九年级数学复习测试卷第一卷
初三数学第一章试卷含答案

一、选择题(每题4分,共20分)1. 下列数中,不是有理数的是()A. -3.14B. 0C. √2D. 1/22. 下列各数中,绝对值最小的是()A. -2B. 0C. 2D. -33. 如果a和b是相反数,那么()A. a+b=0B. a-b=0C. ab=0D. a/b=04. 下列各数中,不是正数的是()A. 0.001B. -1/3C. 3.5D. 2.7185. 下列各数中,不是有理数的是()A. 0.333...B. 1/2C. √9D. 2.5二、填空题(每题4分,共20分)6. 有理数-5的相反数是______。
7. 有理数2/3的倒数是______。
8. 0的绝对值是______。
9. 如果|a|=5,那么a可以是______或______。
10. 有理数-7/4的绝对值是______。
三、解答题(每题10分,共30分)11. (10分)计算下列各式的值:(1)-3 + 4 - 2(2)2/5 - 1/10 + 3/2(3)-7 - (-2) + 312. (10分)判断下列各数是否为有理数,并说明理由:(1)π(2)√-1(3)0.1010010001...13. (10分)已知a和b是相反数,且|a|=5,求a和b的值。
四、应用题(每题10分,共20分)14. (10分)小明有5元,小红有8元,他们共同买了一本书,共花费了13元,求这本书的价格。
15. (10分)一个数的3倍与这个数的4倍的和是60,求这个数。
答案:一、选择题1. C2. B3. A4. B5. C二、填空题6. 57. 2/38. 09. -5,510. 7/4三、解答题11.(1)-3 + 4 - 2 = -1(2)2/5 - 1/10 + 3/2 = 1 3/10(3)-7 - (-2) + 3 = -212.(1)π不是有理数,因为它不能表示为两个整数的比。
(2)√-1不是有理数,因为它不能表示为两个整数的比。
安徽第一卷2023-2024九年级数学

安徽第一卷2023-2024九年级数学试卷分析一、题目总体评价安徽第一卷2023-2024九年级数学试卷在难度和题型设计上较为合理,整体难度适中,题目涵盖了九年级数学的各个知识点,能够全面考查学生的数学能力和解题技巧。
试卷在题目设置上充分考虑了学科教学的实际应用,能够引导学生进行思维拓展和深入思考。
二、具体题目分析1. 选择题部分选择题部分设计了包括有理数、方程与不等式、平面直角坐标系、相似三角形等在内的各种类型题目,其中既有计算题,也有推理题,能够全面考查学生的基础知识掌握情况。
设计了一些结合生活实际的题目,能够引导学生将所学的数学知识应用到实际情境中去分析和解决问题。
2. 填空题部分填空题部分内容涉及到了利用综合计算能力解决实际问题、解决实际问题的基本方法、解决实际问题的基本方法等内容,考查了学生的计算能力和综合应用能力。
3. 计算题部分计算题部分紧密通联教材内容,涉及到了面积、体积、方程与方程组、几何旋转等多个知识点,难度适中,能够检验学生的理解和应用水平。
4. 解答题部分解答题部分涉及海伦公式、三角函数、平面向量等较为深入的数学知识,要求学生能够熟练运用理论知识解决实际问题,能够考查学生的综合运用能力和解决问题的能力。
三、试卷存在的问题与改进建议1. 部分选择题难度较大部分选择题的难度偏高,可能会造成学生的挫折和压力,建议在难度上进行适当调整,照顾学生的学习情绪。
2. 部分解答题题目设置不够清晰部分解答题的题目设置不够清晰,可能存在歧义,建议在出题时尽量做到题目清晰明了,避免引起理解上的困惑。
3. 缺少实际应用题试卷中缺少一些真实生活中的数学应用题,建议在题目设计时增加一些真实场景下的数学问题,能够更好地引导学生将数学知识应用到日常生活中去。
四、总结总体而言,安徽第一卷2023-2024九年级数学试卷在题目难度、题型分布和知识点考查上做到了相对均衡,并且考查了学生的综合运用能力和解决问题的能力。
2023-2024年九年级第一学期数学第一次月考试卷1

15、如果关于x的一元二次方程x2+px+q=0的两根分别为x1=2,x2=1,那么q的值是________ .
16、已知一元二次方程x2-5x-1=0的两根为x1, x2, 则x1+x2= ________.
三、解答题.(每小题6分,共18分)
2、方程x2=4的解是( )
A、x=0
B、x=2
C、x=-2
D、x1=2,x2=-2
3、如果2是方程x2-c=0的一个根,那么c的值是 ( )
A、4
B、-4
C、2
D、-2
4.一元二次方程x2-8x-1=0配方后可变形为( )
A.(x+4)2=17 B.(x+4)2=15
C.(x-4)2=17 D.(x-4)2=15
A、289(1-x)2=256
B、256(1-x)2=289
C、289(1-2x)=256
D、256(1-2x)=289
二、填空题(共6题;共24分)
11、方程3x2﹣2x﹣1=0的一次项系数是________,常数项是________.
12、方程(x﹣1)2=4的根是________.
13、把方程x(x+1)=2化成一般形式是________.
17.x2+4x-5=0;18.2x2﹣6x+4=0.
