最优控制应用概述
最优控制理论及其应用

最优控制理论及其应用最优控制理论是现代控制理论中的一种重要分支,它的主要研究内容是在一定约束条件下,确定一个系统的最优控制策略,使得系统能够在最短时间或最小代价内达到所要求的状态或性能指标。
最优控制理论的发展和应用,在许多领域中都发挥着极为重要的作用,特别是在工业自动化、航空航天、经济管理、生态环保等方面,都有广泛的应用。
最优控制理论的基本思想是,通过建立数学模型,将实际系统抽象为一种数学形式,而后再在此基础上,建立最优控制问题的数学模型,并采用数学方法对问题进行求解。
但是,对于实际系统的复杂性,很难将所有的因素都纳入到数学模型中,同时,由于各种因素的交互作用,数学模型的求解也是一项十分复杂的任务。
因此,在最优控制理论的应用中,还需要依赖于模拟实验、仿真计算以及其他工程手段进行辅助。
最优控制理论的应用之一是自动驾驶车辆技术。
随着人工智能、物联网等技术的发展,自动驾驶车辆已经成为一个备受关注的热点。
而最优控制理论在自动驾驶车辆技术中的应用,主要是通过建立数学模型,优化车辆的控制策略,实现车辆在各种不同路况下的自主行驶。
例如,在车辆在高速公路上行驶时,为了保障安全,必须让车辆保持一定的速度,并在有必要时进行刹车操作。
此时,最优控制理论可以通过建立车辆的数学模型,并考虑各种因素的交互作用,建立车辆的最优控制策略,使车辆能够在最短时间内安全驶入某个车道或进行紧急停车等操作。
另一个应用最优控制理论的领域是空间控制技术。
在空间探索和利用中,最优控制理论起着至关重要的作用。
例如,在卫星控制中,需要通过最优控制技术来调节其轨道、高度、速度等参数,保证卫星能够在指定区域内工作,并实现卫星的长期稳定运行。
此外,在飞行器着陆时,也需要最优控制技术对飞行器的姿态、速度等参数进行调整,以确保飞行器能够安全着陆。
除了上述两个应用领域外,最优控制理论还广泛应用于经济管理、金融领域、天气预报等方面。
例如,在股票投资中,可以利用最优控制理论进行投资组合的优化,最大化收益,并降低投资风险;在天气预报中,也可以通过最优控制技术优化气象模型,提高预测的准确度,为国家农业、水利等领域的决策提供科学依据。
最优控制理论及应用

的控制律,使被控对象按预定要求运行,并使给
定的某一性能指标达到极小值(或极大值)
2019年3月10日
2
最优控制理论与应用
二 最优控制问题 1 例子 飞船软着陆问题 宇宙飞船在月球表面着陆
时速度必须为零,即软着陆,这要靠发动机的推
力变化来完成。问题是如何选择一个推力方案,
使燃料消耗最小。
m 飞船的质量,h 高度,v 垂直速度, g 月球重力加速度常数,M 飞船自身质量 F 燃料的质量
最优控制理论与应用
最优控制理论与应用
第一章 最优控制问题的一般概念 第二章 最优控制的变分方法 第三章 极小值原理及其应用 第四章 线性二次型问题的最优控制 第五章 动态规划
2019年3月10日
1
最优控制理论与应用
第一章 最优控制问题的一般概念
一 基本概念
最优控制理论中心问题:
给定一个控制系统(
已建立的被控对象的数学模型),选择一个容许
2019年3月10日
24
最优控制理论与应用
2.2 欧拉方程
(2)有等式约束泛函极值的必要条件 定理2.4 设有如下泛函极值问题:
min J ( x( )) g( x, x, t )dt
x(t ) t0 tf
s.t.
