同角的三角函数的基本关系

合集下载

5同角三角函数的基本关系式

5同角三角函数的基本关系式
变形1 :已知sin 2cos 0, 求 sin , cos的值. 变形2 :已知 sin cos 3, 求 sin , cos的值.
sin cos
解题技巧 : 把角看成锐角,利用直角三角形中边的关系求解, 但最后结果还要根据角所在的象限确定符号。
例3.已知 tan 2,求下列各式的值:
(3)可以实现同角不同名三角函数之间的转化.
知其一, 可以求其它.
例1.已知sin 3 , 且是第三象限角,求 cos, tan的值 .
5 变题1 :已知sin 3 , 求 cos , tan的值 .
5
变题2 : 若sin m (| m | 1). 求 cos和tan的值.
例2. 已知tan 2, 求sin与cos的值 .
为sin和 cos, 且 (0,2 ).
(1)求m的 值 ; ( 2)求 方 程 的 两 根 及 此 时的 值.
3
练习: 2
3 ,1 22

63
1.已知sin cos 2,求下列各式的值:
(1)sin3 cos3 ;2 (2)sin4 cos4 ;1 (3)sin cos .
由三角函数的定义或三角函数线得: 同角三角函数的基本关系式:
三 角
①平方关系:sin2 cos2 1

等 式
②商数关系:tan sin ( k , k Z )
cos
2
注意:(1)关系式是对于同角而言的.
(2“) sin2 ”读作“sin的平方”,不能将sin2 写成sin 2 .
(1) 4sin 2cos 3cos 3sin
2 3
2sin2 3cos 2 (2) 4sin2 9cos 2
5 7
(3) 1 sin2 2 cos2 sin cos 2

同角三角函数的两个基本关系式

同角三角函数的两个基本关系式

同角三角函数的两个基本关系式
同角三角函数是指在一个角度上的正弦、余弦和正切的比值关系。

这三个函数在数学中有很重要的应用,特别是在三角学和几何学中。

第一个基本关系式是正弦函数的定义:在一个角度上,正弦函数的值等于对边与斜边的比值。

用数学符号表示,正弦函数可以表示为sin(θ) = opposite/hypotenuse,其中θ代表角度,opposite代表对边的长度,hypotenuse代表斜边的长度。

第二个基本关系式是余弦函数的定义:在一个角度上,余弦函数的值等于邻边与斜边的比值。

用数学符号表示,余弦函数可以表示为cos(θ) = adjacent/hypotenuse,其中θ代表角度,adjacent代表邻边的长度,hypotenuse代表斜边的长度。

