可靠性寿命试验

合集下载

可靠性评价中的寿命试验方法分析的研究报告

可靠性评价中的寿命试验方法分析的研究报告

可靠性评价中的寿命试验方法分析的研究报告随着科技的不断发展和技术的增强,人们对产品可靠性的要求也越来越高。

为了保证产品的可靠性,提高产品的质量,降低维护和更换成本,寿命试验作为衡量产品可靠性的重要手段之一受到了越来越广泛的关注。

本文将分析寿命试验中常用的几种方法并探讨其优缺点。

1.应力加速试验法应力加速试验法通常是将产品置于恶劣的实际工作环境或特定的试验环境中,利用较高的应力状态,加速产品的损坏过程,从而获得产品的寿命信息。

其优点在于:试验方法简单易行,易于对试验条件进行控制和制定加速模型。

但缺点也是比较明显的,不能完全模拟实际使用环境,加速模型难以确定与检验,最终得到的寿命信息在一定程度上会有误差。

2.静态荷载寿命试验法静态荷载寿命试验法通常是针对产品的结构稳定性而设计的试验,例如桥梁、房屋等。

其试验方法是在产品上施加较长时间稳定的荷载,观察产品变形、裂纹和强度损失等特征,并以此作为判断产品可靠性的依据。

其优点在于:简单易行,可以得到较为准确的寿命信息。

但缺点是试验周期较长,不能有效地模拟实际使用情况下的荷载条件变化,因此难以准确地反映产品的综合可靠性。

3.变形寿命试验法变形寿命试验法通常是针对那些受到较大变形的产品设计的试验法。

其试验方法是在产品上施加反复加载和卸载的荷载,观察变形程度和试验各阶段的应力强度情况,并以此作为判断产品可靠性的依据。

优点在于:可以模拟实际使用情况下的变形状态变化,有条件向三轴进行试验。

但在试验过程中,需要对试验条件进行严格控制,以防止出现新的变形或损坏情况,对试验条件和数据的准确性要求较高。

总体来看,不同的寿命试验方法各自具有优缺点。

在选择试验方法时需要根据产品本身的特点、自身需要预估的寿命和质量上限、试验所需的时间和设备、试验方法实际操作性等多重因素进行综合考虑。

在试验过程中,需要对试验条件进行严格的监控与调整,以确保得到准确的寿命信息从而提高产品的可靠性和市场竞争力。

可靠性基础试验可靠性寿命试验可靠性加速寿命试验(62页)

可靠性基础试验可靠性寿命试验可靠性加速寿命试验(62页)

■ : 1 棚 趣 M12Mffi8SfiM^SBiaBa41imB£SauELll^ : 上 莹 b^Tii-h、::
X»7I
^gfflaaiSMfla—!心如孟 ir,=^,- 酿EMaaania^
番⑽ O ? i 4*^<t 榨咏,
? ■們
7!~ tJJ *■ ? f .- - . Izjlfi
JWkr
> 7旱谏文
=
-獮
J
a
•A ItT .TH i 7N1B^ I 79^ I fiH'H-flCHV *7T.

零 I lilhf •零.JZI I T1HT IliffT
i
«T ■ i* i l=t
5
M,,ws^r uftwsie i n » « • I ¥1 I
I
«fl !■ xt HT ■ IftH-tt ■ I 4 霪-ST I 51 I B<H
第四章 元器件可靠性试验与评价技术
4.1元器件可靠性试验
定义:
___
目前把测定、验证、评价和分析等为提高元器 件 可靠性而进行的各种试验,统称为可靠性试验。 应用 于: 研制阶段:暴露设计、材料、工艺阶段存在的问题 和
有关数据,对设计者、生产者和使用者非常有 用; 设计定型阶段:是否达到预定的可靠性指标; 生产阶 段:评价元器件生产工艺和过程是否稳定可 控:
ti •训 rar<4itte#sif
狂i*M_E1l助3办*况10 *件儺t «明收 》«鲈
C作
®F_工嘰ft*,士忖I
<5极警S3f呼?SOAEW.i ntBsii*凡f娜鳆仙虹⑽淋讲貝
RJj.^-ISBKxr^ii ® 1H -, Lli^nDi ; ? ? 2i!Z$Xi *