f ( x, x, t ) 0
其中, f=0为系统运动的微分方程,g(x,x,t)及x(t)在[t 0 ,t f ] 上连续可微,t 0 及t f 给定。 x,x,f R n 已知x(t 0 ) x 0 , x(t f ) x f , x(t) n , 则极值轨线x * (t) 满足如下欧拉方程
控制约束
0 u(t ) umax
任务:满足控制约束条件下,求发动机推力的 最优变化律,使登月舱由初始出发点到达目标处 (末态),并使性能指标达到极值(燃耗量最小)
最优控制的应用案例

最优控制的应用案例最优控制(Optimal Control)是一种在经济、工程、物理学和数学等诸多学科领域都很流行的算法和技术,它能通过系统模型与数学方程来分析系统的运动特性及行为,使系统能达到最佳控制状态,以满足特定的目标。
最佳控制技术可以有效地应用于包括信息处理、机器人控制、航天、控制网络、交通管制、供应链管理等领域,帮助企业提高产品质量,改善生产效率。
举一个比较流行的应用案例,航天制导系统的研发,最优控制可以帮助产品开发者们构建最优的制导系统,在考虑到各种条件和影响因子的情况下确定系统出现问题的可能性及解决的最佳方案。
通过将基于时变的力学模型与非线性的边界和动力学建模结合来实现更准确的动态模型,它可以保证航天器的健康运行和有效运行。
最优控制另一个应用案例就是机器人控制,它可以通过数学模型来推断机器人的动作,并让机器人以最快的速度做出正确的反应,以达到最佳的结果,从而提高工作效率。
通过对机器人的各个装载物流控制进行深入分析,最优控制可以给予机器人准确的动作指令,确保它做出正确而有效的操作,帮助机器人达到最佳工作状态。
最优控制广泛应用于交通管理领域,它可以通过模型与数学方程来构建出实时状态及演变趋势,并确保道路交通有效及平稳。
最优控制模型会通过计算最小化交通负载,提高行车路线的灵活性,并加强交通运行的安全性。
通过关注交通流动的非线性特性,将交通流量模型与控制系统相结合,使行车时变得更有序,并且能够自动适应多种情况。
通过最优控制技术,企业可以获得良好的生产结果和高效的安全控制。
此外,最优控制也可以解决供应链管理中的相关难题,以保证物流的有效运营、库存的有效控制、货物的及时交付等,从而确保企业可以顺利地生产和运营,为消费者提供优质的服务和产品。
工程学中的最优控制问题及其应用

工程学中的最优控制问题及其应用随着科学技术的发展,人们对于控制系统的要求越来越高。
在控制系统中,最优控制是一个重要的概念,其指的是在给定系统限制的情况下,使系统的运行达到最优状态的控制方法。
最优控制问题是控制理论的重要研究方向之一,广泛应用于电力、水利、交通、工业等多个领域。
本文将介绍最优控制问题的基本概念和应用。
一、最优控制问题的基本概念最优控制问题是指在给定的系统条件下,在所有可能的控制方法中选择一个最优控制方法,使系统的性能指标达到最优的控制问题。
最优控制方法的基本要求是控制系统具有最优性能,即在满足系统性能要求的前提下,系统的性能指标达到最小值或最大值。
最优控制的主要目的是使系统满足稳态和动态要求,包括响应时间、稳态误差、控制精度和系统稳定性等指标。
最优控制的基本方法可以分为两种:随机最优控制和确定性最优控制。
1. 随机最优控制随机最优控制是在随机环境下找到最优控制方法,即最小化或最大化某种性能指标。
其中,随机环境指的是随机噪声、随机干扰、随机变化等。
最优控制的关键问题是如何确定性能指标,其中包括性能指标的形式、选择和最优化方法等。
随机最优控制的主要方法有强化学习、动态规划、马尔可夫决策过程等。
2. 确定性最优控制确定性最优控制是在确定性环境下寻找最优控制方法,即最小化或最大化某种性能指标。
其中,确定性环境指的是已知的系统状态变量、控制输入和系统模型。
在确定性最优控制中,可以通过数学方法求解问题的最优解。
常见的方法有变分法、最优控制理论、优化方法等。
二、最优控制在工程中的应用1. 电力系统中的最优控制电力系统是一个大型复杂的控制系统,其最优控制问题主要在两个方面应用:发电机调度和电网优化控制。
发电机调度是指通过调度发电机的输出,使电网上的负荷得到最优分配,从而降低电网运行成本。
其中,最优控制的要求是保证电网的稳态和动态特性,例如频率稳定、电压稳定、无功平衡等。