这两个基本关系式可以帮助我们计算任意给定角度上的正弦和余弦值。

它们是通过比较三角形的不同边的长度与斜边的长度来定义的。

这些定义为我们提供了一种准确计算角度上三角函数值的方法,在解决各种问题时非常有用。

同角三角函数的基本关系与诱导公式知识点

同角三角函数的基本关系与诱导公式知识点

同角三角函数的基本关系与诱导公式知识点[归纳·知识整合]1.同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1; (2)商数关系:tan α=sin αcos α.[探究] 1.如何理解基本关系中“同角”的含义?提示:只要是同一个角,基本关系就成立,不拘泥于角的形式,如sin 2α3+cos 2α3=1,tan4α=sin 4αcos 4α等都是成立的,而sin 2θ+cos 2φ=1就不成立.2.诱导公式即α+k ·2π(k ∈Z ),-α,π±α的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号;π2±α的正弦(余弦)函数值,分别等于α的余弦(正弦)函数值,前面加上一个把α看成锐角时原函数值的符号.[探究] 2.有人说sin(k π-α)=sin(π-α)=sin α(k ∈Z ),你认为正确吗?提示:不正确.当k =2n (n ∈Z )时,sin(k π-α)=sin(2n π-α)=sin(-α)=-sin α; 当k =2n +1(n ∈Z )时,sin(k π-α)=sin[(2n +1)·π-α]=sin(2n π+π-α)=sin(π-α)=sin α. 3.诱导公式的口诀“奇变偶不变,符号看象限”中的“符号”是否与α的大小有关? 提示:无关,只是把α从形式上看作锐角,从而2k π+α(k ∈Z ),π+α,-α,π-α,π2-α,π2+α分别是第一,三,四,二,一,二象限角. [自测·牛刀小试]1.(教材习题改编)已知cos(π+α)=12,则sin α的值为( )A .±12B.12C.32D .±32解析:选D cos(π+α)=-cos α=12,∴cos α=-12,∴sin α=±1-cos α2=±32.2.tan 690°的值为( ) A .-33B.33C. 3 D .- 3解析:选A tan 690°=tan(-30°+2×360°) =tan(-30°)=-tan 30°=-33. 3.(教材习题改编)若tan α=2,则sin α-cos αsin α+cos α的值为( )A .-13B .-53C.13D.53解析:选Csin α-cos αsin α+cos α=tan α-1tan α+1=2-12+1=13.4.(教材习题改编)已知tan α=3,π<α<32π,则cos α-sin α=________.解析:∵tan α=3,π<α<32π,∴α=43π,∴cos α-sin α=cos 43π-sin 43π=-cos π3+sin π3=-12+32=3-12.答案:3-125.计算sin 10π3-2cos ⎝⎛⎭⎫-19π4+tan ⎝⎛⎭⎫-13π3=________. 解析:原式=sin ⎝⎛⎭⎫2π+4π3-2cos ⎝⎛⎭⎫4π+3π4-tan ⎝⎛⎭⎫4π+π3=sin ⎝⎛⎭⎫π+π3-2cos ⎝⎛⎭⎫π-π4-tan π3 =-sin π3+2cos π4-3=-332+1.答案:-332+1[例1] 已知α是三角形的内角,且sin α+cos α=15.(1)求tan α的值; (2)把1cos 2α-sin 2α用tan α表示出来,并求其值.[自主解答] (1)法一:联立方程⎩⎪⎨⎪⎧sin α+cos α=15, ①sin 2α+cos 2α=1, ②由①得cos α=15-sin α,将其代入②,整理得 25sin 2α-5sin α-12=0. ∵α是三角形内角,∴⎩⎨⎧sin α=45,cos α=-35,∴tan α=-43.法二:∵sin α+cos α=15,∴(sin α+cos α)2=⎝⎛⎭⎫152,即1+2sin αcos α=125, ∴2sin αcos α=-2425,∴(sin α-cos α)2=1-2sin αcos α=1+2425=4925.∵sin αcos α=-1225<0且0<α<π,∴sin α>0,cos α<0,∴sin α-cos α>0. ∴sin α-cos α=75.由⎩⎨⎧sin α+cos α=15,sin α-cos α=75,得⎩⎨⎧sin α=45,cos α=-35,∴tan α=-43.(2)1cos 2α-sin 2α=sin 2α+cos 2αcos 2α-sin 2α=sin 2α+cos 2αcos 2αcos 2α-sin 2αcos 2α=tan 2α+11-tan 2α. ∵tan α=-43,∴1cos 2α-sin 2α=tan 2α+11-tan 2α=⎝⎛⎭⎫-432+11-⎝⎛⎭⎫-432=-257.保持本例条件不变,求:(1)sin α-4cos α5sin α+2cos α;(2)sin 2α+2sin αcos α的值. 解:由例题可知 tan α=-43.(1)sin α-4cos α5sin α+2cos α=tan α-45tan α+2=-43-45×⎝⎛⎭⎫-43+2=87. (2)sin 2α+2sin αcos α=sin 2α+2sin αcos αsin 2α+cos 2α=tan 2α+2tan α1+tan 2α=169-831+169=-825.