19、当k取何值时,关于x的方程(k2-1)x2+(k-1)x+1=0是一元二次方程?
四、解答题.(每小题7分,共21分)
20、如图,某农场有一块长40m , 宽32m的矩形种植地,为方便管理,准备沿平行于两边的方向纵、横各修建一条等宽的小路,要使种植面积为1140m2, 求小路的宽?
2023年北师大版九年级上册数学第一章综合测试试卷及答案

第一章综合练习
13.如图,等边△ABC与正方形DEFG重叠,其中
D,E两点分别在AB,BC上,且BD=BE,AB=8,
DE=3,则△EFC的面积为
15 4
.
-14-
第一章综合练习
14.如图,在Rt△ABC中,∠BAC=90°,∠ABC的平分 线交AC于点D.过点A作AE⊥BC于点E,交BD于点G,过 点D作DF⊥BC于点F,过点G作GH∥BC,交AC于点H, 则下列结论:①∠BAE=∠C; ②S△ABG:S△EBG=AB:BE; ③∠ADF=2∠CDF; ④四边形AGFD是菱形; ⑤CH=DF.其中正确的结论是 ①②④⑤ .(填序号)
-22-
第一章综合练习
(2)∵四边形AFCE是平行四边形, ∴EC∥AF,∴∠FHB=∠CGH. 又∵∠CGH=∠DGE,∴∠DGE=∠FHB. ∵AD∥BC,∴∠EDG=∠FBH. ∵E,F分别是AD,BC的中点,AD=BC, ∴DE=BF,∴△DEG≌△BFH(AAS), ∴EG=FH.
A.AB=CD,AB⊥CD B.AB=CD,AD=BC C.AB=CD,AC⊥BD D.AB=CD,AD∥BC
-10-
第一章综合练习
10 . 如 图 , 在 菱 形 ABCD 中 , AB = 6 , ∠ ABC = 60°,M为AD的中点,P为对角线BD上一动点, 连接PA和PM,则PA+PM的最小值是( B ) A.3 B.3 3 C.6 D.9
(1)求证:四边形ACED是平行四边形; (2)如果AB=AE,求证:四边形ACED是矩形.
-19-
第一章综合练习
证明:(1)∵四边形ABCD是平行四边形, ∴AD∥BC,且AD=BC. ∵C是BE的中点,∴BC=CE,∴AD=CE. ∵AD∥CE,∴四边形ACED是平行四边形. (2)∵四边形ABCD是平行四边形, ∴AB=DC. ∵AB=AE,∴DC=AE. ∵四边形ACED是平行四边形,∴四边形ACED是图,在矩形ABCD中,E,F分别是AD,BC 的中点,CE,AF分别交DB于G,H两点.求证:
人教版初中数学九年级数学上册第一单元《一元二次方程》测试卷(含答案解析)(1)

一、选择题1.欧几里得在《几何原本》中,记载了用图解法解方程22x ax b +=的方法,类似地可以用折纸的方法求方程210x x +-=的一个正根,如图,裁一张边长为1的正方形的纸片ABCD ,先折出BC 的中点E ,再折出线段AE ,然后通过折叠使EB 落在线段EA 上,折出点B 的新位置F ,因而EF EB =,类似地,在AB 上折出点M 使AM AF =,表示方程210x x +-=的一个正根的线段是( )A .线段BMB .线段AMC .线段AED .线段EM2.用直接开平方的方法解方程22(31)(25)x x +=-,做法正确的是( ) A .3125x x +=- B .31(25)x x +=-- C .31(25)x x +=±- D .3125x x +=±-3.已知三角形的两边长分别为4和6,第三边是方程217700x x -+=的根,则此三角形的周长是( ) A .10B .17C .20D .17或204.关于x 的一元二次方程()25410a x x ---=有实数根,则a 满足( ). A .5a ≠B .1a ≥且5a ≠C .1a ≥D .1a <且5a ≠5.日历中含有丰富的数学知识,如在图1所示的日历中用阴影圈出9个数,这9个数的大小之间存在着某种规律.小慧在2020年某月的日历中也按图1所示方式圈出9个数(如图2),发现这9个数中最大的数与最小的数乘积是297,则这9个数中,中间的数e 是( ) 日一二 三 四 五 六1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25262728293031abcd efghi图1图2A .17B .18C .19D .206.用配方法解方程23620x x -+=时,方程可变形为( ) A .21(3)3x -= B .21(1)33x -=C .21(1)3-=x D .2(31)1x -=7.在元旦庆祝活动中,参加活动的同学互赠贺卡,共送贺卡42张,则参加活动的同学有( ) A .6人 B .7人 C .8人 D .9人 8.若关于x 的一元二次方程260x x c -+=有两个相等的实数根,则常数c 的值为( )A .3B .6C .8D .99.已知关于x 的一元二次方程()22210x m x m -+=-有实数根,则m 的取值范围是( )A .0m ≠B .14mC .14m <D .14m >10.已知关于x 的二次方程()21210--+=k x kx (k ≠1),则方程根的情况是( ) A .没有实数根 B .有两不等实数根 C .有两相等实数根 D .无法确定 11.下列方程中,有两个不相等的实数根的是( )A .x 2=0B .x ﹣3=0C .x 2﹣5=0D .x 2+2=012.