电网优化控制是指通过调度各个电厂之间的电力输送,使得电网的运行达到最优。
最优控制问题的最大原理

最优控制问题的最大原理在控制论中,最优控制问题是一个重要的研究领域。
最优控制是指在给定系统和控制目标的情况下,找到使系统达到最佳性能的控制策略。
最大原理是解决最优控制问题的核心思想之一。
本文将介绍最优控制问题以及最大原理的概念、应用和实现过程。
一、最优控制问题的概述最优控制问题是在数学优化领域中的一个重要问题。
其目标是通过选择合适的控制输入,使系统的性能指标达到最优。
最优控制问题可以分为静态最优控制和动态最优控制两类。
静态最优控制是在给定时间段内,找到一个控制策略使得系统性能指标最优。
动态最优控制则是在一段时间内,找到一个最佳控制策略使得系统在整个过程中的性能指标最优。
二、最大原理的概念最大原理是最优控制问题中的一个基本概念。
它认为在最优控制问题中,系统的状态和控制变量满足一定的最大原理方程。
最大原理方程是通过构建系统状态的Hamilton-Jacobi-Bellman方程得到的。
最大原理方程可以用来确定最佳控制策略,将最优控制问题转化为一个求解偏微分方程的问题。
三、最大原理的应用最大原理在最优控制问题中有着广泛的应用。
例如,在经济学中,最大原理可以用来确定最优的资源分配策略,以最大化经济效益。
在工程控制中,最大原理可以用来设计最优的控制系统,以最大限度地提高系统的性能。
在交通流量控制中,最大原理可以应用于交通信号灯的优化控制,以最大程度地减少交通拥堵。
四、最大原理的实现过程最大原理的实现过程是一个复杂的数学优化问题。
通常需要使用数学工具和算法进行求解。
其中一个常用的方法是动态规划法。
动态规划法将最优控制问题分解为一系列子问题,并通过递归的方式求解每个子问题,最终得到最优的控制策略。
另一个常用的方法是最优化算法,如最速下降法、牛顿法、共轭梯度法等。
这些算法可以通过迭代的方式求解最优控制问题。
总结:最优控制问题是控制论中的一个重要研究领域,最大原理是解决最优控制问题的核心思想之一。
最大原理通过构建系统状态的Hamilton-Jacobi-Bellman方程,可以用来确定最佳控制策略。
最优控制原理及应用

最优控制原理及应用最优控制原理是指在给定系统的状态和约束条件下,通过选择最优的控制策略,使系统的性能指标达到最优。
最优控制理论是现代控制论的重要分支之一,广泛应用于工业制造、航天航空、交通运输、能源管理等领域。
最优控制理论的核心概念是最优控制问题。
最优控制问题是指在给定系统的动力学模型、性能指标以及约束条件下,寻找最优的控制策略,使系统的性能指标达到最优。
最优控制问题可以分为两类:静态最优控制问题和动态最优控制问题。
静态最优控制问题是指在给定系统的当前状态下,寻找最优的控制策略;动态最优控制问题是指在给定系统的初始状态下,寻找最优的控制策略使系统在一段时间内的性能指标达到最优。
最优控制原理的核心思想是通过优化算法来寻找最优的控制策略。
最优控制问题通常可以转化为一个最优化问题,通过求解最优化问题的解,得到最优的控制策略。
最优控制问题的求解方法主要有两种:动态规划和最优化方法。
动态规划方法将最优控制问题转化为一个递归求解的问题,通过构建一个值函数来描述系统的性能指标,然后通过递归求解值函数得到最优的控制策略。
最优化方法是一种利用优化算法求解最优控制问题的方法,通过定义一个优化目标函数,将最优控制问题转化为一个优化问题,通过求解优化问题的解得到最优的控制策略。
最优控制原理的应用非常广泛。
在工业制造领域,最优控制原理可以应用于生产调度、优化控制、质量控制等方面,实现生产过程的优化和效率的提高。
在航天航空领域,最优控制原理可以应用于航天器的姿态控制、飞行路径规划等方面,实现航天器的稳定和飞行轨迹的优化。
在交通运输领域,最优控制原理可以应用于交通信号控制、交通流优化等方面,实现交通拥堵的缓解和交通效率的提高。
在能源管理领域,最优控制原理可以应用于电网调度、能源供需平衡等方面,实现电力系统的优化和能源的高效利用。
最优控制原理的应用还涉及到许多其他领域,如经济学、环境保护、医学等。
在经济学中,最优控制原理可以应用于经济系统的优化和资源的分配问题,实现经济的高效运行和社会福利的最大化。
最优控制的应用概述

最优控制的应用概述1.引言?