———————————————————同角三角函数关系式及变形公式的应用(1)利用sin 2α+cos 2α=1可以实现角α的正弦、余弦的互化,利用sin αcos α=tan α可以实现角α的弦切互化.(2)应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二.(3)注意公式逆用及变形应用:1=sin 2α+cos 2α,sin 2α=1-cos 2α,cos 2α=1-sin 2α.1.已知sin α=2sin β,tan α=3tan β,求cos α. 解:∵sin α=2sin β,tan α=3tan β, ∴sin 2α=4sin 2β,① tan 2α=9tan 2β.②由①÷②得:9cos 2α=4cos 2β.③ 由①+③得sin 2α+9cos 2α=4. 又sin 2α+cos 2α=1, ∴cos 2α=38,∴cos α=±64.[例2] (1)已知cos ⎝⎛⎭⎫π6+α=33,求cos ⎝⎛⎭⎫5π6-α的值; (2)已知π<α<2π,cos(α-7π)=-35,求sin(3π+α)·tan ⎝⎛⎭⎫α-72π的值. [自主解答] (1)∵⎝⎛⎭⎫π6+α+⎝⎛⎭⎫5π6-α=π, ∴5π6-α=π-⎝⎛⎭⎫π6+α. ∴cos ⎝⎛⎭⎫5π6-α=cos ⎣⎡⎦⎤π-⎝⎛⎭⎫π6+α =-cos ⎝⎛⎭⎫π6+α=-33, 即cos ⎝⎛⎭⎫5π6-α=-33.(2)∵cos(α-7π)=cos(7π-α)=co s(π-α)=-cos α=-35,∴cos α=35.∴sin(3π+α)·tan ⎝⎛⎭⎫α-72π =sin(π+α)·⎣⎡⎦⎤-tan ⎝⎛⎭⎫72π-α =sin α·tan ⎝⎛⎭⎫π2-α=sin α·sin ⎝⎛⎭⎫π2-αcos ⎝⎛⎭⎫π2-α =sin α·cos αsin α=cos α=35.——————————————————— 利用诱导公式化简三角函数的思路和要求(1)思路方法:①分析结构特点,选择恰当公式;②利用公式化成单角三角函数;③整理得最简形式.(2)化简要求:①化简过程是恒等变形;②结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值.2.(1)已知sin α是方程5x 2-7x -6=0的根,且α是第三象限角,则sin ⎝⎛⎭⎫-α-3π2cos ⎝⎛⎭⎫3π2-αtan 2(π-α)cos ⎝⎛⎭⎫π2-αsin ⎝⎛⎭⎫π2+α=( )A.916 B .-916C .-34D.34(2)设f (α)=2sin (π+α)cos (π-α)-cos (π+α)1+sin 2α+cos ⎝⎛⎭⎫3π2+α-sin 2⎝⎛⎭⎫π2+α⎝⎛⎭⎫sin α≠-12,则f ⎝⎛⎭⎫-23π6=________. 解析:(1)选B ∵方程5x 2-7x -6=0的根为x 1=2,x 2=-35,由题知sin α=-35,∴cos α=-45,tan α=34.∴原式=cos α(-sin α)tan 2αsin αcos α=-tan 2α=-916.(2)∵f (α)=(-2sin α)(-cos α)+cos α1+sin 2α+sin α-cos 2α=2sin αcos α+cos α2sin 2α+sin α=cos α(1+2sin α)sin α(1+2sin α)=1tan α, ∴f ⎝⎛⎭⎫-23π6=1tan ⎝⎛⎭⎫-23π6=1tan ⎝⎛⎭⎫-4π+π6=1tan π6= 3. 答案: 3[例3] 在△ABC 中,若sin(2π-A )=-2sin(π-B ),3cos A =-2cos(π-B ),求△ABC 的三个内角.[自主解答] 由已知得⎩⎪⎨⎪⎧sin A =2sin B ①3cos A =2cos B ②①2+②2得2cos 2A =1 即cos A =22或cos A =-22. (1)∵当cos A =22时,cos B =32, 又A 、B 是三角形的内角,∴A =π4,B =π6,∴C =π-(A +B )=7π12.(2)∵当cos A =-22时,cos B =-32. 又A 、B 是三角形的内角, ∴A =3π4,B =5π6,不合题意.综上知,A =π4,B =π6,C =7π12.———————————————————1.三角形中的诱导公式在三角形ABC 中常用到以下结论: sin(A +B )=sin(π-C )=sin C , cos(A +B )=cos(π-C )=-cos C ,tan(A +B )=tan(π-C )=-tan C , sin ⎝⎛⎭⎫A 2+B 2=sin ⎝⎛⎭⎫π2-C 2=cos C 2, cos ⎝⎛⎭⎫A 2+B 2=cos ⎝⎛⎭⎫π2-C 2=sin C 2. 2.求角的一般步骤求角时,一般先求出该角的某一三角函数值,再确定该角的范围,最后求角.3.在△ABC 中,sin A +cos A =2,3cos A =-2cos(π-B ),求△ABC 的三个内角. 解:∵sin A +cos A =2, ∴1+2sin A cos A =2,∴sin2A =1. ∵A 为△ABC 的内角, ∴2A =π2,∴A =π4.∵3cos A =-2cos(π-B ), ∴3cos π4=2cos B ,∴cos B =32. ∵0<B <π,∴B =π6.