产品寿命可靠性试验MTBF计算规范

产品寿命可靠性试验MTBF计算规范

产品寿命可靠性试验MTBF计算规范产品寿命可靠性试验是指通过对产品进行一系列的测试和评估,来确定产品在一定时间内的寿命和可靠性水平。

在进行试验的过程中,需要计算产品的平均无故障时间(Mean Time Between Failures,简称MTBF),以评估产品的可靠性。

MTBF是指在产品使用过程中,平均能够正常运行的时间,通常以小时为单位。

计算MTBF需要考虑到产品在正常使用过程中可能发生的故障情况,并根据试验数据进行统计分析。

以下是产品寿命可靠性试验MTBF计算的一般规范:1.提前计划:在进行试验之前,需要做好详细的计划,确定试验的具体目标、时间、资源和样本数量等方面的要求。

同时,需要确定试验中所需要的测量设备和方法,以及数据收集和分析的流程。

2.样本选择:选择代表性的样本进行试验,并保证样本数量的充分性。

样本应该具有较高的可靠性,能够反映实际使用情况。

样本的选择应遵循统计学原理,例如采用随机抽样或分层抽样等方法。

3.数据收集:在试验过程中,需要及时、准确地收集产品的故障数据。

通常可以通过使用故障记录表或故障报告等方式进行数据的记录。

同时,还需要记录产品的使用情况、工作环境等其他相关信息。

4.故障数据分析:根据试验中收集的故障数据,进行统计分析。

可以使用各种统计方法,如参数估计、假设检验、生存分析等方法,对故障数据进行分析和处理。

5.MTBF计算:根据试验数据和统计分析的结果,计算产品的MTBF值。

一般来说,可以使用以下公式计算MTBF:MTBF=Σ运行时间/故障次数其中,Σ运行时间表示产品的总运行时间,故障次数表示产品在试验中发生的故障次数。

6.结果分析与评估:根据计算得到的MTBF值,对产品的寿命和可靠性进行评估。

可以根据产品的设计要求和实际使用情况,确定MTBF是否满足要求,并对可能存在的问题进行分析和改进。

7.报告撰写:根据试验结果和评估,编写试验报告,详细说明试验的目的、过程、数据分析结果和结论等内容。

汽车零部件可靠性与寿命试验研究

汽车零部件可靠性与寿命试验研究

汽车零部件可靠性与寿命试验研究第一章:引言汽车作为人们出行的主要工具,零部件的可靠性和寿命是直接关系到行车安全和舒适性的关键因素。

汽车零部件的可靠性和寿命试验一直是汽车工业研究的重点之一。

制定可靠性试验标准是鉴定零部件质量的关键。

本文将对汽车零部件试验的可靠性与寿命试验方法进行详细的探讨。

第二章:汽车零部件可靠性试验2.1 可靠性试验的定义可靠性试验是用各种可能的方法对汽车零部件进行测试检测,并将这些数据应用于试验或模拟。

通过这些试验数据分析来推断汽车零部件的可靠性。

2.2 可靠性试验的分类(1)性能可靠性试验:汽车零部件性能是衡量其可靠性的重要指标,性能可靠性试验主要是对汽车零部件的性能进行测试判定。

这种试验主要是通过台架试验进行判定和鉴定,包括功率、扭力、变速器、行驶里程和其他性能指标的测试。

(2)环境可靠性试验:汽车在使用中往往会经历各种环境的变化,包括气候、温度、湿度、盐度、沙尘等等。

环境可靠性试验主要是对汽车零部件在这些环境中运行的可靠性进行测试。

(3)寿命可靠性试验:汽车零部件的寿命试验主要是测试汽车零部件的使用寿命,根据试验数据分析来推断零部件的寿命,从而预测汽车零部件的寿命周期。

2.3 可靠性试验的方法(1)加速试验:加速试验主要是对汽车零部件进行加速老化测试,通过这种方法检测汽车零部件的可靠性和耐久性。

加速试验的时间比较短,因此成本也相应的较低。

但需要注意的是,在进行加速试验时需要选择合适的试验条件,并注意和实际使用情况的比较。

(2)正常使用试验:正常使用试验主要是模拟汽车零部件在实际使用中的情况,对零部件进行长期试验。

通过这种方法,能够模拟出零部件的使用寿命和可靠性,但试验时间较长,成本也相应增加。

(3)疲劳试验:汽车零部件在使用过程中,经常会受到一定的引力和振动的影响,这些对零部件有着较大的疲劳损伤。

疲劳试验主要是通过对这些状态进行模拟实验,检测汽车零部件在疲劳状态下的可靠性和耐久性。

产品寿命可靠性试验MTBF计算规范标准

产品寿命可靠性试验MTBF计算规范标准

产品寿命可靠性试验MTBF计算规范一、目的:明确元器件及产品在进行可靠性寿命试验时选用标准的试验条件、测试方法二、范围:适用于公司内所有的元器件在进行样品承认、产品开发设计成熟度/产品成熟度(DMT/PMT)验证期间的可靠性测试及风险评估、常规性ORT例行试验三、职责:DQA部门为本文件之权责单位,责权主管负责本档之管制,协同开发、实验室进行试验,并确保供应商提交的元器件、开发设计产品满足本文件之条件并提供相关的报告。