如图,BD 为矩形ABCD 的对角线,将△BCD 沿BD 翻折得到BC D '△,BC '与边AD 交于点E .若AB =x 1,BC =2x 2,DE =3,其中x 1、x 2是关于x 的方程x 2﹣4x+m =0的两个实根,则m 的值是( )A .165B .125C .3D .2二、填空题13.将方程2630x x +-=化为()2x h k +=的形式是______.14.关于x 的方程()210x k x x -++=有两个相等的实数根,则k =_______.15.已知一元二次方程2x 2+3x ﹣1=0的两个根是x 1,x 2,则x 1•x 2=_____.16.已知()0n n ≠是一元二次方程240x mx n ++=的一个根,则m n +的值为______. 17.已知等腰三角形的边长是方程213360x x -+=的两个根,则这个等腰三角形的周长是______.18.若t 是一元二次方程()200++=≠ax bx c a 的根,则判别式24b ac =-△与完全平方式()22M at b =+的大小关系为___________ 19.当m =___________时,方程(2150m m x mx --+=是一元二次方程.20.若()22214x y +-=,则22x y +=________.三、解答题21.解方程:(1)26160x x +-=. (2)22430x x --=.22.用适当的方法解一元二次方程: (1)()229x -=; (2)2230x x +-=. 23.回答下列问题. (1(2|1-. (3)计算:102(1)-++.(4)解方程:2(1)90x +-=.24.手工课上,小明打算用一张周长为40cm 的长方形白纸做一张贺卡,白纸内的四周涂上宽为2cm 的彩色花边,小明想让中间白色部分的面积大于彩色花边的面积,但又不能确定能否办到.请同学们帮助小明判断他是否能办到,并说明理由. 25.解答下列各题.(1)解方程:2(1)90x --=.(2)已知1x =,求225x x -+的值.26.解下列方程: (1)2320x x +-= (2)()220x x x -+-=【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B 【分析】设正方形的边长为1,AF =AM =x ,根据勾股定理即可求出答案. 【详解】解:设正方形的边长为1,AF =AM =x , 则BE =EF =12,AE =x+12, 在Rt △ABE 中, ∴AE 2=AB 2+BE 2, ∴(x +12)2=1+(12)2, ∴x 2+x -1=0,∴AM 的长为x 2+x -1=0的一个正根, 故选:B . 【点睛】本题考查一元二次方程,解题的关键是根据勾股定理列出方程,本题属于中等题型.2.C解析:C 【分析】一元二次方程22(31)(25)x x +=-,表示两个式子的平方相等,因而这两个数相等或互为相反数,据此即可把方程转化为两个一元一次方程,即可求解. 【详解】解:22(31)(25)x x +=- 开方得31(25)x x +=±-, 故选:C . 【点睛】本题考查了解一元二次方程-直接开平方法,关键是将方程右侧看做一个非负已知数,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.3.B解析:B 【分析】根据第三边是方程x 2﹣17x +70=0的根,首先求出方程的根,再利用三角形三边关系求出即可. 【详解】解:∵217700x x -+=, ∴(10)(7)0x x --=,∴110x =,27x =,∵4610+=,无法构成三角形, ∴此三角形的周长是:46717++=. 故选B . 【点睛】此题主要考查了因式分解法解一元二次方程以及三角形的三边关系,正确利用因式分解法解一元二次方程可以大大降低计算量.4.B解析:B 【分析】由方程有实数根可知根的判别式b 2-4ac≥0,结合二次项的系数非零,可得出关于a 一元一次不等式组,解不等式组即可得出结论. 【详解】 解:由已知得:()()()25044510a a -≠⎧⎪⎨--⨯-⨯-≥⎪⎩, 解得:a≥1且a≠5. 故选:B . 【点睛】本题考查了根的判别式,解题的关键是得出关于a 的一元一次不等式组.本题属于基础题,难度不大,解决该题型题目时,由根的判别式结合二次项系数非零得出不等式组是关键.5.C解析:C 【分析】根据日历的特点得到8i e =+,8a e =-,列出一元二次方程解出e 的值. 【详解】解:根据日历的特点,同一列上下两个数相差7,前后两个数相差1, 则7h e =+,18i h e =+=+,7b e =-,18a b e =-=-, ∵最大的数与最小的数乘积是297,∴()()88297ai e e =-+=,解得19e =±,取正数,19e =. 故选:C . 【点睛】本题考查一元二次方程的应用,解题的关键是根据题意列出方程进行求解.6.C解析:C 【分析】先移项得到2362x x -=-,再把方程两边都除以3,然后把方程两边加上1即可得到()2113x -=. 【详解】移项得:2362x x -=-, 二次系数化为1得:2223x x -=-, 方程两边加上1得:222113x x -+=-+, 所以()2113x -=. 故选:C . 