导引解析17讲:计数综合之三 (147)
18. 仁华思维导引解析18讲:最值问题 (156)
19. 仁华思维导引解析19讲:构造与论证之二 (165)
20. 仁华思维导引解析20讲:构造与论证之三 (173)
1. 仁华思维导引解析1讲:计算综合
2. 仁华思维导引解析2讲:比例与百分数
3. 仁华思维导引解析3讲:工程问题
4. 仁华思维导引解析4讲:不定方程与整数分拆
5. 仁华思维导引解析5讲:数论综合之一
6. 仁华思维导引解析6讲:立体图形
7. 仁华思维导引解析7讲:几何综合之一。