降水过程中氢氧稳定同位素理论关系研究

合集下载

卧龙地区大气降水氢氧同位素特征的研究

卧龙地区大气降水氢氧同位素特征的研究

Scu nPoic o uy 0 3t Jn 0 5 T eeu t no eer a rie( i a rv ef m Jl 20 u e o . h q ai f t i w t n MWL n n ww t n ee h n r o 2 o m oc el )a dso ae l ew r ri ¥ =9 436 1 9 . 4 0+ 8 6 8( = .4 , = 4 P< .5) a d8 = . 7 2 .5 r 0 9 3 凡 7 , 00 , n 1 9 3 66 0+3 .4 r 0 9 9 凡 = 1 P< 9 3 2 5( = .5 , 3, O0 .5)rset e .T el ehds nf a t ieec i l a m to cw tr ie( M )舳 = . 6 6 0+ epci l h n a i ic f rn ewt go l e r a n G WL vy i g in d h b ei el 8 15 94 0( = .6 。 .8 r 0 9 1 凡=2 , 0 0 ) h 9 P< .5 .T eMWL i sm r a o c e i MWL h hrce s co x es u me w sci i dwt G n nd h _T ec aat t f cs i ri e due u u m r wne( W w tr esn adyal adta fMWL so e htt rcpt i ne et m i sm e . it 1 a ao ) er t i r n rO es n yn h o hw dta h peii t n i w t e ao ni r
S u y o d o e n y e tb e Io o e n Pr cp t t n i o o g t d n Hy r g n a d Ox g n S a l s t p si e i i i n W ln a o Na u e Re e v ,S c u n Pr v n e t r s r e ih a o i c

同位素示踪方法在地下水污染溯源中的应用研究

同位素示踪方法在地下水污染溯源中的应用研究

同位素示踪方法在地下水污染溯源中的应用研究地下水作为重要的水资源之一,被广泛应用于供水和灌溉等领域。

然而,由于人类活动和自然原因,地下水污染问题日益严重,给人们的生态环境和健康带来了严重威胁。

因此,地下水污染溯源研究具有重要的科学和应用价值。

其中,同位素示踪方法作为一种有效的技术手段,被广泛应用于地下水污染溯源的研究中。

同位素示踪法是利用元素同位素的特点来追踪和确定地下水中各种污染物的来源和流动路径。

同位素指的是同一个元素的原子个数相同但质量不同的不同原子,例如氢同位素有氢-1、氢-2、氢-3等等。

不同的同位素的比例在不同的物质来源中也不相同,这就成为追踪物质来源的一种指示。

首先,同位素示踪法可以通过分析地下水中污染物的同位素组成,确认污染物的来源。

不同地质环境中地下水的同位素特征有所差异,各种污染源也具有不同的同位素组成。

通过对地下水样品中的同位素进行测定分析,可以确定污染物来自哪个或哪些污染源。

例如,氮同位素在化肥和污水中的同位素组成有所不同,可以通过测定地下水中氮同位素组成的差异来追踪和识别化肥和污水对地下水的污染。

其次,同位素示踪法可以揭示地下水中污染物的迁移和转化过程。

污染物在地下水中的迁移过程中,会发生一系列的生物、物理和化学反应,导致同位素组成的变化。

通过对地下水样品中不同位置及不同时间的同位素进行测定,可以揭示污染物在地下水中的迁移路径和转化过程。

例如,硝酸盐是地下水中常见的污染物之一,硝酸盐在地下水中的转化过程中,氮同位素的比例会发生变化,通过测定地下水中硝酸盐氮同位素比例的变化,可以推断硝酸盐的转化过程和迁移路径。

此外,同位素示踪法还可以评估地下水的补给来源和补给速率。

地下水的补给来源和补给速率对地下水的质量和数量具有重要影响。

通过测定地下水中同位素的组成和比例,配合水文地质调查资料,可以评估地下水的补给来源和补给速率。

例如,氢氧同位素在降水中的比例与地下水中的比例具有明显的相关性,通过测定地下水中氢氧同位素的组成和比例,可以揭示地下水的补给来源和补给速率。

04第四章(氢氧同位素)

04第四章(氢氧同位素)
Theory, Technique and Application of Environmental Outline
1.氢氧同位素概述 2.天然水的氢氧同位素组成及分布特征 3.氢氧稳定同位素的应用
1概 述
1.1 氢、氧同位素的主要地球化学性质
氢和氧是自然界中的两种主要元素,它们 以单质和化合物的形式遍布全球。
冰雪的堆积与融化对海水同位素组成的影响
北极冰的δD值为-160 ‰,δ18O值为-22 ‰ ; 南极雪的δD 值为-440 ‰ ,δ18O为-55 ‰。
当极地有大量冰雪堆积时, 海洋水的同位素组成变重; 若全球冰雪融化,海洋水 的同位素组成变贫。 据计算海水的δ18O将降到 -1‰,δD降到-10‰。
降水线的斜率也是反映分馏程度的一个参数
1965年Craig和Gordon指出,云团的冷凝过程基本上属于平衡过程,没 有明显的动力分馏,分馏系数介于封闭的平衡蒸发和瑞利蒸发之间,因 此,全球降水线的斜率S=8。
大量的研究证明,海水蒸发形成云团蒸气的过程实际上是一个动力过程, 蒸发速度受水-空气界面的扩散速度控制,而大气中的湿度、风速等因 素都会影响扩散速度。由于氢氧同位素分子有不同的扩散速度,所以得 到的斜率不等于8,而往往在5-6之间。由于受蒸发作用的影响而斜率小 于8。
2.4 地下水
1) 渗入水
不论古代还是现代,由大气降水补给的渗入水的同位素组成与其补给 源的大气降水的同位素组成相近,这是一种普遍的现象。在δD- δ18O关系图上,数据点都落在世界降水线或地方降水线附近。
利用大气降水的高度效应,可以推测计算地下水补给区的高度和 位置。
穿过起伏较大的大陆边缘加拿大西部山脉降水的δ18O变化
-7.0
-8.0