【点睛】本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键.7.B解析:B 【分析】设参加活动的同学有x 人,从而可得每位同学赠送的贺卡张数为(1)x -张,再根据“共送贺卡42张”建立方程,然后解方程即可得. 【详解】设参加活动的同学有x 人, 由题意得:(1)42x x -=,解得7x =或6x =-(不符题意,舍去), 即参加活动的同学有7人, 故选:B . 【点睛】本题考查了一元二次方程的实际应用,依据题意,正确建立方程是解题关键.8.D解析:D 【分析】根据方程有两个相等的实数根结合根的判别式即可得出关于c 的一元一次方程,解方程即可得出结论. 【详解】 解:260x x c -+=有两个相等的实根,2(6)40c ∴∆=--=,解得:9c = 故选:D . 【点睛】本题考查了根的判别式以及解一元一次方程,由方程有两个相等的实数根结合根的判别式得出关于c 的一元一次方程是解题的关键.9.B解析:B 【分析】由方程有实数根即△=b 2﹣4ac ≥0,从而得出关于m 的不等式,解之可得. 【详解】解:根据题意得,△=b 2﹣4ac =[﹣(2m ﹣1)]2﹣4m 2=﹣4m +1≥0, 解得:14m , 故选:B . 【点睛】本题主要考查根的判别式,熟练掌握一元二次方程的根与判别式间的关系是解题的关键.10.B解析:B 【分析】根据方程的系数结合根的判别式,可得出△21432k ⎛⎫=-+ ⎪⎝⎭>0,由此即可得出:无论k (k≠1)为何值,该方程总有两个不相等的实数根. 【详解】在方程()21210--+=k x kx 中,∵1a k =-,2b k =-,1c =, ∴()()224241b ac k k =-=---214302k ⎛⎫=-+> ⎪⎝⎭,∴无论k (k≠1)为何值,该方程总有两个不相等的实数根. 故选:B . 【点睛】本题考查了根的判别式,解题的关键是熟练掌握“当△>0时,方程有两个不相等的实数根”.11.C解析:C 【分析】利用直接开平方法分别求解可得. 【详解】解:A .由x 2=0得x 1=x 2=0,不符合题意; B .由x ﹣3=0得x =3,不符合题意;C .由x 2﹣5=0得x 1=x 2=,符合题意;D .x 2+2=0无实数根,不符合题意;故选:C . 【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.12.A解析:A 【分析】利用根与系数的关系得到x 1+x 2=4,x 1x 2=m ,AB +12BC =4,m =AB×12BC ,再利用折叠的性质和平行线的性质得到∠EBD =∠EDB ,则EB =ED =3,所以AE =AD−DE =5−2AB ,利用勾股定理得到AB 2+(5−2AB )2=32,解得AB 或AB (舍去),则BC ,然后计算m 的值. 【详解】∵x 1、x 2是关于x 的方程x 2−4x +m =0的两个实根, ∴x 1+x 2=4,x 1x 2=m , 即AB +12BC =4,m =AB×12BC , ∵△BCD 沿BD 翻折得到△BC′D ,BC′与边AD 交于点E , ∴∠CBD =∠EBD , ∵AD ∥BC , ∴∠CBD =∠EDB , ∴∠EBD =∠EDB , ∴EB =ED =3,在Rt △ABE 中,AE =AD−DE =BC−3=8−2AB−3=5−2AB ,∴AB 2+(5−2AB )2=32,解得AB =105-或AB =105+(舍去),∴BC =8−2AB =205+,∴m =12×105-×205+=165. 故选:A . 【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a≠0)的两根时,x 1+x 2=−b a ,x 1x 2=ca.也考查了矩形的性质和折叠的性质. 二、填空题13.【分析】将方程常数项移到方程右边左右两边都加上9左边化为完全平方式右边合并即可得到所求的结果【详解】∵∴∴∴故答案为:【点睛】考查了解一元二次方程-配方法利用此方法解方程时首先将二次项系数化为1常数 解析:()2312x +=【分析】将方程常数项移到方程右边,左右两边都加上9,左边化为完全平方式,右边合并即可得到所求的结果. 【详解】 ∵2630x x +-= ∴263x x += ∴26939x x+++= ∴()2312x+=故答案为:()2312x+= 【点睛】考查了解一元二次方程-配方法,利用此方法解方程时,首先将二次项系数化为1,常数项移到方程右边,然后方程两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并为一个常数,开方即可求出解.14.-1【分析】根据方程有两个相等的实数根可得判别式△=0可得关于k 的一元二次方程解方程求出k 值即可得答案【详解】∵方程有两个相等的实数根∴解得:k1=k2=-1故答案为:-1【点睛】此题主要考查了根的解析:-1 【分析】根据方程()210x k x x -++=有两个相等的实数根可得判别式△=0,可得关于k 的一元二次方程,解方程求出k 值即可得答案. 【详解】∵方程()221(1)0x k x x x k x k -++=---=有两个相等的实数根,∴()2140k k =-+=,解得:k 1=k 2=-1, 故答案为:-1. 