21.2.2 公式法
初中数学教学课件:21.2.2 公式法(人教版九年级上)

x2 x 6.82 102.
即,2x2-13.6x-53.76=0. 解这个方程,得 x1=9.6; x2=-2.8(不合题意,舍去).
∴x-6.8=2.8. 答:门的高是9.6尺,宽是2.8尺.
10
x
x-6.8
通过本课时的学习,需要我们掌握:
1.由配方法解一般形式的一元二次方程 ax2+bx+c=0
∴x b b2 4ac 3 25 3 5
2a
22
4
ห้องสมุดไป่ตู้
即x1=2,x2= 1 . 2
跟踪训练
1、解方程:x2 3 2 3x
【解析】化简为一般式
x2 2 3x 3 0
这里 a=1, b= 2 3 , c= 3. ∵b2 - 4ac=( 2 3 )2 - 4×1×3=0,
x 2
3 21
0
23 2
3,
即:x1= x2= 3
2、解方程:(x-2)(1-3x)=6. 【解析】去括号:x-2-3x2+6x=6
化简为一般式:-3x2+7x-8=0 3x2-7x+8=0
这里 a=3, b=-7, c=8. ∵b2-4ac=(-7)2-4×3×8=49-96=-47<0, ∴原方程没有实数根.
21.2.2 公式法
x b b2 4ac (b2 4ac 0) 2a
1.理解一元二次方程求根公式的推导过程; 2.了解公式法的概念; 3.会熟练应用公式法解一元二次方程.
1、请用配方法解一元二次方程2x2+4x+1=0
2、用配方法解一元二次方程的步骤: (1)把原方程化成 x2+px+q=0的形式;
(x1-1)(x2-1) (1 2 1)(1 2 1) 2 2 2
九年级数学上册 21.2.2 公式法课件 (新版)新人教版

合作探究
2.用公式法解下列方程: (1)x2+x-12=0 ; (2)x2-x-=0; (3)x2+4x+8=2x+11; (4)x(x-4)=2-8x; (5)x2+2x=0 ; (6)x2+2x+10=0.
解:(1)x 1=3,x 2=-4;
2+ 3
2- 3
(2)x 1= 2 ,x 2= 2 ;
第二十一章:一元二次方程
21.2 解一元二次方程 21.2.2 公式法
学习目标
1. 理解一元二次方程求根公式的推导过程,了 解公式法的概念.
2. 会熟练应用公式法解一元二次方程.
重点难点
重点:求根公式的推导和公式法的应用. 难点:一元二次方程求根公式的推导.
学前准备
用配方法解方程: (1)x2+3x+2=0; 解:x1=-2,x2=-1; (2)2x2-3x+5=0. 解:无解.
(3)没有实数根?
解:(1)m<
1 4
Hale Waihona Puke ;(2)m=;14
(3)m> .
1 4
合作探究
3. 已知x2+2x=m-1没有实数根,求证:x2+ mx=1-2m必有两个不相等的实数根.
证明:∵x2+2x-m+1=0没有实数根, ∴4-4(1-m)<0,∴m<0. 对于方程x2+mx=1-2m,即x2+mx+2m-1 =0, Δ=m2-8m+4,∵m<0,∴Δ>0, ∴x2+mx=1-2m必有两个不相等的实数根.
(3)利用求根公式解一元二次方程的方法叫做公式法. 根((,45))也由一可求般能根地有,公式式可子个知b12实,-根一4a或元c叫者二做次方方实程程没根a最x有.2多+有bx+c2个 =实数 0(a≠0)的根的判别式,通常用希腊字母Δ表示,即Δ=b2 -4ac.
21.2.2解一元二次方程——公式法