碳氢氧稳定同位素在草地生态系统水循环研究中的应用

碳氢氧稳定同位素在草地生态系统水循环研究中的应用

收稿日期:20190517 修回日期:20190708 基金项目:国家自然科学基金项目(31670720,31170661,31870716);林业公益性行业专项(201504423)。 通讯作者:徐庆,博士,研究员,主要从事稳定同位素生态学研究.Email:xuqing@caf.ac.cn
第 6期
本文综述了碳氢氧稳定同位素在草地生态系统 水循环研究中的国内外进展,并展望其未来的应用 前景,对我国草地资源保护、科学利用以及退化草地 生态系统恢复等具有重要的指导意义。
1 稳定同位素基本概念和原理
稳定同位素是指某元素中不发生或极不容易发 生放射性衰变的同位素。天然存在于水分子中的氢 有1H(氕)和 D(氘)共 2种稳定同位素,氧有16O、17O 和18O共 3种稳定同位素;天然碳有12C和13C共 2种 稳定同位素。不同环境条件下,各水体 (包括植物 水)氢氧稳定同位素和植物组织中碳稳定同位素组 成不同,因此,可通过分析其微小变化,定量研究陆
δX(‰)=(Rsample/Rstandard-1)×1000‰ 式中:Rsample是样品中元素的重轻同位素丰度比 (如 D/H,18O/16O,13C/12C);Rstandard是国际通用标准 物的重轻同位素丰度之比 (氢、氧稳定同位素采用 VSMOW 标准)。
2 氢氧稳定同位素在草地生态系统水 循环中的应用
摘要:碳氢氧稳定同位素是存在于天然水体和植物组织中的良好的示踪剂,具有较高的灵敏度与准确性,可系统
和定量地阐明草地生态系统水循环过程及各水体的转化关系、植物水分利用策略以及植被对全球变化的响应机
制等。本文概述了稳定同位素的基本概念和原理,总结和分析了草地生态系统水循环的研究方法和现状,重点
探讨和综述了氢氧稳定同位素技术在草地生态系统水循环过程(包括大气降水、地表水、土壤水、地11498(2019)06013007

同位素示踪方法在地下水污染溯源中的应用研究

同位素示踪方法在地下水污染溯源中的应用研究

同位素示踪方法在地下水污染溯源中的应用研究地下水是地球上最重要的淡水资源之一,被广泛用于供水和灌溉。

然而,由于人类活动和自然因素的影响,地下水受到污染的风险日益增加。

为了识别和追踪地下水的污染源,同位素示踪方法成为了一种强大的工具。

本文将探讨同位素示踪方法在地下水污染溯源中的应用研究。

同位素是元素核外的不同核质量所对应的各个种类,即质子数相同、中子数不同的同一元素。

同位素示踪方法是通过测量地下水中特定同位素的比例来识别和追踪污染源。

以下将介绍几种常见的同位素示踪方法及其在地下水污染溯源中的应用。

首先,氢氧同位素(δD、δ^18O)被广泛用于地下水的溯源研究。

地下水中的氢氧同位素比例受降水同位素组成和地质过程的影响,因此可以用来确定地下水的来源和运动路径。

通过比较地下水和潜在污染源(如降水、地表水或地下水)中的氢氧同位素比例,可以追踪污染物在地下水中的扩散轨迹。

例如,污染源中的氢氧同位素比例可能与地下水中的比例相差较大,从而揭示污染物可能来自其他来源。

其次,碳同位素示踪方法(δ^13C)在地下水污染溯源研究中也得到广泛应用。

地下水中的有机物和溶解性无机碳通常具有不同的碳同位素比例。

通过分析地下水中有机物的碳同位素比例,可以确定污染物的来源和类型。

例如,石油污染源通常具有较低的碳同位素值,而有机肥料污染源则具有较高的碳同位素值。

通过比较地下水中溶解性无机碳的同位素比例变化,还可以揭示地下水中生物地化循环的过程和影响。

另外,硫同位素示踪方法(δ^34S)在地下水中污染源的追踪研究中也起着重要的作用。

硫同位素比值在不同类型的污染源中通常有明显差异。

通过分析地下水中硫同位素的比例,可以识别污染源,并揭示其对地下水的影响。

例如,矿山废水中的硫同位素比值通常较高,而农业排水中的硫同位素比值较低。

硫同位素示踪方法在揭示地下水中人类活动对环境的影响和评估污染源负责程度方面发挥着重要作用。

此外,其他同位素示踪方法如氯同位素示踪(δ^37Cl)和铅同位素示踪(^206Pb/^207Pb)也可用于地下水污染源的追踪研究。

同位素水文地质学

同位素水文地质学

重庆利用2006年5月至2007年4月期间的δD、δ18O数据,建立了当地大气降水线方程(LMWL): δD =8.73δ18O+ 15.73,相关系数r= 0.97。

相对于全球以及中国大气降水线斜率与截距都偏大。

这是由于该大气降水线的数据建立在次降水的数据基础上,由于“降水量效应”(淋滤效应),即多次降水过程,同位素分馏作用会导致残余水汽中稳定同位素比例持续减轻。

重庆每年11月至第2年4月主要以锋面降水为主,西风气流以及偏北气流带来的亚洲内陆地区的水汽来源于干旱半干旱地区,风速大,蒸发比较旺盛,因此同位素偏重,这在δ18O和d中均有体现。

而在5~ 10月期间,偏南气流的影响显著;特别是在夏季风影响深刻的6~ 9月期间,来自于热带和副热带大洋的温暖潮湿气团给当地带来大量降水,使得降水中的过量氘d值减小。

结论:(1)初步建立了重庆大气降水线方程: δD= 8.73δ18O+ 15.73。

(2)重庆雨水中的稳定同位素值在年内具有明显的季节变化,夏季降水中稳定同位素值比冬季降水中明显偏轻。

夏季海洋性的水汽来源以及水汽由海洋到陆地运移过程中的多次凝结降水是导致这一现象的主要原因。

稳定同位素值最偏重的降水事件出现在春末夏初,表明了由温度、湿度等控制的蒸发作用对重同位素的富集效应。

(3)当地大气降水稳定同位素组成没有体现出温度效应,与温度呈现出一种负相关的关系(与南方一致)但体现出一定的降水量效应。

(4)重庆春季和秋季的降水量占全年降水量的比例可达30%左右,这些非夏季风影响时期的大气降水及其稳定同位素组成对当地全年大气降水稳定同位素的加权平均值有重要影响。

特别是在当夏季出现伏旱天气而导致降水显著减少的年份。

成都1)成都地区大气降水同位素值表现出非常明显的季节变化:夏半年偏负,冬半年偏正,符合季风气候的降水特征。

成都地区是典型的季风影响区,夏季受东亚季风、印度季风的双重影响,来源于海水蒸发的暖湿气团在每年的夏半年形成丰富的季风降水;而由于大巴山的阻挡,本区受冬季风的影响比较微弱,所以冬半年的水汽可能主要来源于当地地表水的蒸发。