四、内容:MTBF:平均无故障时间英文全称:Mean Time Between Failure定义:衡量一个产品(尤其是电器产品)的可靠性指标,单位为“小时”.它反映了产品的时间质量,是体现产品在规定时间内保持功能的一种能力.具体来说,是指相邻两次故障之间的平均工作时间,也称为平均故障间隔,它仅适用于可维修产品,同时也规定产品在总的使用阶段累计工作时间与故障次数的比值为MTBFMTBF测试原理1.加速寿命试验(Accelerated Life Testing)1.1执行寿命试验的目的在于评估产品在既定环境下之使用寿命. 1.2 常規试验耗時较长,且需投入大量的金钱,而产品可靠性资讯又不能及时获得并加以改善.1.3 可在实验室时以加速寿命试验的方法,在可接受的试验时间里评估产品的使用寿命.1.4 是在物理与时间基础上,加速产品的劣化肇因,以较短的时间试验来推定产品在正常使用状态的寿命或失效率.但基本条件是不能破坏原有设计特性.1.5 一般情況下, 加速寿命试验考虑的三个要素是环境应力,试验样本数和试验时间.1.6 一般电子和工控业的零件可靠性模式及加速模式几乎都可以从美軍规范或相关标准查得,也可自行试验分析,获得其数学经验公式.1.7 如果溫度是产品唯一的加速因素,則可采用阿氏模型(Arrhenius Model),此模式最为常用.1.8 引进溫度以外的应力,如湿度,电压,机械应力等,則为爱玲模型(Eyring Model),此种模式适用的产品包括电灯,液晶显示元件,电容器等.1.9反乘冪法則(Inverse Power Law)适用于金属和非金属材料,如轴承和电子装备等.1.10 复合模式(Combination Model)适用于同時考虑溫度与电压做为环境应力的电子材料(如电容如下式为电解电容器寿命计算公式) 1.11 一般情況下,主动电子零件完全适用阿氏模型,而电子和工控类成品也可适用阿氏模型,原因是成品灯的失效模式是由大部分主动式电子零件所构成.因此,阿氏模型广泛应用于电子,工控产品行业2.加速因子2.1 阿氏模型起源于瑞典物理化学家Svandte Arrhenius 1887年提出的阿氏反应方程式.R:反应速度speed of reactionA:溫度常数a unknown non-thermal constantEA:活化能activation energy (eV)K:Boltzmann常数,等地8.623*10-5 eV/0K.T:为绝对溫度(Kelvin)2.2 加速因子原理:加速因子即为产品在使用条件下的寿命(Luse)和高測试应力条件下(Laccelerated)的寿命的比值.如果产品寿命适用于阿氏模型,则其加速因子為:AF=e[Ea/K×(1/Ts-1/Tu)]Ts:室溫+常数273Tu:高溫+常数273K: :Boltzmann常数,等地8.623*10-5 eV/0K.3.加速因子中活化能Ea的计算3.1 一般电子产品在早夭期失效之Ea为0.2~0.6Ev,正常有用期失效之Ea趋近于1.0Ev;衰老期失效之Ea大于1.0Ev.3.2 根据HP 可靠度工程部(CRE)的測试規范,Ea是机台所有零件Ea的平均值.