双萤光素酶报告基因的应用-常见载体及案例简介

合集下载

双荧光素酶报告基因

双荧光素酶报告基因

双荧光素酶报告基因引言。

双荧光素酶报告基因是一种常用的生物标记物,用于研究基因表达和调控。

它具有高灵敏度、快速检测和定量分析等优点,因此在生物医学研究和药物开发领域得到了广泛应用。

本文将从双荧光素酶报告基因的原理、应用和未来发展等方面进行综述,以期为相关研究提供参考。

一、双荧光素酶报告基因的原理。

双荧光素酶报告基因是一种能够产生荧光信号的基因,它通常由双荧光素酶(Dual-Luciferase)和报告基因组成。

双荧光素酶包括火榴石荧光素酶(Renilla luciferase)和荧光素酶(Firefly luciferase),它们分别与不同的底物反应产生荧光信号。

报告基因则是研究对象的基因序列,它与双荧光素酶组成一个转录单元,用于研究基因表达水平和调控机制。

双荧光素酶报告基因的原理是利用荧光素酶和火榴石荧光素酶分别与其底物反应产生荧光信号,通过检测这两种荧光信号的强度来分析报告基因的表达水平。

这种双荧光素酶系统具有高灵敏度和宽线性范围,能够准确测定低至飞阿尔茨海默病荧光素酶单位的荧光信号。

二、双荧光素酶报告基因的应用。

1. 基因表达调控研究。

双荧光素酶报告基因广泛应用于基因表达调控研究中,可以通过构建报告基因的启动子激活元件来分析转录因子的结合位点和调控机制。

研究人员可以利用双荧光素酶报告基因系统来研究基因的转录调控网络,揭示基因表达的调控机制。

2. 药物筛选和毒性评价。

双荧光素酶报告基因系统在药物筛选和毒性评价方面也有广泛应用。

研究人员可以利用该系统来筛选具有调控作用的化合物,评估药物的毒性和副作用,为药物研发提供重要参考。

3. 细胞信号转导研究。

双荧光素酶报告基因系统还可以用于细胞信号转导研究,通过构建信号通路相关基因的报告基因来分析细胞信号传导的机制和调控网络,为疾病治疗和药物开发提供理论基础。

4. 生物传感器开发。

双荧光素酶报告基因系统还可以应用于生物传感器的开发,通过构建特定的报告基因来实现对特定生物分子的高灵敏度检测,为环境监测和生物医学诊断提供新的手段。

双荧光素酶报告

双荧光素酶报告

双荧光素酶报告双荧光素酶(Dual-Luciferase Reporter Assay,简称DLRA)是一种用于测定基因表达调控和信号传导通路的活性的常用技术。

该技术利用双荧光素酶作为报告基因和内参基因,通过测定荧光素酶和Renilla荧光素酶的活性来研究基因的转录调控和信号通路的激活情况。

本文将介绍双荧光素酶报告的原理、操作步骤和应用范围。

1. 原理。

双荧光素酶报告利用荧光素酶和Renilla荧光素酶两种荧光素酶来进行测定。

荧光素酶作为报告基因,其活性与目标基因的启动子活性相关;Renilla荧光素酶作为内参基因,用来校正转染效率和细胞数量的变化。

通过测定这两种荧光素酶的活性,可以准确地反映目标基因的表达水平和信号通路的活化程度。

2. 操作步骤。

(1)将感兴趣的启动子区域克隆到荧光素酶和Renilla荧光素酶的报告载体中;(2)将构建好的报告载体转染到目标细胞中;(3)收集转染后的细胞,裂解细胞膜,使荧光素酶和Renilla荧光素酶释放到细胞内液中;(4)加入相应的底物,测定荧光素酶和Renilla荧光素酶的活性;(5)计算荧光素酶活性与Renilla荧光素酶活性的比值,得到目标基因的表达水平和信号通路的激活程度。