西南地区大气降水中氢氧稳定同位素特征与水汽来源_朱磊

西南地区大气降水中氢氧稳定同位素特征与水汽来源_朱磊

第26卷第5期2014年10月云南地理环境研究YUNNAN GEOGRAPHIC ENVIRONMENT RESEARCH Vol.26,No.5Oct.,2014收稿日期:2014-09-03;修订日期:2014-10-08.基金项目:国家自然科学基金“滇东岩溶高原峰林湖盆水源枯竭机制研究”(41261007);云南省自然科学基金“基于稳定同位素的滇东岩溶区云南松水分策略研究”(2011FZ077)共同资助.作者简介:朱磊(1989-),女,云南省曲靖市宣威人,硕士研究生,主要研究方向为资源环境与区域发展.*通信作者.西南地区大气降水中氢氧稳定同位素特征与水汽来源朱磊,范弢*,郭欢(云南师范大学旅游与地理科学学院,云南昆明650500)摘要:为阐明西南地区稳定同位素与大气降水的关系,对GNIP 昆明、贵阳、桂林、成都站点δD 和δ18O 进行分析,初步建立当地大气降水线方程,并与中国及全国降水线方程进行对比,揭示该降水线方程的特征。

研究表明:大气降水稳定同位素组成受到温度、蒸发、水汽源地等多种因素的相互影响,在不同时间有很大差异。

西南地区降水中的δ18O 值表现出“夏高冬低”的季节特点。

d 值呈现出降水中过量氘水汽来源不同的特点,贵阳和桂林地区d 值表现为“冬高夏低”的季节特点,而昆明和成都地区却与此相反,d 值则表现为“夏高冬低”独特的季节性特征。

关键词:大气降雨;同位素;西南地区中图分类号:P426.612文献标识码:A文章编号:1001-7852(2014)05-0061-070引言大气降水作为自然界中水气循环的一个重要的环节,在各种时空间尺度下发生着变化[1]。

