各种荧光素酶报告基因检测试剂盒解析

合集下载

双荧光素酶报告基因实验步骤

双荧光素酶报告基因实验步骤

双荧光素酶报告基因实验步骤实验目的:本实验采用双荧光素酶(Dual-Luciferase)报告系统,探究基因调控机制。

通过构建表达报告基因的质粒,研究不同因素对基因转录的影响。

实验材料:1. 双荧光素酶检测试剂盒(Promega)2. 293T细胞系3. Lipofectamine 2000转染试剂4. 培养基(DMEM + 10% FBS)实验步骤:1. 构建表达报告基因的质粒。

选择含有目标基因启动子区域的DNA片段,与质粒载体pGL3-基因报告载体连接,形成表达质粒pGL3-目标启动子-火萤酶(Luciferase)。

2. 细胞培养。

将293T细胞接种于6孔板中,培养至70-80%的稳定生长。

注意,细胞仅用到2×105个,否则检测结果会受内源性酶的影响。

3. 细胞转染。

将转染试剂与质粒混合,加入到细胞培养皿中。

注意,Lipofectamine 2000转染试剂与质粒的比例应按照转染试剂说明书进行调整。

4. 点亮荧光素酶(Luciferase)。

在细胞转染后48小时,加入荧光素酶检测试剂和积木酶抑制剂,使细胞产生发光,并通过微量板阅读器记录荧光值。

5. 关闭荧光素酶(Luciferase)。

在荧光素酶检测试剂作用后加入积木酶检测剂,称为“阻滞液”,使细胞发出的光信号被阻断。

加入Renilla荧光素酶检测试剂,使细胞重新产生新的发光信号,并通过微量板阅读器记录荧光值。

6. 数据统计。

按照公式计算相邻荧光信号的比值(荧光素酶/Renilla荧光素酶),以此作为表达目标启动子的相对活性。

(注意,双荧光素酶检测试剂盒中已包含此项标准)实验结果:通过双荧光素酶报告系统,研究了不同生物因素对基因转录的影响。

在细胞实验中,通过记录不同重复单元(replicate)的相对活性,为科研人员提供基因调控机制的新思路。

(数据统计请参照附表)结论:本实验采用双荧光素酶报告系统,通过构建表达报告基因的质粒,检测对基因转录的影响。

双荧光素酶报告基因检测系统——更亮、更快、更准

双荧光素酶报告基因检测系统——更亮、更快、更准

双荧光素酶报告基因检测系统——更亮、更快、更准产品背景双荧光素酶报告基因常用于启动子对基因表达影响的研究。

将所研究目的基因的调控序列克隆到含有报告基因的表达质粒中,然后将重组质粒导入适当的细胞系,通过测定报告基因表达的水平来间接评价在调控序列指导下启动子对基因表达的诱导作用。

荧光素酶是理想的报告基因,因为哺乳动物细胞中不含内源性荧光素酶,转录后无需修饰即具有报告基因的功能。

产品原理萤火虫荧光素酶(Firefly luciferase)大小为61KDa,单亚基蛋白,能够催化荧光素(luciferin)氧化,生成氧化荧光素oxyluciferin;海肾荧光素酶(Renilla luciferase)为36 KDa的单亚基蛋白,能够催化腔肠素(coelenterazine)氧化形成coelenteramide。

二者在翻译后均无需修饰即可发挥作用。

通常情况下,海肾荧光素酶作为内肾,用以减少内在因素的某些变化对实验所造成的影响。

该试剂盒先对转染后的细胞进行裂解,然后以荧光素为底物检测萤火虫荧光素酶的活性,之后在淬灭该荧光反应的同时,以腔肠素为底物检测海肾荧光素酶报告基因的活性;具有检测信号强、线性范围广、无内源活性干扰等特点。

产品特点裂解能力更强:能够彻底裂解绝大部分种类细胞。

信号更强:能够精准检测弱启动子的表达。

灵敏度更高:可检测低至10‐20摩尔荧光素酶分子。

线性范围更广:线性检测范围超过酶浓度的8个数量级。

操作流程加入海肾荧光素酶反应液的作用1:淬灭萤火虫荧光素酶的发光 2:加入海肾荧光素酶的底物腔肠素产品数据检测试剂和荧光素酶相互作用,可获得最佳的发光强度,加入海肾荧光素酶底物后,萤火虫荧光素发光淬灭情况:基本能够完全淬灭。