最优控制是现代控制理论的重要组成部分,它研究的主要问题是:在满足一定约束条件下,寻求最优控制策略,使得性能指标取极大值或极小值。
最优控制是使控制系统的性能指标实现最优化的基本条件和综合方法。
可概括为:对一个受控的动力学系统或运动过程,从一类允许的控制方案中找出一个最优的控制方案,使系统的运动在由某个初始状态转移到指定的目标状态的同时,其性能指标值为最优。
最优控制是最优化方法的一个应用。
从数学意义上说,最优化方法是一种求极值的方法,即在一组约束为等式或不等式的条件下,使系统的目标函数达到极值,即最大值或最小值。
从经济意义上说,是在一定的人力、物力和财力资源条件下,是经济效果达到最大(如产值、利润),或者在完成规定的生产或经济任务下,使投入的人力、物力和财力等资源为最少。
?
“动态规划”和庞特里亚金等人提出的“极大值原理”,到了60年代,卡尔曼(Kalman)等人又提出了可控制性及可观测性概念,建立了最优估计理论。
这方面的先期工作应该追溯到维纳(N.Wiener)等人奠基的控制论(Cybernetics)。
最优控制理论的实现离不开最优化技术。
控制系统最优化问题,包括性能指标的合理选择以及最优化控制系统的设计,而性能指标在很大程度上决定了最优控制性能和最优控制形式。
最优化技术就是研究和解决最优化问题,主要包括两个需要研究和解决的方面:一个是如何将最优化问题表示为数学模型;另一个是如何根据数学模型尽快求出其最优解。
自适应控制和最优控制的基本原理和应用

自适应控制和最优控制的基本原理和应用在现代控制理论中,自适应控制和最优控制是两个重要的概念。
自适应控制是指根据被控对象的运动情况及其参数变化,调整控制器的参数,使得被控对象满足预先设定的控制性能要求。
最优控制是指在满足控制性能的基础上,使控制器的能耗最小,系统响应最快。
自适应控制和最优控制的基本原理是以被控对象的数学模型为基础。
对于自适应控制,需要对被控对象进行建模,以确定控制器参数的调整方向。
对于最优控制,需要对被控对象的数学模型进行优化,以找到最优的控制方案。
在自适应控制中,最常用的方法是模型参考自适应控制。
这种方法通过建立一个参考模型,将被控对象的运动与参考模型的运动进行比较,然后根据比较结果调整控制器的参数。
这种方法的优点是简单易懂,容易实现。
不过,这种方法要求被控对象的数学模型必须非常精确,否则会导致控制器参数调整不准确。
另一种常用的自适应控制方法是基于模糊逻辑的自适应控制。
该方法通过将控制器的参数用模糊集合形式表示,以适应被控对象模型的不确定性。
这种方法虽然参数调整方向不如模型参考自适应控制精确,但是可以适应更广泛的控制情况。
最优控制中,最常用的方法是线性二次型控制(LQR)。
这种方法通过对被控对象的数学模型进行优化,确定最优的控制器参数,以使系统的能耗最小。
该方法的优点是在满足控制性能的前提下,能够有效降低系统的能耗,提高系统的效率。
最优控制还可以用于求解动态优化问题。
在这种情况下,被控对象的状态会随时间变化,需要在每个时刻对控制器参数进行优化,以获得最优的控制方案。
这种方法可以应用于许多领域,包括经济系统、交通运输、动力系统等。
自适应控制和最优控制都有广泛的应用。
例如,在机械加工、机器人控制、电力系统等领域中,自适应控制可以有效提高系统的稳定性和控制性能。
而在航空航天、汽车控制、自动驾驶等领域中,最优控制可以降低系统的能耗,提高系统的效率。