3. 应用范围。

双荧光素酶报告技术在基因表达调控、信号传导通路和药物筛选等领域有着广泛的应用。

通过该技术,可以研究基因启动子的活性、转录因子的结合情况,以及信号通路蛋白的激活状态。

此外,双荧光素酶报告技术还可以用于筛选调控基因表达的化合物,为药物研发提供重要参考。

总之,双荧光素酶报告技术是一种简便、灵敏和可靠的基因表达调控和信号传导通路活性测定方法,具有广泛的应用前景。

通过对该技术的深入了解和熟练掌握,可以为科研工作和药物研发提供有力的支持。

双荧光素酶报告基因

双荧光素酶报告基因

双荧光素酶报告基因双荧光素酶报告基因及其应用双荧光素酶报告基因是一种经常用于生物学研究中的功能基因,它在研究细胞内转录调控、蛋白质相互作用、酶活性等方面具有广泛的应用。

本文将介绍双荧光素酶报告基因的特点、原理以及其在生物学研究中的应用。

首先,我们来了解一下双荧光素酶报告基因的特点。

双荧光素酶报告基因是通过核酸序列工程手段将双荧光素酶基因(Luciferase)与报告基因的表达序列融合而成。

这种融合基因可以在转染至细胞后,通过测定荧光素酶的活性来间接反映报告基因的表达水平。

双荧光素酶报告基因具有高灵敏度、高稳定性和广泛的线性范围等特点,使其成为现代生物学研究中非常重要的工具。

其次,我们来介绍一下双荧光素酶报告基因的原理。

双荧光素酶报告基因的原理基于荧光素酶的催化反应。

荧光素酶是一类酶,它在存在特定底物(如荧光素)和辅因子(如ATP和Mg2+)的情况下,可以催化荧光素氧化产生光。

荧光素酶报告基因利用这种酶催化反应的特性,将荧光素酶与报告基因融合,使得报告基因的表达水平可以通过测定荧光素酶的活性来间接确定。

双荧光素酶报告基因在生物学研究中有许多应用。

首先,它常被用于研究基因的转录调控。

研究人员可以将感兴趣的启动子区域与双荧光素酶报告基因融合,通过测定荧光素酶的活性来评估该启动子区域的转录活性。

这种方法可以帮助我们了解基因的调控机制以及某些转录因子的作用。

其次,双荧光素酶报告基因也可以用于研究蛋白质的相互作用。

研究人员可以将目标蛋白与双荧光素酶报告基因的不同片段融合,通过测定荧光素酶的活性来评估蛋白质相互作用的强度和稳定性。

这种方法可以帮助我们了解蛋白质的功能以及蛋白质网络的调控机制。

另外,双荧光素酶报告基因还可以被用于研究酶活性和信号传导通路。

比如,在药物筛选中,可以将双荧光素酶报告基因与药物靶点融合,通过测定荧光素酶的活性来评估药物对靶点的抑制效果。

这种方法可以帮助我们筛选出有效的药物并研究其作用机制。

双荧光素酶报告数据分析(3篇)

双荧光素酶报告数据分析(3篇)

第1篇摘要:双荧光素酶报告系统(Dual Luciferase Reporter Assays, DLRA)是一种广泛应用于生物科学研究中的细胞功能检测技术。

通过分析荧光素酶的活性,可以评估细胞内信号通路的激活情况,从而研究基因表达调控、细胞增殖、细胞凋亡等多种生物学过程。

本文将对双荧光素酶报告数据分析的方法、注意事项以及结果解读进行详细阐述。

一、引言双荧光素酶报告系统是一种基于荧光素酶活性的细胞功能检测技术,具有灵敏度高、特异性强、操作简便等优点。

荧光素酶是一种在细胞内自然存在的酶,能够将荧光素底物催化生成荧光物质。

在双荧光素酶报告系统中,通常使用两种荧光素酶:萤火虫荧光素酶(Firefly Luciferase, FL)和海肾荧光素酶(Renilla Luciferase, RL)。