降水中同位素中各元素丰度的变化与水汽源区的初始状态、大尺度的天气系统变化,以及产生降水的气象过程存在密切的联系[2,3],并随着时间和空间的变化而异。

因此,对于降水的研究显得极其重要[4]。

降水中氢氧稳定同位素可以作为水汽源区理想的自然示踪剂或利用其变化来反演大气过程,能在一定程度上反映区域的地理因素及气候特征[5]。

稳定氢氧同位素示踪水汽来源对哈尼梯田降水补给的影响

稳定氢氧同位素示踪水汽来源对哈尼梯田降水补给的影响

第40卷第5期2020年3月生态学报ACTAECOLOGICASINICAVol.40,No.5Mar.,2020基金项目:国家自然科学基金项目(41271203,41761115)收稿日期:2019⁃01⁃17;㊀㊀网络出版日期:2019⁃12⁃17∗通讯作者Correspondingauthor.E⁃mail:ymjiao@sina.comDOI:10.5846/stxb201901170142徐秋娥,刘澄静,角媛梅,肖敏轩,丁银平,张育豪,马帆,张园园.稳定氢氧同位素示踪水汽来源对哈尼梯田降水补给的影响.生态学报,2020,40(5):1709⁃1717.XuQE,LiuCJ,JiaoYM,XiaoMX,DingYP,ZhangYH,MaF,ZhangYY.ImpactsofstableisotopiccompositionandmoisturesourcesofprecipitationonprecipitationrechargeofHaniRiceTerracesduringthedryseason.ActaEcologicaSinica,2020,40(5):1709⁃1717.稳定氢氧同位素示踪水汽来源对哈尼梯田降水补给的影响徐秋娥,刘澄静,角媛梅∗,肖敏轩,丁银平,张育豪,马㊀帆,张园园云南师范大学旅游与地理科学学院,昆明㊀650500摘要:稳定氢氧同位素可有效示踪区域降水水汽来源,旱季降水补给对大规模哈尼梯田的持续存在具有重大影响㊂以哈尼梯田世界遗产核心区的全福庄河流域为研究对象,在2015年11月 2016年4月间的旱季期间逐月采集处于不同海拔的7个样点的降水样品42个,分析其稳定氢氧同位素组成的变化及其影响因子,并利用后向轨迹模型(HYSPLIT)追踪其水汽来源㊂结果表明:1)该区局地大气降水线方程为δD=7.31δ18O+19.8(R2=0.94,P<0.01,n=42),斜率较全球降水线小而截距偏大,说明研究区有多个水汽来源地㊂2)旱季降水δ18O和d⁃excess在前期快速富集,后期δ18O富集的速度减缓,d⁃excess则快速降低,体现出水汽来源具有时间差异,但两者在空间变化上不明显㊂3)旱季降水δ18O与降水量㊁温度和相对湿度的多元线性回归方程为:δ18O=-0.002P-0.86T-0.39H+38.22(R2=0.96,P=0.05),表明其变化是多因素综合影响的结果㊂4)结合δ18O㊁d⁃excess和HYSPLIT模型分析,该区旱季主要有3条水汽来源路径,其中西风南支和局地水汽补给较少,占优势的西南季风除2月份外其余各月占70%左右㊂5)研究区旱季降水量总体较少,但西南季风在11月带来的降水为 灌水养田 提供了水源,在4月的降水为 冲水肥田 和 栽插准备 活动提供了必要水源,从而保障了梯田旱季的用水需求㊂关键词:哈尼梯田;稳定氢氧同位素;氘盈余;HYSPLIT模型;水汽来源;降水补给ImpactsofstableisotopiccompositionandmoisturesourcesofprecipitationonprecipitationrechargeofHaniRiceTerracesduringthedryseasonXUQiue,LIUChengjing,JIAOYuanmei∗,XIAOMinxuan,DINGYinping,ZHANGYuhao,MAFan,ZHANGYuanyuanCollegeofTourismandGeography,YunnanNormalUniversity,Kunming650500,ChinaAbstract:Stablehydrogenandoxygenisotopescaneffectivelytracethemoisturesourcesofprecipitation.PrecipitationrechargehasasignificantimpactonthestabilityofHaniRiceTerracesduringthedryseason.ThispaperselectedtheQuanfuzhuangRiverBasininthecoreareaofHaniRiceTerracesWorldHeritageasthestudyareaduringthedryseasonfromNovember2015toApril2016.Weanalyzedthevariationofprecipitationisotopeanditsimpactfactors,andusedHYSPLITmodeltotrackmoisturesources.Theresultsindicatedthat:1)theLocalMeteoricWaterLineequationwasδD=7.31δ18O+19.8(R2=0.94,P<0.01,n=42),withsmallerslopethantheGlobalMeteoricWaterLineandlargerintercept.2)Theδ18Oandd⁃excessraterapidlyincreasedintheearlydryseason,butδ18Oratewasslowdowninthelateperiod,andthed⁃excessraterapidlydecreased,whichshowedthatthemoisturesourceshadtimedifferences.However,thespatialvariationwasnotobvious.3)Themultiplelinearregressionequationofδ18Oandtemperature,precipitationamount,and0171㊀生㊀态㊀学㊀报㊀㊀㊀40卷㊀relativehumidityduringthedryseasonisδ18O=0.002P-0.86T-0.39H+38.22(R2=0.96,P=0.05),indicatingthattheprecipitationisotopicchangeswastheresultofmultiplefactorsduringthedryseason.4)Thebackwardtrajectorymodelshowedthatthereweremainthreemoisturesourceroutesduringthedryseason.ThemoisturevaporfromSouthBranchofwesterlyandlocaltransportwereless,andthedominantsouthwesternmonsoonaccountedforabout70%ineverymonthexceptFebruary.5)Theprecipitationamountwasgenerallysmallduringthedryseason,buttheprecipitationattheendofthesouthwestmonsoonprovidedwatersourcesforirrigationinNovember.TheprecipitationfromsouthwestmonsoonnextyearwasbeneficialtofertilizationandplantinginApril.Theprocessprovidednecessarywatersourcetoguaranteethewaterdemandofterracesduringthedryseason.KeyWords:HaniRiceTerrace;stablehydrogenandoxygenisotopes;deuteriumexcess;HYSPLITmodel;moisturesource;precipitationrecharge利用稳定氢氧同位素追踪降水的水汽来源是国际大气和水文科学的热点领域[1⁃3]㊂降水中稳定氧(O18)和氘(D)同位素是水汽来源的天然示踪剂[4⁃5],是区域及全球水循环中的一个重要输入项,其丰度与形成时的气象条件及水汽源区的初始状态存在密切联系[3,6]㊂因此,同位素环境效应可作为降水来源的自然示踪剂来反演大气过程[7],判别不同区域的水汽来源[4,8],反映区域气候特征[9],进而深入了解区域水循环过程[10]㊂目前关于降水稳定氢氧同位素组成及其水汽来源的研究,已在中国的西南地区[11]㊁西北地区[12]㊁东北地区[13]㊁东部沿海地区[14]㊁青藏高原[15]等地区展开,这些研究深入探讨了不同区域水汽来源的方向㊁数量等特征,以及季风区与非季风区㊁冬季风与夏季风的水汽来源差异等方面㊂整体上,大区域乃至全国范围的大气稳定氢氧同位素分布特征㊁同位素效应及其输送过程变化规律与机制等已经取得了重要的研究成果[16⁃20]㊂但目前的研究,在空间上对北方非季风区水汽来源的研究要多于对南方季风区的研究;在尺度上则缺乏对于小尺度地区的水汽来源及其运移过程的精细研究;在时间上则比较注重对雨季(夏季风)水汽来源的研究而缺乏对旱季(冬季风)的研究㊂在季风区,相比于降水较多的雨季,旱季较少的降水和水汽来源及其区域效应则更应该受到较多的研究和关注㊂哈尼梯田世界文化景观遗产位于我国西南部,属典型的亚热带季风气候区,旱季(11月 