产品价格产品订购FAQQ1:双荧光素酶报告基因最适反应温度?A:室温(20-22℃)。

反应时各个组分(细胞裂解产物,底物工作液等)都需要调整到室温。

此两种荧光素酶的反应速率是受温度影响的,为了保证实验的一致性,我们推荐此两种工作液在检测时都孵育至室温。

报告基因荧光素酶

报告基因荧光素酶

报告基因荧光素酶1. 引言报告基因荧光素酶(Reporter gene luciferase)是一种用来研究基因表达的工具。

通过将荧光素酶基因与感兴趣的基因连接,我们可以追踪基因在细胞中的表达情况。

本文将介绍报告基因荧光素酶的原理、应用领域以及常见的实验方法。

2. 原理报告基因荧光素酶的原理基于反应底物荧光素与酶催化产生可见光的机制。

报告基因荧光素酶最常用的类型是火萤荧光素酶(Firefly luciferase)和海洋荧光素酶(Renilla luciferase)。

这两种酶的反应机制类似,都是在反应底物存在的条件下,通过氧化底物产生荧光。

具体而言,火萤荧光素酶催化底物荧光素,在氧气的参与下,荧光素通过氧化反应生成激发态氧化荧光素,并伴随着产生的荧光。

海洋荧光素酶则使用底物海洋荧光素,在氧气存在的条件下被酶催化氧化为产生荧光。

这两种荧光素酶所发出的荧光具有较高的强度和稳定性,因此广泛应用于基因表达研究和生物荧光成像等领域。

3. 应用领域3.1 基因表达分析报告基因荧光素酶通过转染至感兴趣的细胞中,能够随着目标基因的表达而发出荧光信号。

这使得基因表达的量化和动态变化的监测成为可能。

通过测量荧光强度,可以了解基因在不同条件下的表达水平,为基因调控和功能研究提供重要的数据依据。

3.2 药物筛选利用报告基因荧光素酶,可以构建新型的荧光素酶报告系统,用于药物筛选。

这种系统通过将荧光素酶与靶标基因连接,观察不同药物对基因表达的影响。

另外,荧光素酶可以被快速、准确地检测,从而提高药物筛选的效率。

3.3 细胞追踪研究报告基因荧光素酶可以用来追踪特定细胞在动物体内或培养基中的迁移、增殖和转化等过程。

通过将荧光素酶与标记细胞连接,可以观察细胞的迁移情况并实时监测。

4. 实验方法4.1 转染报告基因将报告基因荧光素酶载体构建成合适的质粒,并转染至目标细胞中。

转染方法可以选择常规的化学法、电穿孔法或者病毒载体转染等。

荧光素酶报告实验

荧光素酶报告实验

荧光素酶报告实验引言荧光素酶(Luciferase)是一种广泛应用于生物学研究中的酶类,它能够催化荧光素的氧化反应,产生强烈的荧光。

荧光素酶报告实验是利用荧光素酶作为报告基因,通过其荧光产生的强度来检测目标基因的表达水平或者蛋白质相互作用等生物学过程。

本实验旨在通过荧光素酶报告实验的方法和步骤,探究其在生物学研究中的应用及意义。

材料与方法1. 荧光素酶基因表达载体2. 荧光素底物3. 细胞培养基4. 转染试剂5. 荧光素酶检测试剂盒6. 培养皿7. 显微镜8. 阅读器实验步骤:1. 将目标基因的cDNA克隆至荧光素酶基因表达载体中。