【点睛】此题主要考查了根的判别式,对于一元二次方程ax 2+bx+c=0(a≠0),根的判别式△=b 2-4ac ,当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根;熟练掌握相关知识是解题关键.15.﹣【分析】由根与系数的关系即可求出答案【详解】解:∵一元二次方程2x2+3x ﹣1=0的两个根是x1x2∴x1x2=﹣故答案为:﹣【点睛】本题考查了根与系数的关系解题的关键是掌握根与系数的关系进行解题解析:﹣12【分析】由根与系数的关系,即可求出答案. 【详解】解:∵一元二次方程2x 2+3x ﹣1=0的两个根是x 1,x 2, ∴x 1x 2=﹣12, 故答案为:﹣12. 【点睛】本题考查了根与系数的关系,解题的关键是掌握根与系数的关系进行解题.16.【分析】根据一元二次方程的解的定义把代入得到继而可得的值【详解】∵是关于x 的一元二次方程的一个根∴即∵∴即故答案为:【点睛】本题考查了一元二次方程的解的定义因式分解的应用注意:能使一元二次方程左右两 解析:4-【分析】根据一元二次方程的解的定义把x n =代入240x mx n ++=得到240n mn n ++=,继而可得m n +的值. 【详解】∵n 是关于x 的一元二次方程240x mx n ++=的一个根, ∴240n mn n ++=,即()40n n m ++=, ∵0n ≠,∴4n m ++,即4m n +=-, 故答案为:4-. 【点睛】本题考查了一元二次方程的解的定义、因式分解的应用.注意:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.17.22【分析】先利用因式分解法求出方程的两个根从而可得等腰三角形的两边长再根据等腰三角形的定义三角形的三边关系定理可得这个等腰三角形的三边长然后利用三角形的周长公式即可得【详解】因式分解得解得等腰三角解析:22 【分析】先利用因式分解法求出方程的两个根,从而可得等腰三角形的两边长,再根据等腰三角形的定义、三角形的三边关系定理可得这个等腰三角形的三边长,然后利用三角形的周长公式即可得.【详解】213360x x -+=,因式分解,得(4)(9)0x x --=,解得124,9x x ==,等腰三角形的边长是方程213360x x -+=的两个根,∴这个等腰三角形的两边长为4,9,(1)当边长为4的边为腰时,这个等腰三角形的三边长为4,4,9,此时449+<,不满足三角形的三边关系定理,舍去;(2)当边长为9的边为腰时,这个等腰三角形的三边长为4,9,9,此时499+>,满足三角形的三边关系定理,则这个等腰三角形的周长为49922++=;综上,这个等腰三角形的周长为22,故答案为:22.【点睛】本题考查了解一元二次方程、等腰三角形的定义、三角形的三边关系定理等知识点,熟练掌握一元二次方程的解法是解题关键.18.相等【分析】由t 是一元二次方程()的根利用公式法解一元二次方程即可得出t 的值将其代入完全平方式中即可得出M 的值由此即可得出结论【详解】∵t 是一元二次方程()的根∴或当时则;当时则;∴故答案为:相等【解析:相等【分析】由t 是一元二次方程20ax bx c ++=(0a ≠)的根利用公式法解一元二次方程即可得出t 的值,将其代入完全平方式()22M at b =+中即可得出M 的值,由此即可得出结论.【详解】∵t 是一元二次方程20ax bx c ++=(0a ≠)的根,∴t =t =当t =()224M b b b ac =-=-;当t =时,则()224M b b b ac =-=-; ∴24b ac M =-=.故答案为:相等.【点睛】本题考查了根的判别式、完全平方式以及利用公式法解一元二次方程,利用公式法解一元二次方程求出t 值是解题的关键.19.【分析】根据一元二次方程的定义解答【详解】∵是一元二次方程∴且解得故答案为:【点睛】本题考查了一元二次方程的概念只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程一般形式是(且)特别要注意【分析】根据一元二次方程的定义解答.【详解】∵(2150m m x mx -+-+=是一元二次方程,∴212m -=且0m +≠,解得m =,【点睛】本题考查了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是20ax bx c ++=(且0a ≠).特别要注意0a ≠的条件.这是在做题过程中容易忽视的知识点.20.3【分析】根据题意将两边开方即可分情况得出的值【详解】解:两边开方得或故答案为:3【点睛】本题考查开方运算熟练掌握开方运算以及整体代换思想是解题的关键解析:3【分析】根据题意将()22214x y +-=两边开方,即可分情况得出22x y +的值.【详解】解:两边开方得2212x y +-=±, 223x y ∴+=或221x y +=-,220x y +≥,223x y ∴+=.故答案为:3.【点睛】本题考查开方运算,熟练掌握开方运算以及整体代换思想是解题的关键.三、解答题21.(1)18x =-,22x =;(2)122x +=,222x -=. 【分析】 (1)运用因式分解法求解即可;(2)运用公式法求解即可.【详解】解:(1)26160x x +-=()()820x x +-=解得18x =-,22x =.