如果新机种的Ea无法计算,可以將Ea设为0.67Ev,做常数处理.3.3如按机台所有零件Ea的平均值来计算,则可按以下例证参考4.MTBF推算方法4.1. 由MTBF定义可知,规定产品在总的使用阶段累计工作时间与故障次数的比值为MTBF, 指数(Exponential)分布是可靠度统计分析中使用最普遍的机率分布.指数分布之MTBF数值为失效率λ的倒数,故一旦知道λ值,即可由可靠度函数估算产品的可靠度.MTBF= 总运行时间Total Operating(Hrs)/总失效次数Total FailuresMTBF的估計值符合卡方分配原理, 其語法為:CHIINV(probability,degrees_freedom)X2(probability,degrees_ freedom)故有以下公式:T= 总时间Total Hoursr=失效总数Number of failuresΦ=信用等级Confidence interval5.DMTBF計算DMTBF:平均无故障时间验证英文全称:Demonstration Mean time Between failures计算方法:以温度为加速寿命试验且采用阿氏加速寿命模式计算公式:(实际使用中,如需要可在分子上乘上24Hrs以方便计算时数)Duration =(MTBFspec* GEMfactor)/(DC*Sample size*Afpowr*AF)Duration:持续测试时间MTBFspec:平均无故障时间GEMfactor: General Exponential Model综合指数DC: Duty cycle占空比Sample size:样本数Afpower:加速系数AF:加速因子5.1. Duration:持续测试时间,即一个单位或几个单位的样品在进行寿命试验时总的需要測試的时间5.2. GEMfactor: General Exponential Model綜合指数,此指数一般取常数,其取值标准为按照Confidence Level信心水准进行取值,常用的值为80%信心水准取3.22;而90%信心水准時取2.3026.5.3. DC: Duty cycle占空比,即在试验进行开关运行过程中,运行时间占总时间的百分比.(如45min ON/15min OFF則其DC值即為:45min/(45min+15min)=0.754. Sample size:样本数,根据实际狀況确认的做寿命试验的样品数5. MTBFSpec:平均无故障时间,实验品規格书上描述的MTBF时间数6. AFpower:加速系数,即在实验品进行开关运行過程中,1小時時間ON和OFF时间之和的比值,如: 实验品选择25min ON/5min OFF則Afpower值为:AFpower=60min/(25+5)min=27. AF:加速因子,产品在使用条件下的寿命(Luse)和高測試应力条件下(Laccelerated)的寿命的比值。