FL的荧光强度通常作为报告基因的活性,而RL的荧光强度则作为内参基因,用于校正实验误差和细胞活力。

二、实验原理双荧光素酶报告系统的基本原理是:将目的基因与荧光素酶基因(FL或RL)的启动子连接,构建报告基因质粒。

将报告基因质粒转染到细胞中,细胞内荧光素酶的活性与目的基因的表达水平成正比。

通过检测细胞内两种荧光素酶的荧光强度,可以评估目的基因的表达水平。

三、实验方法1. 构建报告基因质粒(1)设计荧光素酶基因(FL或RL)的启动子序列,并与目的基因序列连接。

(2)将连接好的基因序列克隆到载体质粒中,构建报告基因质粒。

2. 细胞培养与转染(1)培养细胞至对数生长期。

(2)用脂质体或电穿孔等方法将报告基因质粒转染到细胞中。

3. 荧光素酶活性检测(1)收集转染后的细胞,用荧光素酶底物进行孵育。

(2)使用荧光光度计检测细胞内FL和RL的荧光强度。

4. 数据分析(1)计算FL和RL的相对荧光强度(RFU)。

(2)计算目的基因的表达水平(FL/Rlu)。

四、数据分析方法1. 相对荧光强度(RFU)计算RFU = 荧光强度 / 标准曲线斜率2. 目的基因表达水平计算目的基因表达水平 = FL/Rlu其中,FL为FL的相对荧光强度,Rlu为RL的相对荧光强度。

双荧光素酶报告基因

双荧光素酶报告基因

双荧光素酶报告基因启动子活性分析(双荧光素酶报告基因实验)一、实验目的:分析启动子活性二、实验原理:荧光素酶报告基因的活性用Dual-Luciferase?Reporter AssaySystem(Promega)试剂盒来检测。

利用单通道多标记荧光检测仪测定荧光素酶活性。

在双荧光素酶系统中,除了用于检测启动子活性的萤火虫荧光素酶外,另外一种组成型表达的Renilla荧光素酶质粒PRL-TK也被同时转染入细胞内作为内参。

三、实验材料:Dual-Luciferase?Reporter Assay System (Promega)试剂盒,PBS,细胞裂解液,96孔,四、实验设备:单通道多标记荧光检测仪五、实验方法及步骤:1)启动子萤光素酶报告载体与共转染质粒按照质量等比例、总量0.8μg的原则转染细胞,36h后收获细胞;2)96孔板吸弃细胞培养基,PBS冲洗细胞一次,加入1×PLB细胞裂解液20μl,置于室温震荡裂解20min;3)轻轻吹打细胞,取10μl细胞裂解液加入50μl Luciferase Assay Reagent,轻轻震荡混匀,立刻置于单通道多标记荧光检测仪中测定Firefly Luciferase活性;4)读数后立即加入50μl Stop & Glo?Reagent轻轻震荡混匀,读取Renilla Luciferase活性;5)所得的结果为各个实验样品的Firefly Luciferase活性与Renilla荧光素酶活性的比值。