(2)22430x x --=,∵2a =,4b =-,3c =-,∴224(4)42(3)162440b ac -=--⨯⨯-=+=,x ===∴122x +=,222x =. 【点睛】本题考查了解一元二次方程,在解答中注意计算的正确性.22.(1)15=x ,21x =-;(2)13x =-,21x =【分析】(1)利用直接开平方法解方程即可;(2)利用公式法解方程即可.【详解】解:(1)∵()229x -=,∴23x -=±,∴23x -=或23x -=-,∴15=x ,21x =-.(2)∴ 1a =,2b =,3c =-,则()22413160=-⨯⨯-=>△,∴x = 即13x =-,21x =.【点睛】本题主要考查解一元二次方程.通过开平方运算解一元二次方程的方法叫做直接开平方法.公式法解一元二次方程的一般步骤,把方程化为一般形式确定各系数的值利用2b a- 求解. 23.(13;(2)12+;(3)4;(4)12x =,24x =-. 【分析】(1)利用用二次根式的性质化成最简二次根式,再合并同类二次根式即可;(2)根据二次根式的乘除法则以及绝对值的性质计算,再合并同类二次根式即可; (3)根据零指数幂,负整数指数幂以及完全平方公式计算,再合并同类二次根式即可; (4)移项,利用直接开平方法即可求解.【详解】(13=+3=; (2|11)=-1=1=; (3)102(1)-++121=+-4=-(4)2(1)90x +-=,移项得:2(1)9x +=,∴13x +=或13x +=-, 12x =,24x =-.【点睛】本题考查了解一元二次方程-直接开平方法,二次根式的混合运算,掌握运算法则是解答本题的关键.24.不能办到,见解析【分析】设中间部分的面积为:S 求出S 与x 的关系式,即关于中间部分的面积公式,并求出该二次函数的最大值,即中间部分的最大值,与花边部分的面积相比较,若大于则能做到,小于则做不到.【详解】答:不能办到.理由:设纸的一边长为cm x则另一边为(20)cm x -.依题意得:彩色花边面积为:2222(204)64x x ⨯⨯+⨯⨯--=中间白色部分面积为:22(4)(16)2064(10)36S x x x x x =--=-+-=--+ 416x <<,当10x =时,白色部分面积最大为36.3664<,∴小明不能办到.【点睛】本题主要考查一元二次方程的应用,关键在于理解清楚题意找出等量关系,即:花边部分的面积=总面积-中间部分的面积;已知花边部分的面积,而中间部分的面积又不定,只需求出中间部分面积的最值与其比较即可.25.(1)14x =,22x =-;(2)6.【分析】(1)方程整理后,直接开平方即可求解;(2)代数式225x x -+配方整理成()214x -+后,把x 的值代入计算即可.【详解】(1)由原方程得2(1)9x -=, ∴13x -=±,解得:14x =,22x =-;(2)∵2225(1)4x x x -+=-+,将1x =代入得:原式)2114=-+ 24=+6=.【点睛】本题考查了解一元二次方程-直接开平方法以及求代数式的值,熟练掌握完全平方公式是解本题的关键.26.(1)1x =,2x =2)11x =-,22x =【分析】 (1)直接应用公式法即可求解; (2)利用因式分解法即可求解.【详解】解:(1)2320x x +-=1,2x ==∴1x =,2x (2)()220x x x -+-=因式分解可得:()()120x x +-=, 即10x +=或20x -=, 解得11x =-,22x =. 【点睛】本题考查解一元二次方程,根据方程特点选择合适的求解方法是解题的关键.。
初三第一单元数学考试卷

一、选择题(每题4分,共20分)1. 下列哪个数是负数?A. -5B. 5C. 0D. -3.52. 下列哪个图形是四边形?A. 三角形B. 四边形C. 五边形D. 圆形3. 如果一个长方体的长、宽、高分别为2cm、3cm、4cm,那么它的体积是多少?A. 12cm³B. 24cm³C. 36cm³D. 48cm³4. 下列哪个数是偶数?A. 3B. 5C. 7D. 85. 如果一个圆的半径是5cm,那么它的周长是多少?A. 15πcmB. 25πcmC. 10πcmD. 20πcm二、填空题(每题5分,共25分)6. 2的平方根是______,-3的立方根是______。
7. 如果一个长方体的长、宽、高分别为3cm、4cm、5cm,那么它的表面积是多少?8. 下列哪个数是正数?______,下列哪个数是负数?______。
9. 如果一个圆的半径是7cm,那么它的面积是多少?10. 下列哪个图形是轴对称图形?______。
三、解答题(每题15分,共30分)11. (10分)计算下列各题:(1)(-3)²×(-2)³(2)5 - 2 × 3 + 412. (15分)一个长方形的长是8cm,宽是6cm,求这个长方形的周长和面积。
四、综合题(20分)13. (10分)一个正方体的棱长是4cm,求这个正方体的表面积和体积。
14. (10分)一个梯形的上底是5cm,下底是10cm,高是6cm,求这个梯形的面积。
答案:一、选择题:1. A2. B3. B4. D5. D二、填空题:6. 2,-37. 36cm²8. 7,-39. 49πcm²10. 圆形三、解答题:11. (1)-24 (2)312. 周长:28cm,面积:48cm²四、综合题:13. 表面积:96cm²,体积:64cm³14. 面积:60cm²。