可靠性测试产品高加速寿命试验方法指南

可靠性测试产品高加速寿命试验方法指南

可靠性测试产品高加速寿命试验方法指南一、试验前准备1.定义试验目标:明确试验的目标,例如研究产品在高加速条件下的寿命和可靠性。

2.确定试验条件:确定试验的温度、湿度、震动等条件,通常通过考虑实际使用环境和产品的特性来确定。

3.设定试验方案:根据试验目标和条件,制定试验方案,包括试验时间、采样点、数据记录等。

二、试验过程1.安装产品:按照产品的安装要求进行安装,并确保安装牢固可靠。

2.试验设备检查:检查试验设备的工作状态、仪器的准确度、传感器的连接等,确保设备正常工作。

3.数据采集与记录:使用合适的数据采集设备和记录方法,实时采集试验过程中的数据,例如温度、湿度、振动等。

三、试验注意事项1.温度控制:根据试验需求和产品的设计要求,控制试验环境的温度稳定在目标温度,避免产生温度过高或过低的影响。

2.湿度控制:根据试验需求和产品的设计要求,控制试验环境的湿度稳定在目标湿度,避免产生湿度过高或过低的影响。

3.震动控制:根据试验需求和产品的设计要求,设定合适的震动频率、振幅和持续时间,控制试验中的震动条件。

4.数据处理与分析:将试验过程中采集到的数据进行处理和分析,例如计算产品的寿命、可靠性指标等,得出试验结果并进行评估。

四、试验结果分析1.寿命分析:根据试验结果,计算产品的寿命参数,例如平均寿命、失效率曲线等,分析产品在高加速条件下的寿命特性。

2.可靠性评估:根据试验数据,分析产品的可靠性指标,例如可靠度、失效率、故障率等,评估产品在高加速条件下的可靠性水平。

3.结果解释和改进:根据试验结果和分析,结合产品的设计和制造过程,解释试验结果,并提出改进产品可靠性的建议和措施。

五、试验注意事项1.安全措施:在进行高加速寿命试验时,要注意保证试验人员的安全,使用符合要求的试验设备和设施,正确使用试验设备以避免发生事故。

2.数据记录与保存:确保试验过程中的数据记录的准确性和完整性,并妥善保存试验数据,以备后续分析和评估使用。

品检中的产品寿命测试与可靠性验证

品检中的产品寿命测试与可靠性验证

品检中的产品寿命测试与可靠性验证在品检过程中,为了保证产品的质量和可靠性,进行产品寿命测试和可靠性验证是至关重要的环节。

产品寿命测试旨在评估产品在特定使用条件下的寿命是否符合设计要求,而可靠性验证则是通过一系列的测试和分析,确定产品在实际使用过程中的可靠性水平。

产品寿命测试是通过模拟产品在正常使用条件下的使用寿命,定量评估产品的使用寿命是否达到设计要求。

测试过程中,会考虑产品所承受的环境因素、使用频率、负荷等多个因素。

通常会采用加速寿命试验的方法,通过提高环境条件或加大负荷来加速产品老化过程,以更快速地评估产品的寿命。

产品寿命测试包括两个主要方面:寿命试验和可靠性增量试验。

寿命试验是模拟产品在正常使用条件下的存在时间,以确认产品的设计目标是否能够得到满足。

可靠性增量试验是在寿命试验的基础上,进一步延长测试时间,以确定产品在更长时间内的可靠性。

在进行产品寿命测试时,需要选择合适的试验方法和参数。

试验方法可以根据产品的特性、使用环境和需求来确定,如可以采用加速老化试验、恒定负荷试验、振动寿命试验等。

试验参数则需要根据产品的设计要求和实际使用情况来确定,如温度、湿度、振动频率、电压等。

与产品寿命测试相补充的是可靠性验证,它是通过实际生产过程中的样本测试和统计分析来评估产品的可靠性水平。

可靠性验证包括可靠性试验、可靠性增量试验和可靠性生命试验。

可靠性试验是对产品进行一系列的功能测试、环境适应性测试、振动测试等,以确定产品在实际使用过程中的可靠性。

可靠性增量试验则是在可靠性试验的基础上,进一步延长测试时间,获取更多的可靠性数据。

可靠性生命试验是通过模拟特定使用条件下产品的使用寿命,以评估产品在实际使用过程中的可靠性。

产品寿命测试和可靠性验证的目的是为了保证产品在使用过程中的性能和可靠性,以提高产品的市场竞争力和用户满意度。

通过这些测试和验证,可以发现产品设计和制造过程中的问题,并及时进行改进和优化。