2. 将构建好的表达载体转染至目标细胞中。

3. 收集转染后的细胞,加入荧光素底物,观察荧光产生情况。

4. 使用荧光素酶检测试剂盒进行荧光强度的检测。

5. 利用阅读器对荧光强度进行定量分析。

结果与讨论通过荧光素酶报告实验,我们成功地检测到了目标基因的表达水平。

荧光素酶报告实验的结果显示,目标基因在转染细胞中产生了较强的荧光信号,表明该基因在该细胞中得到了高水平的表达。

这为我们进一步研究该基因在生物学过程中的功能提供了重要的实验依据。

荧光素酶报告实验的优点在于其灵敏度高、操作简单、结果可定量化,适用于多种细胞类型和生物学研究领域。

在基因表达调控、蛋白质相互作用、药物筛选等方面都有着重要的应用价值。

同时,荧光素酶报告实验也存在一些局限性,如荧光素底物的稳定性、荧光素酶在体内的半衰期等问题需要进一步研究和改进。

结论荧光素酶报告实验是一种重要的生物学实验技术,通过利用荧光素酶作为报告基因,可以快速、准确地检测目标基因的表达水平和蛋白质相互作用等生物学过程。

荧光素酶报告实验在基础科研和药物研发领域有着广泛的应用前景,对于揭示生物学过程的机制、发现新的药物靶点等具有重要意义。

希望本实验的结果能够为相关研究提供参考,并促进荧光素酶报告实验技术的进一步发展和应用。

双荧光素酶报告基因检测试剂盒

双荧光素酶报告基因检测试剂盒

注意事项:
1) Fassay Buffer I和Fassay Substrate I应避免反复冻熔,可分装成合适体积分次使用。 Rassay Substrate II溶液应盖严存放,避免蒸发。配制好未用完的Fassay Reagent I和 Rassay Reagent II可在-20℃保存1月左右。
自动发光测定:
配制好的Fassay Reagent I和Rassay Reagent II置于测定仪内并连接好对应管道,Fassay Reagent I接第一注射管道,Rassay Reagent II接第二注射管道。各待测样品20 μl分别加 入测定管/板孔底部,启动自动测量程序。记录Firefly luciferase和Ranilla luciferase的发光 单位(RLU)。
测定前,在室温待Fassay Buffer I、Fassay Substrate I和Rassay Buffer II溶化,混匀(注意 避光)。按20/1比例用Fassay Buffer I稀释Fassay Substrate I,按50/1比例用Rassay Buffer II 稀释Rassay Substrate II,分别配制所需体积的Fassay Reagent I和Rassay Reagent II(注意 避光)。
2) 细胞裂解液一般在当天测定。如需隔日测定,应将样品于-20℃保存。长期保存应 在-80℃。测定样品量可为10~30μl个样品的两种试剂加入时间间 隔一致。
4) Rassay Reagent II可用于直接测定样品的Ranilla luciferase。需要注意的是,Rassay Reagent II直接测量的RLU要比双荧光素酶顺序检测获得的RLU高一些(反应体积 等因素的影响)。

双荧光素酶报告数据分析(3篇)

双荧光素酶报告数据分析(3篇)

第1篇摘要:双荧光素酶报告系统(Dual Luciferase Reporter Assays, DLRA)是一种广泛应用于生物科学研究中的细胞功能检测技术。

通过分析荧光素酶的活性,可以评估细胞内信号通路的激活情况,从而研究基因表达调控、细胞增殖、细胞凋亡等多种生物学过程。

本文将对双荧光素酶报告数据分析的方法、注意事项以及结果解读进行详细阐述。

一、引言双荧光素酶报告系统是一种基于荧光素酶活性的细胞功能检测技术,具有灵敏度高、特异性强、操作简便等优点。

荧光素酶是一种在细胞内自然存在的酶,能够将荧光素底物催化生成荧光物质。

在双荧光素酶报告系统中,通常使用两种荧光素酶:萤火虫荧光素酶(Firefly Luciferase, FL)和海肾荧光素酶(Renilla Luciferase, RL)。

FL的荧光强度通常作为报告基因的活性,而RL的荧光强度则作为内参基因,用于校正实验误差和细胞活力。

二、实验原理双荧光素酶报告系统的基本原理是:将目的基因与荧光素酶基因(FL或RL)的启动子连接,构建报告基因质粒。

将报告基因质粒转染到细胞中,细胞内荧光素酶的活性与目的基因的表达水平成正比。

通过检测细胞内两种荧光素酶的荧光强度,可以评估目的基因的表达水平。

三、实验方法1. 构建报告基因质粒(1)设计荧光素酶基因(FL或RL)的启动子序列,并与目的基因序列连接。

(2)将连接好的基因序列克隆到载体质粒中,构建报告基因质粒。

2. 细胞培养与转染(1)培养细胞至对数生长期。

(2)用脂质体或电穿孔等方法将报告基因质粒转染到细胞中。

3. 荧光素酶活性检测(1)收集转染后的细胞,用荧光素酶底物进行孵育。

(2)使用荧光光度计检测细胞内FL和RL的荧光强度。

4. 数据分析(1)计算FL和RL的相对荧光强度(RFU)。

(2)计算目的基因的表达水平(FL/Rlu)。

四、数据分析方法1. 相对荧光强度(RFU)计算RFU = 荧光强度 / 标准曲线斜率2. 目的基因表达水平计算目的基因表达水平 = FL/Rlu其中,FL为FL的相对荧光强度,Rlu为RL的相对荧光强度。