九年级数学第一单元测试卷

人教版九年级数学第一单元测试卷一、选择题(每题 3 分,共30 分)1.二次函数y = x²的图象开口方向是()。
A. 向上B. 向下C. 向左D. 向右2.对于二次函数y = 2(x - 1)² + 3,下列说法正确的是()。
A.图象的开口向下B.图象的对称轴是直线x = -1C.当x = 1 时,y 有最小值3D.当x > 1 时,y 随x 的增大而减小3.把抛物线y = -x²向左平移1 个单位,再向上平移3 个单位,得到的抛物线是()。
A. y = -(x - 1)² + 3B. y = -(x + 1)² + 3C. y = -(x - 1)² - 3D. y = -(x +1)² - 34.二次函数y = ax² + bx + c 的图象如图所示,则下列结论正确的是()。
A. a > 0,b > 0,c > 0B. a < 0,b > 0,c > 0C. a < 0,b < 0,c > 0D.a < 0,b < 0,c < 0(此处应有一个二次函数图象,因条件限制无法给出,可自行想象开口向下,对称轴在y 轴右侧,与y 轴交点在正半轴的图象)5.已知二次函数y = ax² + bx + c(a≠0)的图象过点(0,m)(2,m)(m > 0),与x 轴的一个交点为(x₁,0),且-1 < x₁ < 0。
则下列结论:₁b > 0;₁c > 0;₁a(x₁ + 1)(x₁ - 2) < 0;₁二次函数图象的对称轴为直线x = 1。
其中正确的结论有()。
A. 1 个B. 2 个C. 3 个D. 4 个6.若二次函数y = ax² + bx + c 的图象与x 轴交于A(x₁,0),B(x₁,0)两点,且x₁ < x₁,图象上有一点M(x₁,y₁)在x 轴下方,对于以下说法:₁b² - 4ac > 0;₁x = x₁是方程ax² + bx + c = y₁的解;₁x₁ < x₁ < x₁;₁a(x₁ -x₁)(x₁ - x₁) < 0。
九年级全册数学复习试卷【含答案】

九年级全册数学复习试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个三角形的两边长分别为8cm和10cm,且这两边的夹角为60°,则这个三角形的周长为多少cm?A. 26cmB. 28cmC. 30cmD. 32cm2. 已知函数f(x) = 2x + 3,那么f(3)的值为多少?A. 9B. 11C. 12D. 153. 在直角坐标系中,点A(2, -3)关于x轴的对称点坐标为?A. (2, 3)B. (-2, -3)C. (2, 3)D. (-2, 3)4. 若一个等差数列的首项为3,公差为2,那么第10项的值为多少?A. 19B. 20C. 21D. 225. 已知一个圆的半径为5cm,那么这个圆的面积为多少平方厘米?A. 25πB. 50πC. 75πD. 100π二、判断题(每题1分,共5分)1. 若两个角的和为90°,则这两个角互为补角。
()2. 任何数乘以0都等于0。
()3. 在直角三角形中,斜边是最长的一边。
()4. 若一个等差数列的公差为0,则这个数列的所有项都相等。
()5. 任何数乘以-1都等于这个数的相反数。
()三、填空题(每题1分,共5分)1. 若一个等腰三角形的底边长为8cm,腰长为10cm,则这个三角形的周长为______cm。
2. 已知函数f(x) = 3x 5,那么f(4)的值为______。
3. 在直角坐标系中,点B(-3, 4)关于原点的对称点坐标为______。
4. 若一个等差数列的首项为2,公差为3,那么第7项的值为______。
5. 已知一个圆的直径为10cm,那么这个圆的周长为______cm。
四、简答题(每题2分,共10分)1. 请简述勾股定理的内容。
2. 请解释等差数列和等比数列的区别。
3. 请说明圆的面积公式。
4. 请简述函数的概念。
5. 请解释直角坐标系中点的坐标表示。
五、应用题(每题2分,共10分)1. 一个长方形的长为10cm,宽为5cm,求这个长方形的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学复习测试卷一
一、选择题:(36分)
1.下列关系式中,哪个等式表示y 是x 的反比例函数( ) A :x
y 2
2
=
B :x
y 2
= C :21+=x y D :x y 1-=
2.一个暗箱里装有10个黑球,8个白球,12个红球,每个球除颜色外都相同,从中任意摸出一球,摸
到白球的概率是( ) A :31 B :81 C :154 D :11
4
3.在同一平面直角坐标系中,正比例函数x m y )1(-=与反比例函数x
m
y 4=的图像大致位置不可能
( )
4.如图,在矩形ABCD 中,AB =3,BC =4,点P 在BC 边上运动,连结DP ,过点A 作AE ⊥DP ,垂足为E ,设DP =x ,
AE =y ,则能反映y 与x 之间函数关系的大致图象是( )
5.已知三点
111()
P x y ,,
222()
P x y ,,
3(12)
P -,都在反比例函数x
k y =
的图象上,若10x <,20
x >,则下列式子正确的是( )A .120
y y <<
B .
12
0y y <<
C .
120
y y >> D .