同时,还可以为产品的保修期和售后服务提供依据,提高终端用户的信任感和忠诚度。

可靠性寿命试验

可靠性寿命试验
共二十九页
共二十九页
Coffin-Manson Model
ACMD = (ΔTA/ΔTu)2 x (fA/fu) = Du/DA Du= DA*(ΔTA/ΔTu)2 x (fA/fu)
ACMD = Acceleration factor for number of cycles (dimensionless)
盐雾,霉菌,低气压,超高真空,红外谱检测,X射线检测, 辐射等
低温/低压,低温/振动,高温/振动,振动/温循/潮湿试验 等
温度-湿度-气压试验
长期贮存寿命试验
长期工作寿命试验->连续工作寿命试验(动态,静态)
-
>间隙工作寿命试验
恒定应力加速试验,步进应力加速试验等
实际工作试验,现场贮存试验,现场环境试验
解:
n=7, r=6
T=650+450+120+530+600+450+(7-6)*700=3500hrs
置信水平为90%的单侧置信下限为θL=332.32hrs
置信度为80%双侧置信区间[θL, θU]为[332.32,1110.44]
共二十九页
例4: 设产品寿命服从指数分布.抽其n个样品进行无替换的定时截尾 寿命试验。如果在测试中无失效发生,那么在置信水平0.95下, 为了满足平均寿命的单侧置信下限为1000hrs,总的试验时间
ΔTA = Thermal cycle temperature change in accelerated environment (°K) ΔTu = Thermal cycle temperature change in use environment (°K)
fu = Frequency of thermal cycles in use environment (cycles/day) fA = Frequency of thermal cycles in accelerated environment (cycles/day) Du = Time duration in use environment (days) DA = Time duration in accelerated environment (days)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(二)工作寿命试验 电子产品在规定条件下施加规定的应力的试验称为工作寿命试验。试验周期在1000h以上称 为长期工作寿命试验。 1.室温工作寿命试验 室温工作寿命试验的目的是为了确定元器件在承受规定的条件下是否符合规定的失效率 ‫。ג‬ 室温工作寿命试验目前采用以下两种试验方法: (1)定时截尾 即规定一定的试验时间,就停止试验,然后通过数理统计方法,计算出产品的平均寿命、失 效率等有关的可靠性特征量。 定时截尾试验分无替换和有替换两类。 (2)定数截尾 定数截尾试验是在出现规定数量的失效后,就停止试验。 定数截尾试验也分无替换和有替换两类。具体情况要根据不同样品类型、型号选择的抽样方 案、试验方法来决定。
数值分析法是利用数学公式进行直接计算的方法,根据失效规律的数学模型,按分布参数的 计算公式,由样品在可靠性寿命试验中记录的数据对分布参数的数据或可能的取值范围作出估计。 优点:误差较小 缺点:计算繁琐;
可靠性寿命试验数值分析有指数分布、威布尔分布、正态分布、对数正态分布的参量分析法 及图估计法。 (一)指数分布及其特点 寿命分布服从指数分布规律的产品,当其失效率不同时,其可靠度也不同。 指数分布具有以下特点: (1)失效率是常数; (2)平均寿命与特征寿命相同,为失效率 ‫ ג‬的倒数; (3)当产品工作到平均寿命时间结束时,其可靠度下降到36.8%。 (二)正态分布及其特点 正态分布又称高斯分布,是应用较广泛的一种分布,如工艺误差、测量误差、产品常数值的 分布等,均服从正态分布。 正态分布的特点: (1)概率密度函数的形状是中间高,两边低,左右对称; (2)有两个未知参数,均值 µ 和方差 o; (3)概率密度函数曲线包络的面积为1。 (三)指数分布平均寿命的点估计和区间估计 1.平均寿命的点估计法 所谓点估计法,就是当总体参数Θ 未知,用样本参数x1 , x1 , , xn来估计Θ的统计量 , x1 , , xn )。这种估计方法的近似程度与所选样本的大小有关(样本越大,估计 越精确)。