∵A +B +C =π,∴C =7π12.∴A =π4,B =π6,C =7π12.1个口诀——诱导公式的记忆口诀 奇变偶不变,符号看象限. 1个原则——诱导公式的应用原则 负化正、大化小、化到锐角为终了.3种方法——三角函数求值与化简的常用方法(1)弦切互化法:主要利用公式tan α=sin αcos α化成正、余弦.(2)和积转换法:利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化.(3)巧用“1”的变换:1=sin 2θ+cos 2θ=cos 2θ(1+tan 2θ)=tan π4=….3个防范——应用同角三角函数关系式与诱导公式应注意的问题(1)利用诱导公式进行化简求值时,先利用公式化任意角的三角函数为锐角三角函数,其步骤:去负—脱周—化锐.特别注意函数名称和符号的确定.(2)在利用同角三角函数的平方关系时,若开方,要特别注意判断符号. (3)注意求值与化简后的结果一般要尽可能有理化、整式化.易误警示——应用同角三角函数平方关系的误区[典例] (2011·重庆高考)若cos α=-35,且α∈⎝⎛⎭⎫π,3π2,则tan α=________. [解析] 依题意得sin α=-1-cos 2α=-45,tan α=sin αcos α=43.[答案] 43[易误辨析]1.解答本题时,常会出现以下两种失误(1)忽视题目中已知条件α的范围,求得sin α的两个值而致误; (2)只注意到α的范围,但判断错sin α的符号而导致tan α的值错误. 2.由同角三角函数的平方关系求sin α或cos α时,要注意以下两点(1)题目中若没有限定角α的范围,则sin α或cos α的符号应有两种情况,不可漏掉. (2)若已给出α的范围,则要准确判断在给定范围内sin α或cos α的符号,不合题意的一定要舍去.[变式训练]1.(2013·福州模拟)已知α∈⎝⎛⎭⎫π,3π2,tan α=2,则cos α=________. 解析:依题意得⎩⎪⎨⎪⎧tan α=sin αcos α=2,sin 2α+cos 2α=1,由此解得cos 2α=15,又α∈⎝⎛⎭⎫π,3π2,因此cos α=-55. 答案:-552.(2013·泰州模拟)若θ∈⎝⎛⎭⎫π4,π2,sin 2θ=116,则cos θ-sin θ的值是________. 解析:(cos θ-sin θ)2=1-sin 2θ=1516.∵π4<θ<π2,∴cos θ<sin θ.∴cos θ-sin θ=-154. 答案:-154一、选择题(本大题共6小题,每小题5分,共30分) 1.α是第一象限角,tan α=34,则sin α=( )A.45 B.35 C .-45D .-35解析:选B tan α=sin αcos α=34,sin 2 α+cos 2α=1,且α是第一象限角,所以sin α=35.2.若sin ⎝⎛⎭⎫π6+α=35,则cos ⎝⎛⎭⎫π3-α=( ) A .-35B.35C.45D .-45解析:选B cos ⎝⎛⎭⎫π3-α=cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫π6+α=sin ⎝⎛⎭⎫π6+α=35. 3.(2013·安徽名校模拟)已知tan x =2,则sin 2x +1=( ) A .0 B.95 C.43D.53解析:选B sin 2x +1=2sin 2x +cos 2x sin 2x +cos 2x =2tan 2x +1tan 2x +1=95.4.已知f (α)=sin (π-α)cos (2π-α)cos (-π-α)tan α,则f ⎝⎛⎭⎫-313π的值为( ) A.12 B .-13C .-12D.13解析:选C ∵f (α)=sin αcos α-cos αtan α=-cos α,∴f ⎝⎛⎭⎫-313π=-cos ⎝⎛⎭⎫-313π=-cos ⎝⎛⎭⎫10π+π3 =-cos π3=-12.5.(2013·西安模拟)已知2tan α·sin α=3,-π2<α<0,则sin α=( )A.32B .-32C.12 D .-12解析:选B 由2tan α·sin α=3得,2sin 2αcos α=3,即2cos 2α+3cos α-2=0,又-π2<α<0,解得cos α=12(cos α=-2舍去),故sin α=-32. 6.若sin θ,cos θ是方程4x 2+2mx +m =0的两根,则m 的值为( ) A .1+ 5 B .1- 5 C .1±5D .-1- 5解析:选B 由题意知:sin θ+cos θ=-m2,sin θcos θ=m4.∵(sin θ+cos θ)2=1+2sin θcos θ,∴m 24=1+m2,解得m =1±5,又Δ=4m 2-16m ≥0, ∴m ≤0或m ≥4,∴m =1- 5.二、填空题(本大题共3小题,每小题5分,共15分) 7.化简sin ⎝⎛⎭⎫π2+α·cos ⎝⎛⎭⎫π2-αcos (π+α)+sin (π-α)·cos ⎝⎛⎭⎫π2+αsin (π+α)=________.解析:原式=cos α·sin α-cos α+sin α(-sin α)-sin α=-sin α+sin α=0. 答案:08.若cos(2π-α)=53,且α∈⎣⎡⎦⎤-π2,0,则sin(π-α)=________.