最优控制及应用
线性二次型最优控制应用举例与仿真

线性二次型最优控制一、最优控制概述最优控制,又称无穷维最优化或动态最优化,是现代控制理论的最基本,最核心的部分。
它所研究的中心问题是:如何根据受控系统的动态特性,去选择控制规律,才能使得系统按照一定的技术要求进行运转,并使得描述系统性能或品质的某个“指标”在一定的意义下达到最优值。
最优控制问题有四个关键点:受控对象为动态系统;初始与终端条件(时间和状态);性能指标以及容许控制。
一个典型的最优控制问题描述如下:被控系统的状态方程和初始条件给定,同时给定目标函数。
然后寻找一个可行的控制方法使系统从输出状态过渡到目标状态,并达到最优的性能指标。
系统最优性能指标和品质在特定条件下的最优值是以泛函极值的形式来表示。
因此求解最优控制问题归结为求具有约束条件的泛函极值问题,属于变分学范畴。
变分法、最大值原理(最小值原理)和动态规划是最优控制理论的基本内容和常用方法。
庞特里亚金极大值原理、贝尔曼动态规划以及卡尔曼线性二次型最优控制是在约束条件下获得最优解的三个强有力的工具,应用于大部分最优控制问题。
尤其是线性二次型最优控制,因为其在数学上和工程上实现简单,故其有很大的工程实用价值。
二、线性二次型最优控制2.1 线性二次型问题概述线性二次型最优控制问题,也叫LQ 问题。
它是指线性系统具有二次型性能指标的最优控制问题。
线性二次型问题所得到的最优控制规律是状态变量的反馈形式,便于计算和工程实现。
它能兼顾系统性能指标的多方面因素。
例如快速性、能量消耗、终端准确性、灵敏度和稳定性等。
线性二次型最优控制目标是使性能指标J 取得极小值, 其实质是用不大的控制来保持比较小的误差,从而达到所用能量和误差综合最优的目的。
2.2 线性二次型问题的提法给定线性时变系统的状态方程和输出方程如下:()()()()()()()()X t A t X t B t U t Y t C t X t ⎧=+⎨=⎩ (2.1))(t X 是n 维状态变量,)(t U 是m 维控制变量,)(t Y 是l 维输出变量,)(t A 是n n ⨯时变矩阵,)(t B 是m n ⨯时变矩阵。
最优控制理论及其应用

最优控制理论及其应用最优控制理论是现代控制理论中的一种重要分支,它的主要研究内容是在一定约束条件下,确定一个系统的最优控制策略,使得系统能够在最短时间或最小代价内达到所要求的状态或性能指标。
最优控制理论的发展和应用,在许多领域中都发挥着极为重要的作用,特别是在工业自动化、航空航天、经济管理、生态环保等方面,都有广泛的应用。
最优控制理论的基本思想是,通过建立数学模型,将实际系统抽象为一种数学形式,而后再在此基础上,建立最优控制问题的数学模型,并采用数学方法对问题进行求解。
但是,对于实际系统的复杂性,很难将所有的因素都纳入到数学模型中,同时,由于各种因素的交互作用,数学模型的求解也是一项十分复杂的任务。
因此,在最优控制理论的应用中,还需要依赖于模拟实验、仿真计算以及其他工程手段进行辅助。
最优控制理论的应用之一是自动驾驶车辆技术。
随着人工智能、物联网等技术的发展,自动驾驶车辆已经成为一个备受关注的热点。
而最优控制理论在自动驾驶车辆技术中的应用,主要是通过建立数学模型,优化车辆的控制策略,实现车辆在各种不同路况下的自主行驶。
例如,在车辆在高速公路上行驶时,为了保障安全,必须让车辆保持一定的速度,并在有必要时进行刹车操作。
此时,最优控制理论可以通过建立车辆的数学模型,并考虑各种因素的交互作用,建立车辆的最优控制策略,使车辆能够在最短时间内安全驶入某个车道或进行紧急停车等操作。
另一个应用最优控制理论的领域是空间控制技术。
在空间探索和利用中,最优控制理论起着至关重要的作用。
例如,在卫星控制中,需要通过最优控制技术来调节其轨道、高度、速度等参数,保证卫星能够在指定区域内工作,并实现卫星的长期稳定运行。
此外,在飞行器着陆时,也需要最优控制技术对飞行器的姿态、速度等参数进行调整,以确保飞行器能够安全着陆。
除了上述两个应用领域外,最优控制理论还广泛应用于经济管理、金融领域、天气预报等方面。
例如,在股票投资中,可以利用最优控制理论进行投资组合的优化,最大化收益,并降低投资风险;在天气预报中,也可以通过最优控制技术优化气象模型,提高预测的准确度,为国家农业、水利等领域的决策提供科学依据。