荧光素酶报告实验

荧光素酶报告实验

荧光素酶报告实验1 扩增目的片段扩增包含靶基因与miRNA互补位点的3’UTR序列以及mutant序列,上下游引物5’端各含有不同的酶切位点和保护碱基(如Pme I,Spe I);电泳检测目的条带,看大小是否正确,然后用试剂盒纯化PCR产物备用。

主要采用了2 种方法进行序列突变及扩增,如下图所示:第一种方法:第二种方法:1.2 取1-2 μg纯化的目的片段或pMIR-REPORT载体,按酶切反应体系配制混合液进行酶切(加0.01% BSA),酶切3h后,80℃灭活5 min,冰上降温。

酶切产物进行胶回收。

酶切体系连接体系Component V olume (μl) Component V olume (μl) H2O 16-x H2O 8-m-nVector or DNA x Vector mNEB Buffer I或IV 2 DNA nSpe I 1 10×T4 Ligase Buffer 1Pme I 1 T4 DNA Ligase 1Total voloume 20 Total voloume 101.3 配制连接反应混合液(DNA和Plasmid的molar ratio为3:1到6:1),16℃连接过夜或室温连接10 min。

连接完毕后,将连接产物转化入感受态大肠杆菌(热激法)。

Amp(100 μg/ml)抗性培养板筛选阳性克隆,菌落PCR鉴定目的片段,送3个样本测序,提取质粒酶切鉴定等。

并扩繁阳性克隆。

重组Luc-3’UTR 质粒主要元件和组成如下图所示(重组Luc-3’UTR-Mut 原理相同):pLuc-MET 3'UTR 荧光素酶报告基因载体的构建4.接种对数生长期的HEK293细胞(10% FBS+90% DMEM培养)于96孔板,3×103个/孔,每个实验组设置6个复孔,37℃,5% CO2培养箱中培养24h;5.根据Lipofectamine 2000转染试剂说明书,配制转染液,转染HEK293细胞;A 液B液pLuc-3’UTR 0.1 μg Lipofectamine 2000 0.5 μlpRL-SV40 0.05 μg OPTI-MEM 25 μlMimic/NC 100 nM终浓度OPTI-MEM 25 μl6 转染48 h后,吸除96孔板中的培养液,用ddH2O稀释Passive Lysis Buffer至1×浓度,在96孔板中加入1×Passive Lysis Buffer,20 μl/孔,用移液枪反复吸打裂解细胞;7 在白色不透明的96孔板中加入100 μl/孔的Luciferase Assay Substrate;8 从每孔裂解好的细胞悬液中吸出11.5 μl加入Luciferase Assay Substrate中混匀;9 在酶标仪500 ms条件下检测,并记录数据;10 用Stop & Glo® Buffer稀释Stop & Glo® Substrate至1×使用浓度;11 在第7步完成后,加入Stop & Glo® Substrate 100 μl/孔,混匀;12 在酶标仪500 ms条件下检测,并记录数据,两次测得数据的比值代表各孔样本的相对荧光强度。

荧光素酶报告基因检测试剂盒

荧光素酶报告基因检测试剂盒
¾ 萤火虫荧光素酶催化luciferin发光的最强发光波长为560nm (centered around 560nm)。 ¾ 本试剂盒可以测定100个样品。
包装清单:
产品编号
RG005-1 RG005-2

产品名称 报告基因细胞裂解液
荧光素酶检测试剂 说明书
包装 60ml 10ml 1份
保存条件:
报告基因细胞裂解液4℃保存3个月有效,-20℃保存一年有效;荧光素酶检测试剂-20℃避光保存6个月有效,-70℃避光保 存一年有效。
4. 每个样品测定时,取样品20-100微升(如果样品量足够,请加入100微升,但每次样品的使用量要保持一致),加入100微升
荧光素酶检测试剂,用枪打匀或用其它适当方式混匀后测定RLU(relative light unit)。以报告基因细胞裂解液为空白对照。
使用本产品的文献:
1. Zhou F, Zhang L, Gong K, Lu G, Sheng B, Wang A, Zhao N, Zhang X, Gong Y. LEF-1 activates the transcription of E2F1. Biochem Biophys Res Commun. 2008 Jan 4;365(1):149-53.
产品编号 RG005
荧光素酶报告基因检测试剂盒
产品名称 荧光品简介:
¾ 碧云天生产的荧光素酶报告基因检测试剂盒(Luciferase Reporter Gene Assay Kit),是以荧光素(luciferin)为底物来检测萤火 虫荧光素酶(firefly luciferase)。荧光素酶可以催化luciferin氧化成oxyluciferin,在luciferin氧化的过程中,会发出生物荧光 (bioluminescence)。然后可以通过荧光测定仪也称化学发光仪(luminometer)或液闪测定仪测定luciferin氧化过程中释放的生 物荧光。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