解析:由诱导公式可知cos(2π-α)=cos α,sin(π-α)=sin α,由sin 2α+cos 2α=1可得,sin α=±23,∵α∈⎣⎡⎦⎤-π2,0,∴sin α=-23. 答案:-239.已知sin(π-α)-cos(π+α)=23⎝⎛⎭⎫π2<α<π.则sin α-cos α=________.解析:由sin(π-α)-cos(π+α)=23, 得sin α+cos α=23,① 将①两边平方得1+2sin α·cos α=29,故2sin αcos α=-79.∴(sin α-cos α)2=1-2sin αcos α=1-⎝⎛⎭⎫-79=169. 又∵π2<α<π,∴sin α>0,cos α<0.∴sin α-cos α=43.答案:43三、解答题(本大题共3小题,每小题12分,共36分) 10.已知sin(3π+θ)=13,求cos (π+θ)cos θ[cos (π-θ)-1]+cos (θ-2π)sin ⎝⎛⎭⎫θ-3π2cos (θ-π)-sin ⎝⎛⎭⎫3π2+θ的值.解:∵sin(3π+θ)=-sin θ=13,∴sin θ=-13.∴原式=-cos θcos θ(-cos θ-1)+cos θcos θ·(-cos θ)+cos θ=11+cos θ+cos θ-cos 2θ+cos θ=11+cos θ+11-cos θ=21-cos 2θ=2sin 2θ=2⎝⎛⎭⎫-132=18. 11.已知关于x 的方程2x 2-(3+1)x +m =0的两根sin θ和cos θ,θ∈(0,2π),求: (1)sin 2θsin θ-cos θ+cos θ1-tan θ的值; (2)m 的值;(3)方程的两根及此时θ的值. 解:(1)原式=sin 2θsin θ-cos θ+cos θ1-sin θcos θ=sin 2θsin θ-cos θ+cos 2θcos θ-sin θ =sin 2θ-cos 2θsin θ-cos θ=sin θ+cos θ. 由条件知sin θ+cos θ=3+12,故sin 2θsin θ-cos θ+cos θ1-tan θ=3+12.(2)由sin 2θ+2sin θcos θ+cos 2θ=1+2sin θcos θ =(sin θ+cos θ)2,得m =32. (3)由⎩⎪⎨⎪⎧sin θ+cos θ=3+12,sin θ·cos θ=34知⎩⎨⎧sin θ=32,cos θ=12,或⎩⎨⎧sin θ=12,cos θ=32.又θ∈(0,2π),故θ=π6或θ=π3.12.是否存在α∈⎝⎛⎭⎫-π2,π2,β∈(0,π),使等式sin(3π-α)=2cos ⎝⎛⎭⎫π2-β,3cos(-α)=-2cos(π+β)同时成立?若存在,求出α,β的值,若不存在,请说明理由.解:假设存在α、β使得等式成立,即有⎩⎪⎨⎪⎧sin (3π-α)=2cos ⎝⎛⎭⎫π2-β, ①3cos (-α)=-2cos (π+β), ②由诱导公式可得⎩⎪⎨⎪⎧sin α=2sin β, ③3cos α=2cos β, ④ ③2+④2得sin 2α+3cos 2α=2,解得cos 2α=12.又∵α∈⎝⎛⎭⎫-π2,π2,∴α=π4或α=-π4. 将α=π4代入④得cos β=32.又β∈(0,π),∴β=π6,代入③可知符合.将α=-π4代入④得cos β=32.又β∈(0,π).∴β=π6,代入③可知不符合.综上可知,存在α=π4,β=π6满足条件.1.记cos(-80°)=k ,那么tan 100°=( ) A.1-k 2kB .-1-k 2kC.k1-k 2D .-k1-k 2解析:选B ∵cos(-80°)=cos 80°=k , sin 80°=1-k 2,∴tan 80°=1-k 2k,tan 100°=-tan 80°=-1-k 2k. 2.sin 585°的值为( ) A .-22B.22C .-32D.32解析:选A 注意到585°=360°+180°+45°,因此sin 585°=sin(360°+180°+45°)=-sin 45°=-22. 3.若cos α+2sin α=-5,则tan α=( ) A.12 B .2 C .-12D .-2解析:选B ∵cos α+2sin α=-5,结合sin 2α+cos 2α=1得(5sin α+2)2=0,∴sin α=-255,cos α=-55,∴tan α=2.4.求值:sin(-1 200°)·cos 1 290°+cos(-1 020°)·sin(-1 050)°+tan 945°. 解:原式=-sin 1 200°·cos 1 290°+cos 1 020°· (-sin 1 050°)+tan 945°=-sin 120°·cos 210°+cos 300°·(-sin 330°)+tan 225° =(-sin 60°)·(-cos 30°)+cos 60°·sin 30°+tan 45° =32×32+12×12+1=2. 5.若sin θ,cos θ是关于x 的方程5x 2-x +a =0(a 是常数)的两根,θ∈(0,π),求cos 2θ的值.解:∵由题意知:sin θ+cos θ=15,∴(sin θ+cos θ)2=125.∴sin 2θ=-2425,即2sin θcos θ=-2425<0,则sin θ与cos θ异号.又sin θ+cos θ=15>0,∴π2<θ<3π4,∴π<2θ<3π2.故cos 2θ=-1-sin22θ=-725.。