最优控制理论及应用

的控制律,使被控对象按预定要求运行,并使给
定的某一性能指标达到极小值(或极大值)
2019年3月10日
2
最优控制理论与应用
二 最优控制问题 1 例子 飞船软着陆问题 宇宙飞船在月球表面着陆
时速度必须为零,即软着陆,这要靠发动机的推
力变化来完成。问题是如何选择一个推力方案,
使燃料消耗最小。
m 飞船的质量,h 高度,v 垂直速度, g 月球重力加速度常数,M 飞船自身质量 F 燃料的质量
最优控制理论与应用
最优控制理论与应用
第一章 最优控制问题的一般概念 第二章 最优控制的变分方法 第三章 极小值原理及其应用 第四章 线性二次型问题的最优控制 第五章 动态规划
2019年3月10日
1
最优控制理论与应用
第一章 最优控制问题的一般概念
一 基本概念
最优控制理论中心问题:
给定一个控制系统(
已建立的被控对象的数学模型),选择一个容许
2019年3月10日
24
最优控制理论与应用
2.2 欧拉方程
(2)有等式约束泛函极值的必要条件 定理2.4 设有如下泛函极值问题:
min J ( x( )) g( x, x, t )dt
x(t ) t0 tf
s.t.
f ( x, x, t ) 0
其中, f=0为系统运动的微分方程,g(x,x,t)及x(t)在[t 0 ,t f ] 上连续可微,t 0 及t f 给定。 x,x,f R n 已知x(t 0 ) x 0 , x(t f ) x f , x(t) n , 则极值轨线x * (t) 满足如下欧拉方程
控制约束
0 u(t ) umax
任务:满足控制约束条件下,求发动机推力的 最优变化律,使登月舱由初始出发点到达目标处 (末态),并使性能指标达到极值(燃耗量最小)
最优控制的应用案例

最优控制的应用案例最优控制(Optimal Control)是一种在经济、工程、物理学和数学等诸多学科领域都很流行的算法和技术,它能通过系统模型与数学方程来分析系统的运动特性及行为,使系统能达到最佳控制状态,以满足特定的目标。
最佳控制技术可以有效地应用于包括信息处理、机器人控制、航天、控制网络、交通管制、供应链管理等领域,帮助企业提高产品质量,改善生产效率。
举一个比较流行的应用案例,航天制导系统的研发,最优控制可以帮助产品开发者们构建最优的制导系统,在考虑到各种条件和影响因子的情况下确定系统出现问题的可能性及解决的最佳方案。
通过将基于时变的力学模型与非线性的边界和动力学建模结合来实现更准确的动态模型,它可以保证航天器的健康运行和有效运行。
最优控制另一个应用案例就是机器人控制,它可以通过数学模型来推断机器人的动作,并让机器人以最快的速度做出正确的反应,以达到最佳的结果,从而提高工作效率。
通过对机器人的各个装载物流控制进行深入分析,最优控制可以给予机器人准确的动作指令,确保它做出正确而有效的操作,帮助机器人达到最佳工作状态。
最优控制广泛应用于交通管理领域,它可以通过模型与数学方程来构建出实时状态及演变趋势,并确保道路交通有效及平稳。
最优控制模型会通过计算最小化交通负载,提高行车路线的灵活性,并加强交通运行的安全性。
通过关注交通流动的非线性特性,将交通流量模型与控制系统相结合,使行车时变得更有序,并且能够自动适应多种情况。
通过最优控制技术,企业可以获得良好的生产结果和高效的安全控制。
此外,最优控制也可以解决供应链管理中的相关难题,以保证物流的有效运营、库存的有效控制、货物的及时交付等,从而确保企业可以顺利地生产和运营,为消费者提供优质的服务和产品。
工程学中的最优控制问题及其应用

工程学中的最优控制问题及其应用随着科学技术的发展,人们对于控制系统的要求越来越高。
在控制系统中,最优控制是一个重要的概念,其指的是在给定系统限制的情况下,使系统的运行达到最优状态的控制方法。
最优控制问题是控制理论的重要研究方向之一,广泛应用于电力、水利、交通、工业等多个领域。
本文将介绍最优控制问题的基本概念和应用。
一、最优控制问题的基本概念最优控制问题是指在给定的系统条件下,在所有可能的控制方法中选择一个最优控制方法,使系统的性能指标达到最优的控制问题。
最优控制方法的基本要求是控制系统具有最优性能,即在满足系统性能要求的前提下,系统的性能指标达到最小值或最大值。
最优控制的主要目的是使系统满足稳态和动态要求,包括响应时间、稳态误差、控制精度和系统稳定性等指标。