总的来说,自适应控制和最优控制是现代控制理论中非常重要的概念,它们的应用范围广泛,可以有效地提高系统的效率和控制性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最优控制的应用概述1.引言最优控制是现代控制理论的重要组成部分,它研究的主要问题是:在满足一定约束条件下,寻求最优控制策略,使得性能指标取极大值或极小值。
最优控制是使控制系统的性能指标实现最优化的基本条件和综合方法。
可概括为:对一个受控的动力学系统或运动过程,从一类允许的控制方案中找出一个最优的控制方案,使系统的运动在由某个初始状态转移到指定的目标状态的同时,其性能指标值为最优。
最优控制是最优化方法的一个应用。
从数学意义上说,最优化方法是一种求极值的方法,即在一组约束为等式或不等式的条件下,使系统的目标函数达到极值,即最大值或最小值。
从经济意义上说,是在一定的人力、物力和财力资源条件下,是经济效果达到最大(如产值、利润),或者在完成规定的生产或经济任务下,使投入的人力、物力和财力等资源为最少。
最优控制理论是研究和解决从一切可能的控制方案中寻找最优解的一门学科,基本内容和常用方法包括动态规划、最大值原理和变分法。
这方面的开创性工作主要是由贝尔曼(R.E.Bellman)提出的“动态规划”和庞特里亚金等人提出的“极大值原理”,到了60年代,卡尔曼(Kalman)等人又提出了可控制性及可观测性概念,建立了最优估计理论。
这方面的先期工作应该追溯到维纳(N.Wiener)等人奠基的控制论(Cybernetics)。
最优控制理论的实现离不开最优化技术。
控制系统最优化问题,包括性能指标的合理选择以及最优化控制系统的设计,而性能指标在很大程度上决定了最优控制性能和最优控制形式。
最优化技术就是研究和解决最优化问题,主要包括两个需要研究和解决的方面:一个是如何将最优化问题表示为数学模型;另一个是如何根据数学模型尽快求出其最优解。
2.最优控制问题所谓最优控制问题,就是指在给定条件下,对给定系统确定一种控制规律,使该系统能在规定的性能指标下具有最优值。
也就是说最优控制就是要寻找容许的控制作用(规律)使动态系统(受控系统)从初始状态转移到某种要求的终端状态,且保证所规定的性能指标(目标函数)图1 最优控制问题示意图达到最大(小)值。
最优控制问题的示意图如图1所示。
其本质乃是一变分学问题。
经典变分理论只能解决一类简单的最优控制问题。
为满足工程实践的需要,20世纪50年代中期,出现了现代变分理论。
最常用的方法就是极大值原理和动态规划。
最优控制在被控对象参数已知的情况下,已成为设计复杂系统的有效方法之一。
2.1 最优控制问题的描述控制系统的最优控制问题一般提法为:对于某个由动态方程描述的系统,在某初始和终端状态条件下,从系统所允许的某控制系统集合中寻找一个控制,使得给定的系统的性能目标函数达到最优。
2.1.1 系统的动态方程(状态方程)()()[]t t u t X f t x,,)(= 系统状态方程给出了系统内部状态随系统控制输入的变化关系,或者说是内部状态的一种约束关系。
2.1.2 系统状态的始端条件和终端条件始端和终端条件却给出了系统状态在系统控制开始和结束时刻的约束条件。
端点条件一般有三种类型:固定端、自由端和可变端。
固定端就是时间和状态值都是固定的端点。
例如初始时间t0及其初始状态X(t0)都固定就称始端固定条件,而终端时间tf 及其终端状态X(tf)都固定就称终端固定条件。
一般来说,两端固定是最简单的情况。
自由端是指端点时间固定,但端点状态值不受任何限制的端点。
有始端自由和终端自由两种。
可变端就是端点时间及其状态值都可变的端点。