次年4月)降水较少和雨季(5月 10月)降水较多[21]㊂研究区内降水水汽来源及其影响因素非常复杂,旱雨季存在明显差异[22]㊂水作为维系哈尼梯田遗产景观稳定性的关键因素,尤其在降水匮乏的旱季梯田内 灌水养田 和 冲水肥田 等农业生产活动都需要大量水源支持,降水作为哈尼梯田区最主要的补给水源,明晰旱季降水水汽来源㊁循环过程及其影响因素对哈尼梯田的农业生产㊁遗产保护都具有十分重要的作用㊂因此,本研究通过对哈尼梯田区旱季降水稳定氢氧同位素时空变化特征的分析,旨在揭示1)影响旱季降水稳定同位素组成的主要环境因子及其相互关系;2)旱季水汽来源及其比例;3)哈尼梯田区旱季降水对梯田的补给情况及其生态意义㊂1㊀研究区与研究方法1.1㊀研究区研究区位于全福庄河小流域,属于哈尼梯田文化景观遗产核心区的坝达片区[23],地处云南省红河哈尼族彝族自治州元阳县㊂经纬度范围在102ʎ43ᶄ16ᵡ 102ʎ50ᶄ39ᵡE㊁23ʎ5ᶄ20ᵡ 23ʎ13ᶄ18ᵡN之间㊂研究区地处哀牢山南段,属红河一级支流麻栗寨河的源头区为扇形小流域,流域地势南高北低,呈阶梯状逐渐降低,海拔范围在1450 2261m之间,相对高度811m,面积约13.92km2㊂区内垂直气候差异明显,1800m以上为北亚热带气候和温带气候,年均温在15ħ左右,年均降水量1800mm;海拔1800m以下地区为中㊁南亚热带气候,为梯田主要分布区,年均温为17ħ,年均降水量1500mm㊂旱雨季分明[24],雨季降水量1089.7mm,旱季降水量仅为307.9mm,降水的水汽来源与影响降水的因素比较复杂㊂1.2㊀降水样品采集与测试在收集研究区相关资料和前人研究方法的基础上结合研究区实际情况,于2015年11月和12月至2016年1月至4月在研究区按月采集研究区旱季降水,采样点位置通过手持GPS确定,所设置的7个样点按海拔梯度分布:样点1(1500m)㊁样点2(1680m)㊁样点3(1798m)㊁样点4(1889m)㊁样点5(1957m)㊁样点6(2004m)和样点7(2024m),共采集有效大气降水样品42个(图1)㊂采集样品时,先用自制的雨水收集器收集雨水,到该月结束后对桶内收集的雨水进行采集,并记录月降水量㊂收集雨水收集器中雨水样品时,先将100mL聚乙烯瓶用雨水清洗3次,迅速灌满,使瓶内无气泡后用密封胶封口,贴好标签㊂气象数据采集来自设立于全福庄中寨(样点3)的DAVISVantag自动气象站,每小时一个数据,具体采集气象数据包括降水量㊁室外温度㊁室外湿度㊁风速㊁风向㊁气压等㊂图1㊀研究区与采样点分布图Fig.1㊀Studyareaanddistributionofsamplingsites稳定氢氧同位素测试在云南师范大学高原湖泊生态与全球变化重点实验室进行㊂采用PicarroL2130⁃i超高精度液态水和水汽同位素分析仪上测定,液态水测试结果的δ18O确保精度ʃ0.1ɢ,δD确保精度ʃ0.5ɢ,最终分析结果是用相对于维也纳标准平均海洋水(V⁃SMOW)的千分差表示:δ18O=(RO-sampleRV-SMOW-1)ˑ1000ɢ(1)δD=(RD-sampleRV-SMOW-1)ˑ1000ɢ(2)式中,RO-sample为水样中稳定氧同位素比率R(18O/16O),RD-sample为为水样中稳定氢同位素比率R(D/H),RV-SMOW为维也纳标准平均海洋水中稳定氧和氢同位素比率R(18O/16O)和R(D/H)㊂1964年Dansgaard[1]根据Craig[7]得出的全球大气降水线提出并定义了氘盈余值(又称过量参数,简称d⁃excess值),用来反映本地降水与全球降水的稳定氢氧同位素分馏程度㊂d=δD-8ˑδ18O(3)1.3㊀数据处理与后向轨迹模型(HYSPLIT)研究区采样点和地形图由地理空间数据域提供的30mˑ30m的数字高程模型(DigitalElevationModel,DEM)在ArcGIS10.0软件中进行制图综合得出㊂稳定氢氧同位素测试结果采用SPSS20软件进行统计分析,主要分析方法包括相关性分析㊁一元回归分析和假设检验等,分析结果图采用Grapher12软件制作㊂1171㊀5期㊀㊀㊀徐秋娥㊀等:稳定氢氧同位素示踪水汽来源对哈尼梯田降水补给的影响㊀旱季不同时间大气降水水汽的来源轨迹,采用的是后向轨迹模型(HybridSingleParticleLagrangianIntegratedTrajectoryModel,简称HYSPLIT模型)[25⁃26]的轨迹模拟结果,该模型是由美国国家海洋和大气管理局(NOAA)的空气资源实验室和澳大利亚气象局联合研发的用于计算和分析大气污染物输送㊁扩散轨迹,并可以实时预报风场形势㊁研究水汽输送轨迹的专业模型㊂模型运行的初始时间为UTC时间0时,高度为500m(距研究区地面),追踪点为位于研究区样点中间位置的样点3,向后追踪5d,即120h,这样即可覆盖连续性降水,还可提高追踪水汽来源的精度㊂同时结合实际情况和前人相关研究对轨迹模拟结果进行聚类分析和GIS制图综合,得出旱季大气运动的后向轨迹图㊂2㊀结果与分析2.1㊀降水中稳定氢氧同位素分析2.1.1㊀本地大气降水线依据研究区所采旱季降水稳定氢氧同位素数据,得出研究区局地大气降水线(LocalMeteoricWaterLine,LMWL)方程为:δD=7.31δ18O+19.8(R2=0.94,P<0.01,n=42),表明研究区旱季降水的稳定氢氧同位素组成具有极好的相关性(图2)㊂如图2所示,研究区降水稳定氢氧同位素值全部位于全球大气降水线(GlobalMeteoricWaterLine,GMWL)上方,且LMWL的斜率7.31要小于GMWL的斜率8,这表明该区降水来源于具有不同稳定氢氧同位素比率的源地,且降水形成过程中还受到蒸发等其他环境因素的影响,故出现18O偏离GMWL的现象㊂此外在局地降水上,旱季降水稳定氢氧同位素值存在明显的月间差异,同位素值呈现出随时间变化而不断富集的趋势,这种趋势在一定程度上也反映了研究区不同月份降水的形成过程存在差异㊂2.1.2㊀大气降水δ18O㊁d⁃excess变化特征根据旱季7个样点降水同位素δ18O在不同月份的分布情况可知(图3),δ18O的变化范围在-8.97ɢ -0.92ɢ之间,平均值为-4.47,总体上旱季δ18O富集㊂从时间上看,旱季降水同位素δ18O值随旱季的深入逐渐富集,并呈现出旱季前期(11月至次年1月)和后期(次年2月至次年4月)两个不同的增长阶段㊂其中,在旱季前期降水同位素素δ18O值快速富集,变化率为2.69ɢ/月;在旱季后期降水δ18O值富集的速度减缓,变化率为0.60ɢ/月㊂从空间上看,各月样点降水同位素值差异较小,随海拔变化的情况不明显,这与相对较小的海拔梯度有关㊂图2㊀大气降水δ18O和δD的关系Fig.2㊀Relationshipbetweenδ18OandδD图3㊀旱季降水δ18O和d⁃excess的时间变化㊀Fig.3㊀Themonthlyvariationofdeuteriumexcessandδ18Oinprecipitationduringthedryseason2171㊀生㊀态㊀学㊀报㊀㊀㊀40卷㊀㊀㊀从降水同位素d⁃excess值在不同月份的分布情况来看(图3),研究区旱季d⁃excess值范围在12.44ɢ 