最优控制的基本方法可以分为两种:随机最优控制和确定性最优控制。
1. 随机最优控制随机最优控制是在随机环境下找到最优控制方法,即最小化或最大化某种性能指标。
其中,随机环境指的是随机噪声、随机干扰、随机变化等。
最优控制的关键问题是如何确定性能指标,其中包括性能指标的形式、选择和最优化方法等。
随机最优控制的主要方法有强化学习、动态规划、马尔可夫决策过程等。
2. 确定性最优控制确定性最优控制是在确定性环境下寻找最优控制方法,即最小化或最大化某种性能指标。
其中,确定性环境指的是已知的系统状态变量、控制输入和系统模型。
在确定性最优控制中,可以通过数学方法求解问题的最优解。
常见的方法有变分法、最优控制理论、优化方法等。
二、最优控制在工程中的应用1. 电力系统中的最优控制电力系统是一个大型复杂的控制系统,其最优控制问题主要在两个方面应用:发电机调度和电网优化控制。
发电机调度是指通过调度发电机的输出,使电网上的负荷得到最优分配,从而降低电网运行成本。
其中,最优控制的要求是保证电网的稳态和动态特性,例如频率稳定、电压稳定、无功平衡等。
电网优化控制是指通过调度各个电厂之间的电力输送,使得电网的运行达到最优。
最优控制原理及应用

最优控制原理及应用最优控制原理是指在给定系统的状态和约束条件下,通过选择最优的控制策略,使系统的性能指标达到最优。
最优控制理论是现代控制论的重要分支之一,广泛应用于工业制造、航天航空、交通运输、能源管理等领域。
最优控制理论的核心概念是最优控制问题。
最优控制问题是指在给定系统的动力学模型、性能指标以及约束条件下,寻找最优的控制策略,使系统的性能指标达到最优。
最优控制问题可以分为两类:静态最优控制问题和动态最优控制问题。
静态最优控制问题是指在给定系统的当前状态下,寻找最优的控制策略;动态最优控制问题是指在给定系统的初始状态下,寻找最优的控制策略使系统在一段时间内的性能指标达到最优。
最优控制原理的核心思想是通过优化算法来寻找最优的控制策略。
最优控制问题通常可以转化为一个最优化问题,通过求解最优化问题的解,得到最优的控制策略。
最优控制问题的求解方法主要有两种:动态规划和最优化方法。
动态规划方法将最优控制问题转化为一个递归求解的问题,通过构建一个值函数来描述系统的性能指标,然后通过递归求解值函数得到最优的控制策略。
最优化方法是一种利用优化算法求解最优控制问题的方法,通过定义一个优化目标函数,将最优控制问题转化为一个优化问题,通过求解优化问题的解得到最优的控制策略。
最优控制原理的应用非常广泛。
在工业制造领域,最优控制原理可以应用于生产调度、优化控制、质量控制等方面,实现生产过程的优化和效率的提高。
在航天航空领域,最优控制原理可以应用于航天器的姿态控制、飞行路径规划等方面,实现航天器的稳定和飞行轨迹的优化。
在交通运输领域,最优控制原理可以应用于交通信号控制、交通流优化等方面,实现交通拥堵的缓解和交通效率的提高。
在能源管理领域,最优控制原理可以应用于电网调度、能源供需平衡等方面,实现电力系统的优化和能源的高效利用。
最优控制原理的应用还涉及到许多其他领域,如经济学、环境保护、医学等。
在经济学中,最优控制原理可以应用于经济系统的优化和资源的分配问题,实现经济的高效运行和社会福利的最大化。
自适应控制和最优控制的基本原理和应用

自适应控制和最优控制的基本原理和应用在现代控制理论中,自适应控制和最优控制是两个重要的概念。
自适应控制是指根据被控对象的运动情况及其参数变化,调整控制器的参数,使得被控对象满足预先设定的控制性能要求。
最优控制是指在满足控制性能的基础上,使控制器的能耗最小,系统响应最快。
自适应控制和最优控制的基本原理是以被控对象的数学模型为基础。
对于自适应控制,需要对被控对象进行建模,以确定控制器参数的调整方向。
对于最优控制,需要对被控对象的数学模型进行优化,以找到最优的控制方案。
在自适应控制中,最常用的方法是模型参考自适应控制。
这种方法通过建立一个参考模型,将被控对象的运动与参考模型的运动进行比较,然后根据比较结果调整控制器的参数。
这种方法的优点是简单易懂,容易实现。
不过,这种方法要求被控对象的数学模型必须非常精确,否则会导致控制器参数调整不准确。
另一种常用的自适应控制方法是基于模糊逻辑的自适应控制。