但一般它满足一定条件,如满足:初始状态为: x(t 0)=x 0 终端状态x(tf)可用如下约束条件表示N 1[x(tf),tf]=0 或N 2[x(tf),tf]≤0。
2.1.3 系统控制域在实际控制系统中,控制输入u(t)往往是不能不受限制地任意取值的,例如作为驱动电机,其输出力矩就有最大力矩的限制。
所以在许多最优控制问题中,需要规定一个允许的控制域。
2.1.4 系统目标泛函(性能指标)即系统的性能指标,一般都是一个函数的函数,即泛函。
在状态空间中要使系统的状态由初始状态)()(0f t x t x →,可以用不同的控制规律来实现。
为了衡量控制系统在每一种控制规律作用下工作的优劣,就需要用一个性能指标来判断。
性能指标的内容、形式取决于最优控制所完成的任务。
不同最优控制问题就应有不同的性能指标。
同一最优控制问题,其性能指标也可能因设计者着眼点而异。
对连续时间系统,目标泛函的一般形式为:[]()()[]⎰+Φ=ft t f dt t t u t x L t x J 0,,)( 式中 J —标量函数,对每一个控制函数()t u 都有一个对应值;L —标量函数:动态性能指标;Φ—标量函数:终端性能指标;)(t u —控制函数整体上式的目标泛函称为综合性或波尔扎(Bolza )型性能指标,其第一部分表示对系统的终端状态的要求,而第二部分表示对系统的整个控制过程的要求 。
若系统目标泛函只取上式的第一项,即()[]ft x J Φ=,则称为终端型或麦耶尔(Mager )型性能指标。
若系统目标泛函只取上式的第二项,即()()[]⎰=f t t dt t t u t x L J 0,,,则称为积分变量或拉格朗日(Lagrange )型性能指标。
以上三种性能指标,通过一些简单的数学处理,可以相互转化。
在特殊情况下,可采用如下的二次型性能指标()()()()()()()()[]⎰++=f t t T T f f T dt t u t R t u t x t Q t x t Fx t x J 02121 式中 F —n n ⨯维半正定终端加权矩阵;Q(t)—n n ⨯维半正定状态加权矩阵;R(t)—r r ⨯维正定控制加权矩阵2.2 最优控制问题的分类① 按状态方程分类:连续最优化系统、离散最优化系统。
② 按控制作用实现方法分类:开环最优控制系统、闭环最优控制系统。
③ 按性能指标分类:最小时间控制问题、最少燃料控制问题、线性二次型性能 指标最优控制问题、非线性性能指标最优控制问题。
④ 按终端条件分类:固定终端最优控制问题、自由终端(可变)最优控制问题、 终端时间固定最优控制问题、终端时间可变最优控制问题。
⑤ 按应用领域来分:终端控制问题、调节器问题、跟踪问题、伺服机构问题、 效果研究问题、最小时间问题、最少燃料问题。
2.3 最优控制问题的解决方法2.3.1 古典变分法研究对泛函求极值的一种数学方法。
古典变分法只能用在控制变量的取值范围不受限制的情况。
在许多实际控制问题中,控制函数的取值常常受到封闭性的边界限制,如方向舵只能在两个极限值范围内转动,电动机的力矩只能在正负的最大值范围内产生等。
因此,古典变分法对于解决许多重要的实际最优控制问题,是无能为力的。
2.3.2 极大值原理(庞特里亚金)极大值原理,是分析力学中哈密顿方法的推广。
极大值原理的突出优点是可用于控制变量受限制的情况,能给出问题中最优控制所必须满足的条件。
2.3.3 动态规划(贝尔曼)动态规划是数学规划的一种,同样可用于控制变量受限制的情况,是一种很适合于在计算机上进行计算的比较有效的方法。