每个实验组重复3-4孔,整个实验独立重复3次。

实验结果均为3次独立的实验结果的平均值。

所有的结果均以平均值±标准差(mean±S.D.)表示。

六、注意事项1.做好对照。

2.多做几个复孔,求平均值。

七、补充知识点双荧光素酶报告基因实验1.试剂盒:Dual-Glo TM Luciferase Aassy System(promega E2920)组成如下:? Dual-Glo?萤光素酶缓冲液Dual-Glo?萤光素酶底物(冻干粉)Dual-Glo?Stop-Glo?缓冲液Dual-Glo?Stop-Glo?底物2.报告基因的作用细胞信号转导途径启动子/增强子受体结合病毒/细胞相互作用转录因子药物诱导作用或“效果”3.原理–制备含有luc/ R luc的DNA–转染–提供刺激–测量荧光–用海肾萤光素酶作对照归一实验变化归一反应=实验的(萤火虫萤光素酶)/ 对照的(海肾萤光素酶)4.载体- 萤火虫萤光素酶载体pGL3 家族pGL3-BasicpGL3-ControlpGL3-EnhancerpGL3-Promoter海肾萤光素酶报告基因载体pRL-TK5.试剂制备–将Dual-Glo? 萤光素酶缓冲液倒入Dual-Glo? 萤光素酶底物中,Dual-Glo? 萤光素酶试剂,分装后-70℃保存,避免反复冻融–用Dual-Glo? S top &Glo? 缓冲液按1:100 稀释Dual-Glo? Stop &Glo? 底物(现用现配)–所有的缓冲液存于室温, 所有的底物存于–20°C两步加入试剂:加,读,加,读6.检测步骤:实验前,将Dual-Glo? 萤光素酶试剂平衡到室温1.确认使用的细胞板可以用于荧光检测2.测萤火虫荧光素酶活性:向待测细胞板每孔中加入与培养基等体积的Dual-Glo? 萤光素酶试剂,混匀。

双荧光素酶报告实验案例

双荧光素酶报告实验案例

双荧光素酶报告实验案例一、实验背景。

想象一下,我们有一个超级神秘的基因A,科学家们都在猜测这个基因A可能会被另外一个基因B调控,但是一直没有确凿的证据。

这就像在黑暗中摸索,知道有东西在那里,但是看不清楚。

所以呢,我们就打算用双荧光素酶报告实验这个厉害的工具来揭开真相。

二、实验准备。

1. 构建报告质粒。

我们要构建两种报告质粒。

一种是把基因A的启动子区域(这个启动子就像是基因A的开关,控制着基因A什么时候工作)克隆到一个含有萤火虫荧光素酶基因(F Luc)的载体上。

这个萤火虫荧光素酶呢,就像是一个小信号灯,它发光的强度能告诉我们基因A启动子的活性有多强。

另一种报告质粒呢,是含有海肾荧光素酶基因(R Luc)的对照质粒。

这个海肾荧光素酶就像是一个小助手,它的作用是给我们一个稳定的参考信号,就像一个不变的灯塔,这样我们就可以根据它来比较其他信号的变化。

2. 细胞准备。

我们选择了一种合适的细胞系,比如说人类的细胞系HEK293细胞。

这些细胞就像是一个个小小的房子,我们要把构建好的质粒送进这些小房子里。

在把质粒送进去之前,得先把细胞养得壮壮的,就像照顾小宠物一样,给它们合适的温度(37°C)、湿度和营养丰富的培养基,让它们开开心心地生长。

三、实验过程。

1. 转染细胞。

我们用一种转染试剂(就像是一个小快递员)把构建好的两种质粒(含有基因A 启动子 F Luc的质粒和含有R Luc的对照质粒)一起送进HEK293细胞这个小房子里。

这里面就有个小技巧啦,如果转染的效率不高,那就像快递没送到一样,后面的实验结果可就不准了。

然后把转染后的细胞分成两组,一组是实验组,一组是对照组。

在实验组的细胞里,我们还要再把基因B这个可能的调控因子送进去,就像是在这个小房子里加入一个新的成员,看看它会对原来的居民(基因A启动子和荧光素酶)有什么影响。

2. 培养和检测。

转染后的细胞继续在培养箱里快乐地生长一段时间,这个时间就像等待种子发芽一样,要恰到好处。

双萤光素酶报告基因的应用,常见载体及案例简介

双萤光素酶报告基因的应用,常见载体及案例简介

双萤光素酶报告基因的应⽤,常见载体及案例简介双萤光素酶报告基因检测(Dual-Luciferase ReporterAssay)通常以萤⽕⾍萤光素酶(Firefly luciferase)为报告基因,以海肾萤光素酶(Renillaluciferase)为内参基因。