同角三角函数的基本关系推导

同角三角函数的基本关系推导

同角三角函数的基本关系推导
同角三角函数是指在同一角度下的三角函数,包括正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数。

它们之间存在一些基本的关系,在数学中具有重要的应用。

以正弦函数和余弦函数为例,它们之间的基本关系是:
sinθ + cosθ = 1
这个关系可以通过勾股定理和单位圆的概念得到。

我们可以将一个角度θ对应的单位圆上的点记作(P, Q),其中P表示点在x轴上的坐标,Q表示点在y轴上的坐标。

此时,正弦函数和余弦函数可以分别表示为:
sinθ = Q
cosθ = P
根据勾股定理可以得到:
P + Q = 1
将正弦函数和余弦函数代入上式,得到:
sinθ + cosθ = Q + P = 1
这就是同角三角函数之间的基本关系。

同样的方法也可以推导出其他的基本关系。

在实际应用中,同角三角函数的基本关系可以用于求解各种三角函数的值,简化计算过程,提高计算精度。

同时,它们也是学习高等数学、物理等学科的基础。

- 1 -。

同角三角函数的基本关系及诱导公式-高考复习

同角三角函数的基本关系及诱导公式-高考复习
(
)
√2
A.6
(2)已知 sin
√2
B.
6
2√5
α= 5 ,则
2
C.3

+)
2

cos ( -)
2
sin (
tan(π+α)+
=
2
D.
3
.
答案 (1)D
5
5
(2) 或2
2
解析 (1)sin2θ+sin(3π-θ)cos(2π+θ)-√2cos2θ
sin
θ-2cos2θ=
=
,
2
2
2
sin +cos
tan +1
4+2-2
θ=2,故原式=
4+1
=
4
.
5
解题心得 1.利用 sin2α+cos2α=1 可以实现角 α 的正弦、余弦的互化,利用
tan
sin
α=cos
≠ π +
π
,∈Z
2
可以实现角 α 的弦切互化.
2.“1”的灵活代换:1=cos α+sin α=(sin α+cos α) -2sin αcos
解题心得1.利用诱导公式化简三角函数的基本思路:(1)分析结构特点,选择
恰当公式;(2)利用公式化成单角三角函数;(3)整理得最简形式.
2.化简要求:(1)化简过程是恒等变形;(2)结果要求项数尽可能少,次数尽可
能低,结构尽可能简单,能求值的要求出值.
3.用诱导公式求值时,要善于观察所给角之间的关系,利用整体代换的思想简
【例 1】 (1)若
1

同角三角函数的基本关系式与诱导公式

同角三角函数的基本关系式与诱导公式
答案:4
课堂互动讲练
考点一
诱导公式的应用
应用诱导公式进行化简或证明时, 首先根据题意选准公式再用,一般是负 变正、大变小的思想.
在使用诱导公式时,α可为任意角, 并不一定要为锐角,只不过是在运用的 过程中把它“看作”是锐角而已.“奇 变偶不变,符号看象限”同样适用于正 切和余切.如tan(270°-α)=cotα等.
cos2x-1 sin2x=
cos2x+sin2x cos2x-sin2x
,想法
使分
子分
母都出现 tanx 即可.
课堂互动讲练
【解】 (1)法一:联立方程:
sinx+cosx=15, sin2x+cos2x=1.
① 2分

①式两边平方得:sin2x+cos2x+2sinxcosx
=215,
∴2sinxcosx=-2245.4 分 ∵-π2<x<0,∴sinx<0,cosx>0. ∴sinx-cosx=- sin2x-2sinxcosx+cos2x
三基能力强化
5.已知scions2θθ++14=2,那么(cosθ + 3)(sinθ+1)的值为________.
解析:∵scions2θθ++14=2,∴sin2θ+4= 2cosθ+2,
∴cos2θ+2cosθ-3=0,解得 cosθ= 1 或 cosθ=-3(舍去),由 cosθ=1 得 sinθ =0,∴(cosθ+3)(sinθ+1)=4.
规律方法总结
公式中 k·π2+α 的整数 k 来讲的.“象
限”指在 k·π2+α 中,将 α 看作锐角时 k·π2+
α
所在的象限,如将
cos(32π+α)写成
π cos(3·2