3 最优控制理论应用领域最优控制理论已被应用于综合和设计最速控制系统、最省燃料控制系统、最小能耗控制系统、线性调节器等。
[例1] 快速控制问题设初始时刻 0t t =,M 离地面高度为)(0t x ;垂直运动的速度为)(0t x。
什么样的)(t u ,使M 能 最快地到达地面,并使到达地面时的速度等于零?设物体M 的质量为1,)(t x 表示物体离地面的高度。
M 的运动微分方程式为 g t u dtx d -=)(22 图2 快速控制 选择)()()(),()(121t x t xt x t x t x ===为状态变量,可写出M 的状态方程 ⎪⎪⎩⎪⎪⎨⎧-==g t u dtt dx t x dt t dx )()()()(221 其初始条件为⎩⎨⎧==20021001)()(x t x x t x 可把研究的问题变为:寻找一个满足约束条件K t u <)(的控制作用力,使物体在最短的时间内从初态{}T x x t X 20100,)(=到终态{}{}T T f f f t x t x t X 0,0)(),()(21==使00t t dt J f t t f-==⎰为最小,这样的控制)(t u 的方式,称为最优控制)(t u 。
[例2]最少能量消耗问题(飞船月球软着落问题)飞船离地面的高度)(t x ,向上为正,垂向速度可以表示为:)()(t xt v = 设发动机推力为)(t u , 飞船的质量为)(t m ,F M m +=)0(,M 为飞船自身重量,F 为所带燃料质量。
飞船的初始高度为)(00t x h =,初始速度为)(00t xv =。
选择)()(),()(),()(321t m t x t xt x t x t x === 为状态 图3 飞船月球软着落 变量,可以列出飞船的状态方程:⎪⎪⎩⎪⎪⎨⎧-==-==)()()()()()()()(3221t ku t m t xg t m t u t x t x t x 其中k 表示控制力与燃料消耗率成正比的比例常数 初始条件:0t t =时 F M m v t xt x h t x +====)0(,)()(,)(00102001 端点条件:f t t =时 0)()(,0)(121===f f f t xt x t x 约束条件 α≤≤)(0t u 其中,α是发动机的最大推力要使燃料消耗最少,也就是要使飞船在着陆时的质量为最大,即要求使目标函数:)(f t m J =达到最大值。
所要完成的任务是寻求发动机推力的最优控制规律)(t u ,在满足约束条件下,使飞船由初始状态转移到最终状态时,能使性能指标J 为最大。
[例3]拦截问题设)(t x 、)(t v 分别表示拦截器L 和目标M 的相对位置和相对速度向量。
)(t α是包括空气动力与地心引力所产生的加速度在内的相对加速度向量,它是)(t x 、)(t v 的函数,也可以看成是时间的函数。
设m (t )是拦截器的质量,f (t )是其推力的大小。
用u 表示拦截器推力方向的单位矢量。
C 是有效喷气速度,可看做常数。
则拦截器与目标的相对运动方程式可写成:⎪⎪⎪⎩⎪⎪⎪⎨⎧-=+==C t f m u t m t f t v v x )()()()( α 初始条件为:000000)(,)(,)(m t m v t v x t x === 为实现拦截,既要控制推力f(t)的大小,又要改变推力的方向。
拦截器的最大推力f(t)是一有限值max f ,瞬时推力f(t)应满足:max )(0f t f ≤≤。