该方法通过将控制器的参数用模糊集合形式表示,以适应被控对象模型的不确定性。
这种方法虽然参数调整方向不如模型参考自适应控制精确,但是可以适应更广泛的控制情况。
最优控制中,最常用的方法是线性二次型控制(LQR)。
这种方法通过对被控对象的数学模型进行优化,确定最优的控制器参数,以使系统的能耗最小。
该方法的优点是在满足控制性能的前提下,能够有效降低系统的能耗,提高系统的效率。
最优控制还可以用于求解动态优化问题。
在这种情况下,被控对象的状态会随时间变化,需要在每个时刻对控制器参数进行优化,以获得最优的控制方案。
这种方法可以应用于许多领域,包括经济系统、交通运输、动力系统等。
自适应控制和最优控制都有广泛的应用。
例如,在机械加工、机器人控制、电力系统等领域中,自适应控制可以有效提高系统的稳定性和控制性能。
而在航空航天、汽车控制、自动驾驶等领域中,最优控制可以降低系统的能耗,提高系统的效率。
总的来说,自适应控制和最优控制是现代控制理论中非常重要的概念,它们的应用范围广泛,可以有效地提高系统的效率和控制性能。
控制系统中的最优控制理论及应用

控制系统中的最优控制理论及应用控制系统是现代工程中不可或缺的一部分,它能够将输入信号转化为相应的输出信号,以实现对系统行为的调整和控制。
而在控制系统中,最优控制是一种关键的理论和方法,它能够在给定的条件下寻找到最优的控制策略,以使系统的性能达到最佳。
最优控制理论的核心是最优化问题,即在给定一组约束条件下,寻找能使某个性能指标达到最优的控制策略。
常见的性能指标有能耗最小、系统响应最快、误差最小等。
为了解决这类问题,最优控制理论通常利用微积分和变分法等数学工具来建立系统的数学模型,并通过求解最优化问题得到最优控制策略。
在最优控制理论中,常用的方法有数学规划、动态规划和最优化方法。
其中,数学规划是在一组约束条件下,通过建立目标函数的数学模型,利用数学优化算法求解最优解。
动态规划是一种递推算法,它通过将复杂的最优控制问题分解为一系列子问题,并利用最优化原理逐步递推求解。
最优化方法则是一类数学求解算法,通过迭代优化搜索来找到目标函数的最优解。
除了理论研究,最优控制理论在实际应用中也具有广泛的价值。
例如,在工程领域中,最优控制可应用于航空航天、自动化控制、能源管理等方面。
在航空航天领域,最优控制可以用于飞行器的轨迹规划和姿态控制,以实现飞行器的安全、高效运行。
在自动化控制领域,最优控制可以用于工业生产中的过程控制和优化,以提高生产效率和降低能源消耗。
在能源管理领域,最优控制可以用于电力系统的调度和优化,以合理分配能源资源和提高能源利用效率。
此外,在生物学、经济学和社会科学等领域中,最优控制理论也有广泛的应用。
在生物学中,最优控制可用于模拟和研究生物系统的行为和进化规律。
在经济学中,最优控制可用于确定最佳的生产方案和资源配置,以实现社会效益的最大化。
在社会科学中,最优控制可用于指导社会政策和管理决策,以实现社会资源的合理分配。
综上所述,最优控制理论是控制系统中的重要组成部分,它通过数学建模和优化算法,为控制系统提供了有效的解决方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最优控制及应用
摘要:最优控制是最优化方法的一个应用。
最优控制,又称动态最优化,是现代控制理论的最基本,最核心的部分。
它所研究的中心问题是:如何根据受控系统的动态特性,去选择控制规律,才能使得系统按照一定的技术要求进行运转,并使得描述系统性能或品质的某个“指标”在一定的意义下达到最优值。
最优控制问题有四个关键点:受控对象为动态系统;初始与终端条件(时间和状态);性能指标以及容许控制。
最优化一般可以分为最优设计、最优计划、最优管理和最优控制四个方面。
而最优控制理论是研究和解决从一切可能的控制方案中寻找最优解的一门学科,解决最优控制问题的主要方法有古典变分法、极大值原理和动态规划。
最优控制理论已被应用于综合和设计最速控制系统、最省燃料控制系统、最小能耗控制系统、线性调节器等。
同时本文也介绍了最优控制理论的新进展,即在线优化方法(局部参数最优化和整体最优化设计方法、预测控制中的滚动优化算法、稳态阶梯控制、系统优化和参数估计的集成研究方法)和智能优化方法(神经网络优化方法、遗传算法、模糊优化方法)。