21.2.2 解一元二次方程——公式法学习目标:1.理解一元二次方程求根公式的推导过程;2.会利用求根公式解简单数字系数的一元二次方程;3.经历探索求根公式的过程,发展学生合情合理的推理能力;学习重点:求根公式的推导和公式法的应用难点:一元二次方程求根公式的推导一、复习导学1.配方法解一元二次方程的步骤是_______________________________;2.一元二次方程26710xx -+=中a=_____,b=_____,c=_______; 3.在方程2x a =中,当0a >时,1x =2x =;当0a =时,1x =2x =;当0a <时,方程实数根。
二、自主学习问题1:能否用配方法把一般形式的一元二次方程转化为吗? 因为,方程两边都除以,得移项,得配方,得即三、合作探究问题2:根据配方的结果讨论方程跟的情况: 小结:一般地,式子b 2-4ac 叫做一元二次方程ax 2+bx +c =0(a ≠0),通常用希腊字母“⊿”表示,即⊿=一元二次方程20(0)axbx c a ++= ≠根的情况: ⑴当⊿=b 2-4ac >0时,一元二次方程ax 2+bx +c =0(a ≠0)•有两个不相等实数根即x 1=,x 2=。
⑵当⊿= b 2-4ac =0时,一元二次方程ax 2+bx +c =0(a ≠0)有两个相等实数根即x 1=x 2=。
⑶当⊿=b 2-4ac <0时,一元二次方程ax 2+bx +c =0(a ≠0)•没有实数根。
⑴⑵又合称有实数根;反过来也成立。
由上可知,一元二次方程20(0)ax bx c a ++= ≠的根由方程的系数a,b,c 而定,因此: (1) 解一元二次方程时,可以先将方程化为一般形20(0)ax bx c a ++= ≠,当240b ac -≥时,将a,b,c 代入式子x=_____________,就得到方程的根; 20(0)ax bx c a ++=≠2224()4b b ac x a a -+=0a ≠a 2224()4b b ac x a a-+=(2) 这个式子叫做一元二次方程的求根公式;(3) 利用求根公式解一元二次方程的方法叫公式法;(4) 由求根公式可知,一元二次方程最多有___个实数根。
第二十一章21.2.2公式法

栏目索引
易错点二 对形如ax2+bx+c=0的方程有实数根的问题理解错误 例2 (2018河南新乡辉县二模)关于x的方程ax2-2x-1=0有实数根,则a的 取值范围是 ( ) A.a≥-1 B.a>-1 C.a≥-1且a≠0 D.a>-1且a≠0 解析 当a≠0时,∵原方程有实数根, ∴Δ=4+4a≥0,∴a≥-1; 当a=0时,-2x-1=0有实数根.故选A.
根的判别 式的应用
(1)不解方程直接判断一元二次方程根的情况; (2)已知一元二次方程根的情况,用根的判别式求方程中未知字母的值或取值范围
21.2.2 公式法
栏目索引
例1 (2017上海中考)下列方程中,没有实数根的是 ( ) A.x2-2x=0 B.x2-2x-1=0 C.x2-2x+1=0 D.x2-2x+2=0 解析 A选项,Δ=(-2)2-4×1×0=4>0,∴有两个不相等的实数根; B选项,Δ=(-2)2-4×1×(-1)=8>0,∴有两个不相等的实数根; C选项,Δ=(-2)2-4×1×1=0,∴有两个相等的实数根; D选项,Δ=(-2)2-4×1×2=-4<0,∴D选项中的方程没有实数根,故选D. 答案 D 点拨 不解方程可通过计算Δ的值来判断根的情况.特殊的方程可不必 计算Δ的值,如:当a与c异号,或b≠0且c=0时,方程有两个不相等的实数 根.
答案 A 点拨 首先根据一次函数的定义确定字母的取值范围,然后由字母的取 值范围得出判别式的取值范围,最后得出根的情况.
21.2.2 公式法
栏目索引
题型三 根的判别式与三角形的综合应用
例3 已知a,b,c分别为△ABC中∠A,∠B,∠C的对边,若关于x的一元二次方
21.2.2公式法