是服从威布尔分布的,但当形状参数m =1时,威布尔分布就变成指数分布了,该元件的寿命近似 服从指数分布。 3.当产品服从指数分布时,产品的可靠性特征量表达式很简单,只要掌握了产品的失效率 ‫ג‬ 就可以计算出产品的全部可靠性指标。因此,可以利用指数分布近似作为产品的实际分布。 二、常用的寿命试验方法 (一)贮存寿命试验 电子产品在规定的环境条件下,非工作状态的存放试验,称为贮存寿命试验。贮存时间在 1000h以上称为长期贮存寿命试验。 长期贮存寿命的目的是了解产品在特定的环境下贮存的可靠性。
估计:根据观测值确定总体分布参数值或数值范围。
置信概率(置信度、置信系数):表示数1—a。其中a称为置信水平。 置信限:置信区间的两个界限Θ L及ΘU 称为未知参数Θ的( 1—a )置信限。 Θ L称为置信下限, ΘU称 为置信上限。 置信水平a(显著水平):犯第一类错误的概率,生产方承担的风险。
定时截尾试验:试验达到规定的试验时中的一些技术问题
一、试验方法问题 为了正确评定产品的质量,必须采取合适的试验方法。在可靠性试验中我们发现,质量相同 的产品由于采用不同的试验方法,会得到不同的试验结果。有事甚至出现这样的情况:不同厂家 生产的同型号但质量不同的产品,由于采用不同的试验方法,质量水平本来高的产品,得到的试 验结果其质量反而显得低,而质量水平低的产品,得到的试验结果其质量反而显得高。 二、测量方法的问题 现行的元器件可靠性试验时,大都采用箱外测量的方法,即试验结束后,把样品从箱内取出, 放在标准室内恢复一定时间,然后再测量其特征参数。在一般情况下,这种测量方法是可行的, 但在某些特殊情况下,这种测量方法就不一定合理了。 三、试验设备和装置问题 试验设备本身的可靠性在很大程度上支配着试验数据的可靠性和再现性,只有采用合适的试 验设备和装置才能获得正确的试验结果。 在可靠性试验中,对样品施加温度应力和负载应力,以保证受试样品能承受规定的应力。但 有时出现这样的情况:在进行加速寿命试验时,相邻应力的两组样品,其特性变化非常接近,甚 至互相交迭。究其原因,发现是由于温度或负荷应力控制不准确而造成的。 进行可靠性试验时,要对样品施加一定负荷电压,当温度较高,试验时间又长时,样品夹具 的弹性有时会减弱,样品夹具和夹具表面也会氧化,致使样本加 不上负荷。因此,每次周期测量 完毕,开始下一周期试验之前,都应认真检查样品是否加上规定的负荷,及时换下已经失效的夹具。
t = Θ 1n n /(n —— r)
Θ——平均寿命( Θ= 1/ ‫) ג‬
n————样品数
n
r——失效数
2.失效率鉴定试验 根据GB 1772试验时间可由式~式计算:
t =2.3 / ‫( ג‬置信度90%,失效数为0) n t = 3.89 / ‫( ג‬置信度90%,失效数为1 ) n t = 0.916 / ‫(ג‬置信度60%,失效数为0 ) n t = 2.02 / ‫( ג‬置信度60%,失效数为1 )
式中:t ——试验时间 n ————样品数 r ——失效率 3.质量评定的试验 根据样品的种类、型号及相应标准(详细规范、总规范、分规范)的要求,确定各试验项目 的试验时间。 目前大部分电子元器件都按各型号的详细规范和总规范要求进行试验,试验时间根据各检查 项目的要求确定。
四、测试周期的确定 确定测试周期的原则是:在不过多地增加检查和测试工作量的情况下,能比较清楚地反映(了 解)产品地失效分布情况。不要使失效过于集中在一、二个测试周期内。各应力水平组一般要有 五个以上地测试点(指能测到失效产品地测试点),每个测试点上的失效数应尽可能大致相同。 五、失效判据 失效判据就是判断产品是否满足技术指标。失效判据可以是产品完全丧失功能,也可以是某 些参数退化。 在可靠性寿命试验中只要其中某一项技术指标不符合技术标准和要求,就判失效。