关键词:最优化;最优控制;遗传算法
Optimum Control and Applications
Abstract: The optimum control is an application of optimization methods and is also called dynamic optimization, being the most fundamental and the most central part of the modern control theory. Its studied central problem is how to decide the control law on the basis of dynamic characteristics of the controlled system so that the system operates according to technical requirements and a certain indicator, which describes the system performance or quality, is optimized in a certain sense. The four key points of optimum control are the dynamic systems as the controlled plant, initial condition and terminal condition (time and state) and performance index and admissible control.
The optimization consists of optimal design, optimal plan, optimal management and optimal control. The optimal control theory is a subject of studying and finding the optimal solution from all possible control plans. The main solutions of solving optimal control problems include the classical variation methods, maximum principles as well as dynamic planning. The optimal control theory has been applied to comprehensive and designed time optimal control systems, minimum fuel control systems, minimum energy-control systems, linear regulators and so on. Besides, the paper also introduces the new development of optimal control theory, that is, on-line optimization methods, (which includes optimal design methods of local parameters and the overall parameters, rolling optimizing methods of predictive control, steady stair-like control and integration methods of system optimization and parameter estimation) and intelligent optimization methods, which covers neural network optimization methods, genetic algorithm and fuzzy optimal methods.
Key Words: Optimization, Optimum control, Genetic algorithm。