31.11ɢ之间,平均值为22.87,要明显大于全球d⁃excess值的10ɢ㊂在旱季氘盈余值随时间的变化也存在两个阶段的特征,在旱季前期d⁃excess不断上升,变化率为3.71ɢ/月;在旱季后期d⁃excess不断降低,变化率为-4.80ɢ/月㊂在空间上,各月样点降水d⁃excess值差异较小,随海拔变化的情况不明显㊂2.2㊀影响降水δ18O的环境因子将各样点降水稳定氧同位素的月平均值与各环境因子(降水量㊁温度和相对湿度)进行分析,结果见表1和图4㊂表1㊀研究区旱季降水平均δ18O与主要环境因子的关系Table1㊀Relationshipbetweenaverageδ18Oandmainenvironmentalfactorsduringthedryseason环境因子Environmentalfactor一元回归Unaryregression二元回归Binaryregression方程EquationR2P方程EquationR2P降水量Precipitation/mmδ18O=-0.03P-2.360.200.38δ18O=-0.01P2+0.98P-5.800.210.70温度Temperature/ħδ18O=0.11T-5.860.020.79δ18O=0.46T2-11.86T+67.920.820.08相对湿度RelativeHumidity/%δ18O=-0.17H+9.450.490.30δ18O=-0.01H2+1.83H-66.060.550.12图4㊀旱季降水量㊁温度㊁相对湿度的变化Fig.4㊀Changeofprecipitation,temperatureandrelativehumidityduringthedryseason2.2.1㊀大气降水δ18O与各环境因子的一元回归分析7个样点降水δ18O平均值与降水量㊁温度和相对湿度的一次和二次拟合方程P值均大于0.05(表1),表明三者均不是影响降水δ18O变化的主要因素㊂这是由于大气降水在凝结过程中,由于旱季相对湿度较低且温度较高,降水分馏以动力过程为主,雨滴在下降过程中经历了二次蒸发过程或雨滴凝结时混入了一定量的局地循环的水汽㊂2.2.2㊀大气降水δ18O与各环境因子的多元回归分析通过以上分析,在旱季,各样点旱季降水同位素值与温度㊁降水量和相对湿度的相关性未通过相关系数临界值检验,即旱季降水δ18O没有明显的主导性环境因子㊂综合考虑旱季降水同位素δ18O与降水量㊁温度和相对湿度各主要环境因子的影响,对旱季降水δ18O值与各环境因子做多元回归分析,回归方程为:δ18O=-0.002P-0.86T-0.39H+38.22(R2=0.96,P=0.05),式中P为降水量(mm),T为温度(ħ),H为相对湿度(%),其相关系数为0.98,说明旱季降水同位素变化是多因素综合影响的结果,局地水汽循环过程显著㊂2.3㊀旱季降水的水汽来源2.3.1㊀氘盈余指示的水汽来源从降水同位素d⁃excess值在不同月份的变化特征来看(图3),旱季氘盈余值随时间的变化也存在两个阶3171㊀5期㊀㊀㊀徐秋娥㊀等:稳定氢氧同位素示踪水汽来源对哈尼梯田降水补给的影响㊀4171㊀生㊀态㊀学㊀报㊀㊀㊀40卷㊀段的特征,在旱季前期d⁃excess不断上升,变化率为3.71ɢ/月;在旱季后期d⁃excess不断降低,变化率为-4.80ɢ/月㊂在与环境因子的相关性方面,d⁃excess与温度和相对湿度都有显著的相关性,在0.05的显著性水平下,d⁃excess与温度和相对湿度相关系数分别为-0.89,0.81㊂这说明旱季降水的d⁃excess更能够展现局地环境因子对降水同位素的影响,而与降水量较低的相关性则是由旱季降水较少和影响因素较多造成的㊂从图3可知,可根据d⁃excess变化情况将研究区的水汽来源分为旱季前期和后期两类,旱季前期不断升高的d⁃excess说明研究区水汽来源正逐渐从海洋水汽向大陆水汽转变,降水δ18O逐渐富集,整体上呈现出同位素富集的情况;旱季后期d⁃excess逐渐降低则说明的水汽来源又从大陆水汽逐渐转变为海洋水汽,降水δ18O虽然没有逐渐贫化,但富集趋势开始变得平缓,这可能与这个时段的降水量偏少有关㊂2.3.2㊀基于后向轨迹模型的水汽来源不同的水汽来源是影响降水同位素组成的关键因素,利用HYSPLIT模型对旱季水汽来源进行轨迹模拟得出旱季大气运动的后向轨迹图(图5),结果如下:在整个旱季,水汽输送主要有西南输送水汽(SW)㊁西风南支输送水汽(SB)㊁西风北支输送水汽(NB)㊁北方冷空气输送水汽(NE)以及东南太平洋水汽(SE),此外还有部分局地水汽(Local)等6个主要水汽来源㊂其中以西南输送水汽最多,约占整个旱季的67%;其次为西风南支输送水汽,约占整个旱季的12%;其余水汽贡献比例较少,整体上均小于10%,但在个别月份略有上升㊂因此,在整个旱季西南水汽和西风南支水汽是研究区主要的水汽来源㊂在旱季各月间,11月至次年2月,西南输送水汽来源比例逐渐较少,次年3月至4月又逐渐增多,同时西南输送水汽比例又在一定程度上与西风南支和局地水汽比例成反比,这与d⁃excess的分析结果基本一致㊂其中,西风南支输送水汽比例在11月至次年1月逐渐增加,而次年2月至4月又逐渐减小;局地水汽比例则在次年2月急剧增加,而2月以后又逐渐减少㊂在降水δ18O方面,由于旱季前期源于西南输送的海洋水汽逐渐减少,局地水汽和西风南支输送的大陆水汽逐渐增多,δ18O也在不断富集;虽然在旱季后期西南季风输送水汽的比例逐渐增加,局地水汽和西风南支输送水汽比例不断减少,但由于降水量较少且相对湿度较高(图5),降水δ18O没有出现逐渐贫化的情况,只是富集趋势有所降低㊂这说明,不同水汽来源的水汽也会受到局地环境因素的影响,影响结果大小一定程度上取决于水汽所形成的降水量的大小㊂3㊀讨论3.1㊀旱季大气降水δ18O与各环境因子的关系在本研究中,旱季降水同位素值与降水量㊁温度和相对湿度的相关性并不显著,即旱季降水δ18O没有明显的主导性环境因子㊂而一般认为降水稳定同位素组成变化受到了水汽凝结时温度㊁水汽输送方式㊁降水的季节变化㊁降水期间的温度和湿度等因素影响[11]㊂Dansgaard定义了降水中δ18O与温度之间存在显著正相关性关系为温度效应,而降水中δ18O与降水量之间存在反相关性,将此现象定义为降水量效应[1]㊂田立德㊁刘忠方等[27]人认为高纬度地区影响降水稳定同位素组成变化的主要是温度因素,而在低纬度热带及亚热带地区则为降水量㊂在季节尺度上,哈尼梯田地区的大气降水稳定氢氧同位素组成具有明显的季节性,旱雨季差异较大,由于雨季平均气温较旱季大,且降水量集中在雨季,旱季与雨季水汽来存在差异,雨季存在明显的温度效应[1],这与环境同位素的分馏作用主要受制于相变过程中的温度的说法一致[28⁃29],旱季降水量少,旱季没有主导性因子㊂但在年尺度上看,由于季风的控制哈尼梯田区降水多集中在温度较高的雨季,全年降水δ18O值存在明显降水量效应[21]㊂3.2㊀旱季降水水汽来源对哈尼梯田降水补给的影响章新平等[30]的研究表明,中国西南地区旱季降水稳定同位素比率和d⁃excess较大,主要受大陆性气团影响,水汽主要来源于西风带的输送和内陆再蒸发水汽的补给㊂本研究的水汽来源分析表明,哈尼梯田区不仅受少量的西风南支和局地水汽补给,更多的是受西南季风的影响,除2月份占比为43%外,其余月份均占图5㊀研究区旱季水汽来源后向轨迹示意图Fig.5㊀Clusterofbackwardtrajectoryfromstudyareaduringthedryseason70%左右(图5),使11月和次年4月都出现较多的降水量(图4),从而为哈尼梯田秋末(11月)的 灌水养田 活动和春初(4月)的 冲水肥田 活动所需的水源提供有效补给㊂在研究区的梯田内,旱季灌水养田时的水深一般为20 25cm,梯田储水量为0.25m3/m2[31]㊂由于旱季灌水养田时田水一般不会排出,且梯田底泥底一般为黏土,透水性弱,因此蒸发是旱季田水损失的主要原因㊂要保证研究区旱季梯田水体的稳定和持续,5171㊀5期㊀㊀㊀徐秋娥㊀等:稳定氢氧同位素示踪水汽来源对哈尼梯田降水补给的影响㊀图6㊀旱季降水量和蒸发量Fig.6㊀Precipitationandevaporationduringthedryseason研究区旱季的降水量必须要大于蒸发量㊂根据研究区2015 2016年的旱季降水量(424.93mm)和旱季蒸发量(393.24mm)计算出的干燥度为0.93,小于1(图6),研究区在旱季依然达到了湿润地区的指标㊂这说明研究区旱季的降水能够完全保证梯田区旱季灌水养田的需求,保障了旱季哈尼梯田农业生产活动,是实现哈尼梯田千年的可持续发展的关键因素㊂4㊀结论哈尼梯田世界遗产核心区全福庄河流的局地大气降水线方程为δD=7.31δ18O+19.8(R2=0.94,P<0.01,n=42),δ18O和d⁃excess前期均快速富集,后期则是δ18O富集速度减缓但d⁃excess快速降低㊂在旱季中,降水δ18O与降水量㊁温度和相对湿度等因子方程为δ18O=-0.002P-0.86T-0.39H+38.22(R2=0.96,P=0.05,n=42)㊂HYSPLIT模型结果显示旱季主要有西南季风(67%)㊁西风南支(12%)和局地水汽(8%)等3个水汽来源,西南季风带来的降水在旱季末期(11月)为 灌水养田 ,以及次年最干旱月份(4月)的 冲水肥田 和 栽插准备 等梯田农事活动提供了充足的水源保障㊂致谢:云南师范大学高原湖泊生态与全球变化重点实验室对同位素测试给予支持,特此致谢㊂参考文献(References):[1]㊀DansgaardW.Stableisotopesinprecipitation.Tellus,1964,16(4):436⁃468.