所构成的报告系统具有灵敏度⾼、动态范围⼴、应⽤灵活等优势,⼴泛⽤于基因调控、⾮编码RNA靶向互作等研究领域。

Fireflyluciferase(简称F-Luc)以萤光素(luciferin)为底物,在Mg2+、ATP和氧分⼦存在条件下,催化luciferin氧化成oxyluciferin,在此过程中发出最强波长在560nm左右的⽣物萤光(bioluminescence)。

F-Luc表达框的上游启动⼦区域插不同功能序列,可以通过转录起始条件造成其报告萤光的变化。

在F-Luc的3’UTR区域插⼊待验证的靶序列,通过其翻译抑制或mRNA稳定性降低,可以反映是否存在靶向互作。

Renillaluciferase(简称R-Luc)以腔肠素(coelenterazine)为底物,在氧分⼦存在的条件下催化coelenterazine氧化⽣成coelenteramide,此过程中发出最强波长在465nm左右的⽣物萤光。

R-Luc通常由固定组成型启动⼦驱动,在报告系统中作为校正input误差的内参信号。

X⽣物萤光产⽣反应式⼀、应⽤⽅向1.验证microRNA同mRNA靶向互作。

将待测mRNA的3’UTR序列插⼊报告基因载体,再共转⼊该microRNA,如果萤光素酶活性下降,则提⽰为其靶序列。

2. 验证microRNA同lncRNA靶向互作。

将候选的lncRNA序列插⼊报告基因载体中F-Luc的3’。

双荧光素酶报告基因检测

双荧光素酶报告基因检测

双荧光素酶报告基因检测双荧光素酶报告基因检测是一种广泛应用于生物学研究和临床诊断的技术。

它利用双荧光素酶作为报告基因,通过检测其表达水平来研究目标基因的调控机制、信号转导通路以及疾病发生发展的相关机制。

本文将介绍双荧光素酶报告基因检测的原理、应用及其在科研和临床中的意义。

双荧光素酶报告基因检测的原理是利用双荧光素酶基因(Luciferase)和绿色荧光蛋白基因(GFP)等作为报告基因,将其与目标基因的启动子或调控元件相连,构建成表达载体,转染到细胞中。

当目标基因的启动子或调控元件被激活时,报告基因也会被激活,从而产生荧光素酶或绿色荧光蛋白,可以通过荧光素酶活性检测或荧光显微镜观察来检测目标基因的表达水平和细胞定位。

双荧光素酶报告基因检测在生物学研究中有着广泛的应用。

首先,它可以用于研究基因的调控机制。

通过构建不同长度或突变的启动子或调控元件,可以研究基因的启动子活性、转录因子结合位点以及信号通路的调控机制。

其次,它可以用于筛选药物或研究药物的作用机制。

通过将报告基因与目标基因共转染到细胞中,可以研究药物对目标基因表达的影响,从而筛选出具有特定生物学活性的化合物。

此外,双荧光素酶报告基因检测还可以用于研究基因的表达模式、细胞信号转导通路以及疾病发生发展的相关机制。

在临床诊断中,双荧光素酶报告基因检测也有着重要的意义。

例如,在肿瘤诊断中,可以利用双荧光素酶报告基因检测来研究肿瘤相关基因的表达水平,从而为肿瘤的分子诊断和靶向治疗提供依据。

此外,双荧光素酶报告基因检测还可以用于检测病毒感染、细胞凋亡、细胞增殖等生物学过程,为临床诊断和治疗提供重要参考。

总之,双荧光素酶报告基因检测作为一种重要的生物学检测技术,在科研和临床中有着广泛的应用前景。

它不仅可以帮助科研人员深入研究基因调控机制和疾病发生发展的相关机制,还可以为临床诊断和治疗提供重要的实验依据。

相信随着技术的不断进步和完善,双荧光素酶报告基因检测将在生物学研究和临床诊断中发挥越来越重要的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