5.2.2同角三角函数的基本关系 课件

5.2.2同角三角函数的基本关系 课件

3 5
,且
是第三象限角,
求 cos, tan 的值。
解:因为 sin 2 cos2 1 ,所以
cos2
1
s in 2
1
3
2
16
5 25
因为 第三象限角,所以
cos 4
5
tan sin 3 cos 4
变式1.已知sin 3 ,求cos, tan的值.
5
先定象限,后定值 解 :sin 3 0且sin 1
sin( k 2 ) sin
cos( k 2 ) cos tan( k 2 ) tan
其中 k z
同角三角函数的基本关系:
如图,设 是一个任意角,它的
终边与单位圆交于点P(x,y),则
的终边 y
P(x,y) 1
sin y cos x
-1 M o
1x
tan y (x 0)
x
-1
△OMP直角三角形,而且OP=1。
由勾股定理有 OM2+MP2=1。
因此,x2+y2=1,即 sin2 cos2 1。
由三角函数定义有
tan
sin cos
(
2
k , k
Z )。
同角的三角函数的基本关系:
1.平方关系 2.商数关系
sin2 cos2 1
当 k ,(k Z )时
商数关系: tan sin ( k , k Z )
cos
2
(二)基本关系式的应用:
(1)求值 先定象限,后定值 (2)化简 (1)重视对“1”变形 (3)证明 (2)弦切互化
例析
例1.已知 tan 2,求 sin cos . sin cos
思考1:对于本题,你能想到哪一些解决的思路? 思路一:

同角三角函数的基本关系式与诱导公式-高考数学复习课件

同角三角函数的基本关系式与诱导公式-高考数学复习课件
4
2
sin2
1
cos2
α= · 2
+ · 2
2
3 sin +cos
4 sin +cos2
2 tan2
1
1
2
22
1
1
7
= · 2
+ · 2
= × 2 + × 2 = .
3 tan +1
4 tan +1
3
2 +1
4
2 +1
12
考点三
例3
(
sin α± cos α, sin α cos α之间的关系问题
[知识梳理]
知识点一 同角三角函数的基本关系式
1. 平方关系: sin 2α+ cos 2α= 1 .
sin
π
(α≠ + k π, k ∈Z)
2
2. 商数关系:tan α= cos

.

知识点二 诱导公式
公式

余弦
正切


π+α
-α
π-α
- sin α
- sin α
sin α
2 k π+α

1
θ= ,
25
∴ sin θ- cos θ= 1 − 2sincos = 1 −
∴ sin
4
θ= ,
5
∴tan
4
θ=- ,∴A,B,D正确.
3
cos
3
θ=- ,
5
24

25

49
7
= ,
25
5
方法总结
对于 sin α+ cos α, sin α- cos α, sin α cos α这三个式子,知一可
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

同角的三角函数的基本关系
2.2同角的三角函数的基本关系
一、教学目标:
⒈掌握同角三角函数的基本关系式,理解同角公式都是恒等式的特定意义;
2 通过运用公式的训练过程,培养学生解决三角函数求值、化简、恒等式证明的解题技能,提高运用公式的灵活性;
3 注意运用数形结合的思想解决有关求值问题;在解决三角函数化简问题过程中,注意培养学生思维的灵活性及思维的深化;在恒等式证明的教学过程中,注意培养学生分析问题的能力,从而提高逻辑推理能力.
二、教学重、难点
重点:公式及的推导及运用:(1)已知某任意角的正弦、余弦、正切值中的一个,求其余两个;(2)化简三角函数式;(3)证明简单的三角恒等式.
难点: 根据角α终边所在象限求出其三角函数值;选择适当的方法证明三角恒等式.
三、学法与教学用具
利用三角函数线的定义, 推导同角三角函数的基本关系式: 及 ,并灵活应用求三角函数值,化减三角函数式,
证明三角恒等式等.
教学用具:圆规、三角板、投影
四、教学过程
【创设情境】
与初中学习锐角三角函数一样,本节课我们来研究同角三角函数之间关系,弄清同角各不同三角函数之间的联系,实现不同函数值之间的互相转化.
【探究新知】
探究:三角函数是以单位圆上点的坐标来定义的,你能从圆的几何性质出发,讨论一
下同一个角不同三角函数之间的关系吗?
如图:以正弦线 ,余弦线和半径三者的长构成直角三角形,而且 .由勾股定理由 ,因此 ,即 .
根据三角函数的定义,当时,有 .
这就是说,同一个角的正弦、余弦的平方等于1,商等于角的正切.
【例题讲评】
例1化简:
解:原式
例2 已知
解:
(注意象限、符号)
例3求证:
分析:思路1.把左边分子分母同乘以,再利用公式变形;思路2:把左边分子、分母同乘以(1+sinx)先满足右式分子的要求;思路3:用作差法,不管分母,只需将分子转化为零;思路4:用作商法,但先要确定一边不为零;思路5:利用公分母将原式的左边和右边转化为同一种形式的结果;思路6:由乘积式转化为比例式;思路7:用综合法.
证法1:左边= 右边,
∴原等式成立
证法2:左边= =
=右边
证法3:
∵ ,