各种光素酶报告基因检测试剂盒解析
荧光素酶(Luciferase)是自然界中能够催化荧光素产生生物发光的酶的统称,其中最有代表性的是来自萤火虫体内(Firefly)和海肾(Renilla)体内的两类萤光素酶,分别命名为F-Luciferase和R-Luciferase,同时近年来研究得较多的来源于高斯氏菌的高斯荧光素酶(Gauss luciferase)。

荧光素酶可以催化luciferin氧化成oxyluciferin,在luciferin氧化的过程中,会发出生物荧光(bioluminescence),可通过荧光测定仪设备测定luciferin氧化过程中释放的生物荧光,常应用于启动子转录活性调控及miRNA靶基因验证等方向研究。

萤火虫萤光素酶
最通用和最常见的报告基因是北美萤火虫photinus pyralis的荧光素酶,该蛋白质不需要翻译后修饰即可获得酶活性。

高浓度(体内)甚至没有毒性,可用于原核和真核细胞。

Amplite™萤光素酶报告基因检测试剂盒
图1.在带有NOVOstar读板器(BMG Labtech)的白色96孔板中,使用Amplite™萤光素酶报告基因基因检测试剂盒(12518)检测萤光素酶剂量反应。

该试剂盒可在20min-5h的孵育时间内检测到低至0.1pg /孔的萤光素酶,而不会丢失信号强度。

半衰期超过4小时。

Amplite™萤光素酶报告基因检测试剂盒(12518)使用无DTT专利配方来定量活细胞和细胞提取物中的萤光素酶活性。

该测定基于萤火虫荧光素酶,萤火虫荧光素酶是一种单体的61 kD 酶,可催化荧光素的两步氧化,在560 nm处产生光。

Amplite™萤光素酶报告基因检测试剂盒特点:
具有优化的“混合读取”测定规程,可与HTS液体处理仪器兼容
具有高灵敏度,可用于需要低检测限的测定
具有用于研究基因调控和功能的快速,简单且均一的生物发光测定法
与标准细胞生长培养基的使用兼容
高斯荧光素酶
近年来,其他荧光素酶(例如高斯荧光素酶)的使用有所增加,因为这些报告基因较小,并且不需要ATP的存在。

高斯荧光素酶是一种20 kD的蛋白质,可通过氧气催化腔肠素氧化,产生光。

来自于海洋足类高斯氏菌的生物发光酶在表达后可有效地从哺乳动物细胞中分泌出来。

Amplite™高斯荧光素酶报告基因检测试剂盒使用专有的发光配方来定量细胞培养基中的荧光素酶活性。

当该试剂与高斯荧光素酶相互作用时,产生发光产物,该发光产物提供强发光。

Amplite高斯荧光素酶报告基因测定试剂盒特点:
提供了与HTS液体处理仪器兼容的所有基本组件
它们具有高灵敏度,可以以方便的96孔和384孔微量滴定板形式进行
半衰期为一小时的“辉光型”信号在大量检测板之间提供一致的信号
与标准细胞生长培养基兼容
海肾荧光素酶
海肾萤光素酶是一种从海桑(Renilla reniformis)分离的36 kDa蛋白。

与萤火虫荧光素酶相比,海肾荧光素酶的底物和辅因子要求不同。

海肾荧光素酶在氧气存在下使用腔肠素,产生480 nm的蓝光。

与萤火虫萤光素酶类似,海肾萤光素酶因其底物要求和光输出方面的差异而可用于双重报告检测。

Amplite™海肾荧光素酶报告基因测定
Amplite™Renilla萤光素酶报告基因检测试剂盒提供了一种快速,灵敏的方法,可以使用专有的发光配方在基于细胞的检测中检海肾萤光素酶的活性,与海肾萤光素酶相互作用后,该试剂产生具有强光的产物。

Amplite™海肾荧光素酶报告基因检测试剂盒特点:
该测定法与标准细胞生长培养基兼容
该试剂盒可以测量野生型和合成hRluc基因的原始表达或基因表达
每个试剂盒均包含可以方便96孔和384孔板检测所必不可少的组分
各类萤光素酶底物,辅因子和物理特性:。

相关文档
最新文档