六、数据记录和处理 可靠性寿命试验中通过测试周期失效数据的记录,得到失效数据后,要对所记录的失效数据 进行分析,分析的方法有两种:一种是图估计法(或称直接打点法),另一种是利用公式进行计 算的方法,称为数值分析法。 图估法是将所测到数据进行直接打到概率纸上,用目测的方法进行直观判断,估计出产品的 可靠性指标来。 优点:简单直观,容易掌握,分析也快; 缺点:误差太大;
检验批:为判定产品质量而进行检验的一批单位产品。 缺陷:产品质量特性与规定要求不符。 平均寿命(平均无故障工作时间MTBF):产品发生故障后,经检查修复后再投入工作,这时在两次故 障间的平均工作时间就称为该产品的平均寿命(平均无故障工作时间)。 参数的区间估计:是研究怎样用一个数值来估计位置参数的一种方法,这种估计方法简便合理,又避免 过大的误差。 参数:用于描述总体分布特征的数值。
可靠性寿命试验
可靠性寿命试验
v第一节 术语 v第二节 寿命试验的目的和分类 v第三节 指数分布寿命试验 v第四节 指数分布寿命试验的设计 v第五节 可靠性试验中的一些技术问题
第一节 术语
质量特性:产品所固有的属性。各种产品的质量特性概括为性能、寿命、可靠性、效能、经济行5个方面。 贮存寿命:在规定贮存的条件下,产品从开始贮存到规定失效的时间。 等级:将相同功能用途的产品、过程或服务按照不同的需要划分的类型或顺序的标识。 环境条件:为了保持产品的适用性,对温度、湿度、压力、振动、加速等方面或几方面的环境特性的要求。 置信区间:设总体分布含有一个未知参数Θ,若由样本确定的两个统计量Θ L及ΘU,对于给定值a (0<a<1),满足P( Θ L < Θ< ΘU )=1—a( 0<a<1 )则诚随机区间( Θ L,ΘU )是Θ的( 1—a)置信区 间。 估计值:估计运算的结果。这结果既可以表示为单一数值(点估计),也可表示为置信区间。 统计值:由样本观测值X1,X2,…,Xn构造的不含未知参数的函数。 样本:从总体中抽取的一部分个体集合。 总体:研究对象的全体,称为总体或母体。 样品:从一批产品中随机抽取的产品。 接收:同意提供的批(产品)。 拒收:否定提供的批(产品)。 一次抽样:只抽取一个或多个样本,就作出接收或拒收的判断。 二次抽样:根据第一次抽样检验的结果,可以作出接收、拒收或再一次抽样、判断的抽样检验。如作出再 一次抽样的判断,则抽取第二次样本再进行检验,并根据第一、二次检验的累计结果作出接收或拒收的判断。
定数截尾试验:试验达到规定 的失效数就停止的试验。 随机现象:在一定条件下,并不总是出现相同结果的现象称为随机现象。 随机变量:表示随机现象结果的变量称为随机变量。
随机事件:随机现象的某些样本点的集合称为随机事件。
第二节 寿命试验的目的及分类
一、寿命试验目的: 可靠性寿命试验的目的是了解产品的寿命特征量、失效规律、平均寿命以及在寿命过程中可 能出现的各种失效模式。通过做可靠性寿命试验可以对产品的可靠性水平进行评价,并通过试验 过程中所获得的数据和相关信息进行分析并反馈到相关部门,及时采取必要的纠正措施,对产品 进行改进,以提高产品的可靠性水平。 二、寿命试验的分类 1.按国家标准:工作寿命试验和贮存寿命试验; 2.按数据处理方式:定时截尾试验和定数截尾试验; 截尾试验又可分为有替换(试验过程中,每发生一个失效样品,就换上一个好样品继续试验, 使样品数量保持不变)试验和无替换(试验过程中,失效样品取下后不再补充样品,剩下的样品 继续试验,直到规定试验截止时间时才停止)试验; 3.以施加的应力区分:长期寿命试验和加速寿命试验。 室温贮存试验
贮存寿命
高温贮存试验
寿命试验的分类
工作寿命
室温工作 高温工作 间断工作
第三节 指数分布寿命试验
一、指数分布寿命试验的意义 1.任何设计合理、工艺成熟、质量控制严格的生产线上(产品生产过程处于稳定状态下)生 产出来的产品都具有一定的可靠性指标,这类产品经过严格的筛选剔除掉设计、工艺的早期失效 后,产品便进入偶然失效期。在偶然失效期内,其失效率 ‫ ג‬近似等于常数,此时该产品的寿命分 布接近或服从指数分布。 2.指数分布的假设与某些元件的使用和试验结果比较接近。实践证明,即使有些元件的寿命
相关文档
最新文档