12
0y y >>
6.如图,直线mx y =与双曲线x
k
y =交于点A B ,.过点A 作AM x ⊥轴,垂足为点M ,连结BM .若1
ABM S =△,则k 的值是( )
A .1
B .1m -
C .2
D .m
7.如图,是一次函数y=kx+b 与反比例函数x
y 2
=的图像,则关于x 的方程kx+b=
x
2
的解为( ) (A)xl=1,x2=2 (B)xl=-2,x2=-1 (C)xl=1,x2=-2 (D)xl=2,x2=-1 8.在如图右的甲、乙两个转盘中,指针指向每一个数字的机会是均等的.当同时转动两个转盘,停止后指针所指的两个数字表示两条线段的长,如果第三条线段的长为5,那么这三条线段不能构成三角形的概率是( )
A .256
B .259
C .2512
D .25
16
9. 边长为4的正方形ABCD 的对称中心是坐标原点O,AB ∥x 轴,BC ∥y 轴, 反比例函数x
y 2
=
与x y 2-=的图象均与正方
形ABCD 的边相交,则图中的阴影部分的面积是( )
A 、2
B 、4
C 、8
D 、6 10.已知点A (-1,5)在反比例函数)0(≠=
k x k
y 的图象上,则该函数的解析式为( )A :x
y 1
= B :x y 25= C :x y 5-= D :x y 5=
11.三角形两边的长分别是8和6,第三边的长是一元二次方程2
16600x x -+=的一个实数根,则这个三角形的面积是( )
A :24
B :24或58
C :48
D :58 12.若反比例函数)0(≠=
k x
k
y 经过(-2,3)
,则这个反比例函数一定经过( ) A :(-2,-3) B :(3,2) C :(3,-2) D :(-3,-2) 10.在同一直角坐标系中,一次函数y=ax+c 和二次函数y=ax2+c 的图象大致为
二、填空题:(每题3分,共36分)
13.如图,反比例函数x
y 5
=的图象与直线)0(
k >x k y =相交于A,B 两点,
AC ∥y 轴,BC ∥x 轴,则△ABC 的面积等于
___________个面积单位.
甲
乙
第4
题
(109876543)
21
第三排第四排第二排第一排18 题图
x
14.将正整数按如图所示的规律排列下去。
若用有序实数对(n ,m )表示第n 排,从左到右第m 个数,如(4,3)表示实数9,则(7,2)表示的实数是 ___________。
16.将分别标有数字1,4,8的三张卡片洗匀后,背面朝上放在桌面上。
随机地抽取一张作为十位上的数 字(不放回),再抽取一张作为个位上的数字,能组成两位数恰好是“18”的概率为_________. 17.三名同学同一天生日,她们做了一个游戏:买来3张相同的贺卡,各自在其中一张内写上祝福的话,然后放在一起,每人随机拿一张.则她们拿到的贺卡都不是自己所写的概率是__________ 18.已知抛物线c bx a
y x
++=2
的对称轴为2=x ,且经过点(1,4)和点(5,0),则该抛物线的解析式为
___________________ ;
19.在△ABC 中,∠C=900,AC=3, AB=5,则cos B=____________。
20.已知Rt △ABC 中,∠C=90度,sinA=
5
3
,则=B cos _______________ 。
21.如图,在一次龙卷风中,一棵大树在离地面若干米处折断倒下,B 为折断处最高点,树顶A 落在离树根C 的12米处,测得∠BAC=300,则BC 的长是______________米。
22.若∠A 是锐角,cosA =
2
3
,则∠A =____________ 。
23.计算2sin30°+3tan30° ·tan45°=___________。
24.如图,在坡度为1︰2的山坡上种树,要求株距(相邻两树间的水平距离)是6米,斜坡上相邻两树间的坡面距离是_________ 米. 三、解答题:(60分)
21. (本题满分10分) 小明和小颖玩掷硬币的游戏,游戏规则如下: 将一枚均匀硬币任意掷两次,两次都是正面朝上小明赢,否则小颖赢, 这是一个对游戏双方都公平的游戏吗?试说明理由。
如果你认为这个游 戏不公平,请你为小明和小颖设计一个公平的游戏规则。
23.(本题10分)D 为反比例函数:)0(k <x
k
y =
图象上一点.过D 作DC ⊥y 轴于C,
DE ⊥x 轴于E,一次函数m x y +-=与23
3
+-
=x y 的图象都过C 点,与x 轴分别交于A 、B 两点。
若梯形DCAE 的面积为4,求k 的值.
23.(6分)已知一个二次函数的图象经过点(0,0),(1,—3),(2,—8).
求这个二次函数的解析式; 写出它的对称轴和顶点坐标。
27.(本题10分)某学校七年级数学兴起小组组织一次数学活动。
在一座有三道环形路的数字迷宫的每个进口处都标记着一个数,要求进入者把自己当做数“1”,进入时必须乘进口处的数,并将结果带到下一个进口,依次累乘下去,在通过最后一个进口时,只有乘积是5的倍数,才可以进入迷宫中心。
现让一名5岁小朋友小军从最外环任一个进口进入。
(1)小军能进入迷宫中心的概率是多少?请画出树状图进行说明;
(2)小组两位组员小张和小李商量做一个小游戏,以猜测小军进迷宫的结果比胜负。
游戏规则规定:小军如果能进入迷宫中心,小张和小李各得1分;小军如果不能进入进入迷宫中心。
则他在最后一个进口处所得乘积是奇数时,小张得3分,所得乘积是偶数时,小李得3分。
你认为这个游戏公平吗?如果公平,请说明理由;如果不公平,请在第二道环进口处得两个数中改变其中一个数使游戏公平;
(3)在(2)的游戏规则下,让小军从最外环进口任意进入10次,最终小张和小李的总得分之和不超过28分,请问小军至少几次进入迷宫中心?
28.(12分)如图,一位篮球运动员跳起投篮,球沿抛物线5.3512
+-
=x
y 运行,
然后准确落入篮框内.已知篮框的中心离地面的距离为3.05米. (1)球在空中运行的最大高度为多少米?
(2框中心的水平距离是多少?
y
x
E D
C B A O。