[2]㊀DansgaardW.TheabundanceofO18inatmosphericwaterandwatervapour.Tellus,1953,5(4):461⁃469.[3]㊀HollinsSE,HughesCE,CrawfordJ,CendónDI,MeredithKT.RainfallisotopevariationsovertheAustraliancontinent-Implicationsforhydrologyandisoscapeapplications.ScienceoftheTotalEnvironment,2018,645:630⁃645.[4]㊀Araguás-AraguásL,FroehlichK,RozanskiK.StableisotopecompositionofprecipitationoversoutheastAsia.JournalofGeophysicalResearch:Atmospheres,1998,103(D22):28721⁃28742.[5]㊀李广,章新平,吴华武,张剑明,魏乃琼,黄煌.云南大气降水中δ18O与气象要素及水汽来源之间的关系.自然资源学报,2014,29(6):1043⁃1052.[6]㊀胡勇博,肖薇,钱雨妃,刘强,谢成玉,张秀芳,张文庆,温学发,刘寿东,李旭辉.水汽源地和局地蒸发对大气降水氢氧稳定同位素组分的影响.环境科学,2019,40(2):573⁃581.[7]㊀CraigH.Isotopicvariationsinmeteoricwaters.Science,1961,133(3465):1702⁃1703.[8]㊀陈曦,李志,程立平,刘文兆,王锐.黄土塬区大气降水的氢氧稳定同位素特征及水汽来源.生态学报,2016,36(1):98⁃106.[9]㊀章新平,姚檀栋.全球降水中氧同位素比率的分布特点.冰川冻土,1994,16(3):202⁃210.[10]㊀郭政昇,郑国璋,赵培,肖杰.水汽源区变化对黄河中游降水稳定同位素的影响.自然资源学报,2018,33(11):1979⁃1991.[11]㊀李维杰,王建力,王家录.西南地区不同地形降水稳定同位素特征及其水汽来源.长江流域资源与环境,2018,27(5):1132⁃1142.[12]㊀刘洁遥,张福平,冯起,李宗省,朱艺文,聂硕,李玲.西北地区降水稳定同位素的云下二次蒸发效应.应用生态学报,2018,29(5):1479⁃1488.[13]㊀李小飞,张明军,马潜,李亚举,王圣杰,汪宝龙.我国东北地区大气降水稳定同位素特征及其水汽来源.环境科学,2012,33(9):2924⁃2931.[14]㊀薛积彬,钟巍,赵引娟.广州大气降水中δ18O与气象要素及季风活动之间的关系.冰川冻土,2008,30(5):761⁃768.[15]㊀田立德,马凌龙,余武生,刘忠方,尹常亮,赵中平,唐威,王瑜.青藏高原东部玉树降水中稳定同位素季节变化与水汽输送.中国科学D辑:地球科学,2008,38(8):986⁃992.[16]㊀JiaWX,MaXG,XuXT,YuanRF,DingD,ZhuGF.CompositionofstableisotopeinprecipitationanditsinfluencesbydifferentvaporsourcesintheeasternQilianMountains.JournalofMountainScience,2018,15(10):2207⁃2217.6171㊀生㊀态㊀学㊀报㊀㊀㊀40卷㊀[17]㊀ZhangMJ,WangSJ.PrecipitationisotopesintheTianshanMountainsasakeytowatercycleinaridcentralAsia.SciencesinColdandAridRegions,2018,10(1):27⁃37.[18]㊀GuoXY,FengQ,WeiYP,LiZX,LiuW.AnoverviewofprecipitationisotopesovertheExtensiveHexiRegioninNWChina.ArabianJournalofGeosciences,2015,8(7):4365⁃4378.[19]㊀ZhangXP,LiuJM,SunWZ,HuangYM,ZhangJM.RelationsbetweenoxygenstableisotopicratiosinprecipitationandrelevantmeteorologicalfactorsinSouthwestChina.ScienceinChinaSeriesD:EarthSciences,2007,50(4):571⁃581.[20]㊀LiuJR,SongXF,YuanGF,SunXM,LiuX,WangSQ.Characteristicsofδ18OinprecipitationoverEasternMonsoonChinaandthewatervaporsources.ChineseScienceBulletin,2010,55(2):200⁃211.[21]㊀刘澄静,角媛梅,刘志林,刘歆,高璇.哈尼梯田区降水稳定氢氧同位素的旱雨季变化特征及其影响因素.山地学报,2018,36(4):519⁃526.[22]㊀张贵玲,角媛梅,何礼平,刘歆,刘澄静,闫晓景,王梅.中国西南地区降水氢氧同位素研究进展与展望.冰川冻土,2015,37(4):1094⁃1103.[23]㊀章侃丰,角媛梅,刘歆,刘志林,刘澄静,尚升海.基于敏感度⁃主观偏好矩阵的哈尼梯田视觉景观关键区识别.生态学报,2018,38(10):3661⁃3672.[24]㊀王声跃.云南地理.昆明:云南民族出版社,2002:66⁃67.[25]㊀DraxlerRR,HessGD.AnoverviewoftheHYSPLIT_4modelingsystemfortrajectories,dispersion,anddeposition.AustralianMeteorologicalMagazine,1998,47(4):295⁃308.[26]㊀CohenM,LaurinR,MathewsonL,McDonaldJF,Meyer⁃WeferingD.HYSPLITmodelestimatesofatmosphericdepositionoftoxiccontaminantstotheGreatLakes(AnOverview).AirPollutionModellingandSimulation.BerlinHeidelberg:Springer,2002:30⁃41.[27]㊀刘忠方,田立德,姚檀栋,柴旭荣.中国大气降水中δ18O的空间分布.科学通报,2009,54(6):804⁃811.[28]㊀章新平,姚檀栋.我国降水中δ18O的分布特点.地理学报,1998,53(4):356⁃364.[29]㊀YuWS,YaoTD,TianLD,MaYM,IchiyanagiK.WangY,SunWZ.Relationshipsbetweenδ18Oinprecipitationandairtemperatureandmoistureoriginonasouth⁃northtransectoftheTibetanPlateau.AtmosphericResearch,2008,87(2):158⁃169.[30]㊀章新平,刘晶淼,中尾正义,谢自楚.我国西南地区降水中过量氘指示水汽来源.冰川冻土,2009,31(4):613⁃619.[31]㊀角媛梅.哈尼梯田自然与文化景观生态研究.北京:中国环境科学出版社,2009:1⁃12.7171㊀5期㊀㊀㊀徐秋娥㊀等:稳定氢氧同位素示踪水汽来源对哈尼梯田降水补给的影响㊀。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