双萤光素酶报告基因的应用,常见载体及案例简介双萤光素酶报告基因检测(Dual-Luciferase Reporter Assay)通常以萤火虫萤光素酶(Firefly luciferase)为报告基因,以海肾萤光素酶(Renilla luciferase)为内参基因。

所构成的报告系统具有灵敏度高、动态范围广、应用灵活等优势,广泛用于基因调控、非编码RNA靶向互作等研究领域。

Firefly luciferase(简称F-Luc)以萤光素(luciferin)为底物,在Mg2+、ATP和氧分子存在条件下,催化luciferin氧化成oxyluciferin,在此过程中发出最强波长在560nm 左右的生物萤光(bioluminescence)。

F-Luc表达框的上游启动子区域插不同功能序列,可以通过转录起始条件造成其报告萤光的变化。

在F-Luc的3’UTR区域插入待验证的靶序列,通过其翻译抑制或mRNA稳定性降低,可以反映是否存在靶向互作。

Renilla luciferase(简称R-Luc)以腔肠素(coelenterazine)为底物,在氧分子存在的条件下催化coelenterazine氧化生成coelenteramide,此过程中发出最强波长在465nm 左右的生物萤光。

R-Luc通常由固定组成型启动子驱动,在报告系统中作为校正input误差的内参信号。

生物萤光产生反应式
一、应用方向
1. 验证microRNA同mRNA靶向互作。

将待测mRNA的3’UTR序列插入报告基因载体,再共转入该microRNA,如果萤光素酶活性下降,则提示为其靶序列。

2. 验证microRNA同lncRNA靶向互作。

将候选的lncRNA序列插入报告基因载体中F-Luc的3’UTR区域,检测萤光素活性。

3. 启动子结构分析。

将启动子区域序列(通常2k左右)进行分段截短,或对特定位点进行突变,再分别构建入luciferase报告载体,检测其启动子活性。

4. 启动子SNP分析。

一些基因的启动子区域存在单核苷酸多态性,可运用萤光素酶报告系统分析其相对活性。

5. 验证特定转录因子同其调控序列的作用。

将该序列(通常为启动子区域)插入报告基因载体,同时在实验细胞中共转过表达该转录因子,可分析转录因子过表达是否提高萤光素酶活性。

6. 可以分析信号通路是否激活。

将该信号通路的下游响应原件序列构建入报告基因载体,在不同上游信号条件下,萤光素酶活性代表了通路的下游响应。

例如,在GPCR研究中,将cAMP response element(CRE)载入报告基因载体,构建稳定表达细胞株后,可以用于分析GPCR的激活与抑制剂筛选。

又如,将HIF1α的响应原件hypoxia-responsive element (HRE)插入luciferase报告载体构建稳转细胞株,可以用于低氧相关通路的研究。

二、常用萤光素酶报告基因载体
pGL3-Basic
pRL-TK
pmirGLO
三、经典案例
案例一
题目:Long non-coding RNA linc00673 regulatednon-small cell lung cancer proliferation,migration, invasion and epithelialmesenchymal transition by spongingmiR-150-5p
期刊:Molecular Cancer
小结:验证linc00673具有miR-150-5p的靶向结合位点。

将linc00673包括预测结合位点的序列克隆到pmirGLO- linc00673-WT,同时构建靶位点突变的pmirGLO- linc00673-MUT,分别共转miR-150-5p mimics及NC mimics,结果显示miR-150-5p转染组的相对荧光值降低,提示存在靶向结合。

图:RNA与质粒共转染293T,24h后双萤光素酶检测
案例二
题目:SOX9 indirectly regulates CEACAM1 expression and immuneresistance in melanoma cells
期刊:Oncotarget
小结:验证SOX9对于CEACAM1的转录调控作用。

分别使用了两种黑色素瘤细胞526mel和624mel,对CEACAM1的启动子区域分别选择了600bp-200bp的截短片段,共转染过表达SOX9,显示SOX9能够抑制CEACAM1启动子的转录。

图:截短的pCEACAM1进行双萤光素酶检测。

相关文档
最新文档