证法4:∵cosx≠0,∴1+sinx≠0,∴ ≠0,
∴ ===1,
∴ .
∴左边=右边∴原等式成立.
例4已知方程的两根分别是,

解:
(化弦法)
例5已知,

解:
【课堂练习】
化简下列各式
1.
2.
3.
练习答案:
解:(1)原式=


(2)原式=


【学习小结】
(1)同角三角函数的关系式的前提是“同角”,因此,.
(2)利用平方关系时,往往要开方,因此要先根据角所在象限确定符号,即要就角所在象限进行分类讨论. (1)作业:习题1.2A组第10,13题.
(2)熟练掌握记忆同角三角函数的关系式,试将关系
式变形等,得到其他几个常用的关
系式;注意三角恒等式的证明方法与步骤.
【课后作业】见学案
【板书设计】略
【教学反思】
1.2.2同角的三角函数的基本关系
课前预习学案
预习目标:
通过复习回顾三角函数定义和单位圆中的三角函数线,为本节所要学习的同角三角函数的基本关系式做好
铺垫。

预习内容:
复习回顾三角函数定义和单位圆中的三角函数线:。

提出疑惑:
与初中学习锐角三角函数一样,我们能不能研究同
角三角函数之间关系,弄清同角各不同三角函数之间的
联系,实现不同函数值之间的互相转化呢?
课内探究学案
学习目标:
⒈掌握同角三角函数的基本关系式,理解同角公式
都是恒等式的特定意义;
2 通过运用公式的训练过程,培养学生解决三角函数求值、化简、恒等式证明的解题技能,提高运用公式的灵活性;
3 注意运用数形结合的思想解决有关求值问题;在解决三角函数化简问题过程中,注意培养学生思维的灵活性及思维的深化;在恒等式证明的教学过程中,注意培养学生分析问题的能力,从而提高逻辑推理能力.学习过程:
【创设情境】
与初中学习锐角三角函数一样,本节课我们来研究同角三角函数之间关系,弄清同角各不同三角函数之间的联系,实现不同函数值之间的互相转化.
【探究新知】
探究:三角函数是以单位圆上点的坐标来定义的,你能从圆的几何性质出发,讨论一
下同一个角不同三角函数之间的关系吗?
如图:以正弦线 ,余弦线和半径三者的长构成直角三角形,而且 .由勾股定理由 ,因此 ,即 .
根据三角函数的定义,当时,有 .
这就是说,同一个角的正弦、余弦的平方等于1,商等于角的正切.
【例题讲评】
例1化简:
例3求证:
例4已知方程的两根分别是,

例5已知,

【课堂练习】
化简下列各式
3.
4.
3.
课后练习与提高
1 已知sinα+cosα=,且0<α<π,则tanα
的值为( )
2 若sin4θ+cos4θ=1,则sinθ+cosθ的值为( )
A 0
B 1
C -1
D ±若tanθ+cotθ=2,则sinθ
+cosθ的值为( )
A 0
B
C -
D ±若=10,则tanα的值为若tanα
+cotα=2,则sin4α+cos4α=若tan2α+cot2α=2,则sinαcosα=
课后练习与提高答案1 A 2 D 3 D 4 -2 5 6 ±
同角的三角函数的基本关系
教学目的:
⒈掌握同角三角函数的基本关系式,理解同角公式
都是恒等式的特定意义;
2 通过运用公式的训练过程,培养学生解决三角函
数求值、化简、恒等式证明的解题技能,提高运用公式
的灵活性;
3 注意运用数形结合的思想解决有关求值问题;在
解决三角函数化简问题过程中,注意培养学生思维的灵
活性及思维的深化;在恒等式证明的教学过程中,注意
培养学生分析问题的能力,从而提高逻辑推理能力.教学重点:同角三角函数的基本关系
教学难点:(1)已知某角的一个三角函数值,求它的其余各三角函数值时正负号的选择;(2)三角函数式的化简;(3)证明三角恒等式.
授课类型:新授课
知识回顾:同角三角函数的基本关系公式:
典型例题:
例1.已知sin =2,求α的其余三个三角函数值.例2.已知:且,试用定义求的其余三个三角函数值.例3.已知角的终边在直线y=3x上,求sin 和cos 的值.
说明:已知某角的一个三角函数值,求该角的其他三角函数值时要注意:
(1)角所在的象限;
(2)用平方关系求值时,所求三角函数的符号由角所在的象限决定;
(3)若题设中已知角的某个三角函数值是用字母给出的,则求其他函数值时,要对该字母分类讨论.
四、小结几种技巧
五、课后作业:
六、板书设计(略)
七、课后记:。

相关文档
最新文档