21.2.2公式法教学目标:1.知识与技能:⑴理解一元二次方程求根公式的推导过程。
⑵掌握公式结构,知道使用公式前先将方程化为一般形式,通过判别式判断根的情况。
⑶会利用求根公式解简单数字系数的一元二次方程。
2.过程与方法:经历从用配方法解数字系数的一元二次方程到解字母系数的一元二次方程,探索求根公式,发展学生合情合理的推理能力,并认识到配方法是理解公式的基础。
3.情感态度与价值观:提高学生运算能力,使学生获得成功体验,建立学习信心。
教学重点:用公式法解简单系数的一元二次方程。
教学难点:求根公式的推导过程。
教学过程:一、复习引入导语:我们学习了用配方法解数字系数的一元二次方程,能否用配方法解一般形式的一元二次方程()002≠=++a c bx ax 二、探究新知活动1.学生观察下面两个方程思考它们有何异同?○1;6x 2-7x+1=0 ○2()002≠=++a c bx ax 活动2.按配方法一般步骤同时对两个方程求解: 1.移项得到:c bx ax -=+2用求根公式解一元二次方程的方法叫做公式法.1.当b 2-4ac >0时,一元二次方程ax 2+bx +c =0(a ≠0)有两个不等实数根;2.当b 2-4ac =0时,一元二次方程ax 2+bx +c =0(a ≠0)有两个相等实数根;3.当b 2-4ac <0时,一元二次方程ax 2+bx +c =0(a ≠0)没有实数根.一般的,式子b 2-4ac 叫方程ax 2+bx +c =0(a ≠0)根的判别式.用字母△表示.即△=b 2-4ac.一元二次方程的判别式与根的情况有何关系?(1)当方程有两个不相等的实数根时,b 2-4ac >0(2)当方程有两个相等的实数根时,b 2-4ac =0(3)当方程没有实数根时,b 2-4ac <0你能用公式法解方程2x 2-9x =-8吗?解:2x 2-9x +8=0 1.变形:化已知方程为一般形式; ∵a =2,b =-9,b =8 2.确定系数:用a ,b 写出各项系数;△=b 2-4ab =(-9)2-4×2×8=27>03.计算:b 2-4ab 的值;4.代入:把有关数值代入公式计算; ().417922179242±=⨯±--=-±-=∴a ac b b x .4179;417921-=+=∴x x 5.定根:写出原方程的根.用公式法解一元二次方程的一般步骤:1、把方程化成一般形式,并写出a 、b 的值;2、求出△=b 2-4ab 的值;3、代入求根公式;4、写出方程的解;归纳小结本节课应掌握:公式法的概念及用其解一元二次方程的步骤.。
人教版九年级数学上册课件:21.2.2公式法

21.2.2 公式法
(2)方程整理,得 x2-2 5x+10=0,
∵Δ=b2-4ac=(-2 5)2-4×1×10=-20<0,∴此方程无实数根.
(3)方程整理,得 x2+4x-2=0.∵a=1,b=4,c=-2,
∴b2-4ac=16+8=24>0,∴x=-42±×1 24,
∴x1=-2+ 6,x2=-2- 6. (4)原方程可化为 x2-9x+2=0.∵a=1,b=-9,c=2,
1)·(-2)=9+8(a-1)≥0,且 a-1≠0,即得 a≥-81且 a≠1.
21.2.2 公式法
13.已知等腰三角形的腰长为 x,周长为 20,则方程 x2- 12x+31=0 的根为___6+___5__.
【解析】由方程 x2-12x+31=0 得 a=1,b=-12,c=31,b2-4ac=(-12)2 12± 20
(2)方程的根为 x= ,即 x =2,x =k+1.∵方程总有一个根 艰闹群垛漆除蛾多悠纷铝终锰炕毅贞绵粳压谣灸艇磁诧酱述凶妖喧朝芋疡人教版九年级数学上册课件:211.
2
2 2公式法作业本人教版九年级数学上册课件:21.
馏亥磨甩僵钾河纪灿翼大实刃昂拎赣崇捍您戌登棺秤渣肃例笆荚弗窿鼻冗人教版九年级数学上册课件:21.
2公式法作业本人教版九年级数学上册课件:21.
【解析】∵点 P(a,c)在第二象限,∴a<0,c>0, 第二十一章 一元二次方程
敞憨厦打员寨玩缠厦驰农头宗怂在例沫呢蒲绥河谣泞躲结旧双峻饯喘兽纸人教版九年级数学上册课件:21.
敞憨厦打员寨玩缠厦驰农头宗怂在例沫呢蒲绥河谣泞躲结旧双峻饯喘兽纸人教版九年级数学上册课件:21.
21.2.2 公式法
14.用公式法解下列方程:
21.2.2_公式法

x b
b2
4ac
. b2
4ac
;
0.
7.定解:写出原方程的解
2a
.
用配方法解一般形式的一元二次方程
ax2 bx c 0 (a 0) ∵a 0,4a2 0 当 b2 4ac 0
即
b
b2 4ac
x
2a
2a
特别提醒
b b2 4ac x
b b2 4ac b b2 4ac
2a
2a
b b 2a 2a
b 0
五、师生互动,课堂小结
通过本节课的学习,你有哪些收获和体会?
课后作业
1.布置作业:从教材“习题21.2”中选取。 2.完成状元导练中本课时练习的“课后作业”部分。
解:将x=0代入方程, 得m²+2m-3=0, 解得m1=1,m2=-3, 又∵m-1≠0,即m≠1. 故m的值为-3.
5.解下列方程:
(1)x²+x-6=0; (2)x2 3x 1 0 ;
4
(3)3x²-6x-2=0; (4)4x²-6x=0; (5)x²+4x+8=4x+11; (6)x(2x-4)=5-8x.
3.方程 2x2 4 3x 6 2 0 的根是( D )
A. x1 2, x2 3 B. x1 6, x2 2 C.x1 2 2, x2 2 D. x1 x2 6
4.关于x的一元二次方程(m-1)x²+x+m²+2m-3=0有 一个根为0,试求m的值.
2a
一元二次方程 的求根公式
x1 b
b2 2a
人教版数学九年级上册 21.2.2公式法 课件(共20张PPT)

第二十一章 二元一次方程
21.2.2 公式法
学习目标
1.理解一元二次方程求根公式的推导过程,会用b2-4ac 的值判断一元二次方程根的情况,会运用公式法解一元二次 方程。
2.通过对求根公式的发现和探索过程,提高观察能力、 分析能力和逻辑思维能力。
3.发展独立思考,勇于探索的创新精神,渗透转化思想, 使其感受数学的内在美。
例 用公式法解方程:
解:(1)a=1,b=-4,c=-7.
1.确定系数
Δ=b2-4ac=(-4)2-4×1×(-7)=44>0,2.计算 Δ 方程有两个不相等的实数根.
.
3.代入
即
,
.
4.定根
Байду номын сангаас
例 用公式法解方程: 解:
.
例 用公式法解方程:
解: (3)方程化为5x2-4x-1=0.
a=5,b=-4,c=-1.
导入新知
同学们,用直接开平方法和配方法解一元二 次方程,计算比较麻烦,能否研究出一种更好的 方法,迅速求得一元二次方程的实数根呢?
合作探究
你能用配方法解方程 ax2+bx+c=0(a≠0) 吗?
x2 b x c 0 aa
1.化1: 把二次项系数化为1 2.移项: 把常数项移到方程的右边
3.配方: 方程两边都加上一次项 系数的一半的平方
故选B.
A
A.2x2+4x+1=0 B.2x2-4x+1=0 C.2x2-4x-1=0 D.2x2+4x-1=0
4.当 a<0 时,方程x|x|+|x|-x-a=0 的解为
.
再见
2.计算根的判别式:将 a,b,c 的值代入 Δ=b2-4ac 计算,并判断 Δ 的符号.