降水过程中氢氧稳定同位素理论关系研究
作者:王永森, 陈建生, 汪集旸, 童海滨, 陈亮, WANG Yong-sen, CHEN Jians-heng,WANG Ji-yang, TONG Hai-bin, CHEN Liang
作者单位:王永森,WANG Yong-sen(河海大学水文水资源与水利工程科学国家重点实验室,江苏 南京210098;河海大学水文水资源学院,江苏 南京 210098), 陈建生,CHEN Jians-heng(河海大
学科学研究院,江苏 南京,210098), 汪集旸,WANG Ji-yang(中国科学院地质与地球物理研
究所,北京,100029), 童海滨,TONG Hai-bin(河海大学水文水资源学院,江苏 南京,210098)
, 陈亮,CHEN Liang(河海大学岩土工程科学研究所,江苏 南京,210098)
刊名:
水科学进展
英文刊名:ADVANCES IN WATER SCIENCE
年,卷(期):2009,20(2)
被引用次数:2次
1.YURTSEVER Y Worldwide survey of isotopes in precipitation 1975
2.RENE M P;PETER K S;HUGH E W Seasonal and spatial variation in the stable isotopic composition
(δ18O and δD) of precipitation in south Florida[外文期刊] 2008(3/4)
3.CRAIG H Isotopic variations in meteoric waters 1961
4.章新平;姚檀栋大气降水中氧同位素分馏过程的数学模拟 1994(02)
5.HELENE Celle-Jeanton;ROBERTO G;YVES T Oxygen-18 variations of rainwater during
precipitation:application of the Rayleigh model to selected rainfalls in Southern France[外文期刊] 2004(1-4)
6.STEWART M K Stable isotope fractionation due to evaporation and isotopic exchange of falling waterdrops:Application to atmospheric processes and evaporation of lakes[外文期刊] 1975
7.Mook W G Environmental Isotopes in the Hydrological Cycle:Theory,Methods,Review 2001
8.顾慰祖;陆家驹;谢民乌兰布和沙漠北部地下水资源的环境同位素探讨[期刊论文]-水科学进展 2002(03)
9.GAT J R;AIREY P L Stable water isotopes in the atmosphere/biosphere/lithosphere interface:Scaling-up from the local to continental scale,under humid and dry conditions[外文期刊] 2006(1/2)
10.YAMANAKA T;TSUJIMURA M;OYUNBAATAR D Isotopic variation of precipitation over eastern Mongolia and its implication for the atmospheric water cycle[外文期刊] 2007(1)
11.FRUEDMAN I Deuteriun content of natural water and other substances[外文期刊] 1953
1.王锐.刘文兆.宋献方.WANG Rui.LIU Wen-zhao.SONG Xian-fang长武塬区大气降水中氢氧同位素特征分析[期刊论文]-水土保持学报2008,22(3)
2.何闻2004年《水科学进展》在中国科技期刊中的统计与排序[期刊论文]-水科学进展2005,16(6)
3.温学发.ZHANG Shi-Chun.孙晓敏.YU Gui-Rui.WEN Xue-Fa.ZHANG Shi-Chun.SUN Xiao-Min.YU Gui-Rui叶片水H218O富集的研究进展[期刊论文]-植物生态学报2008,32(4)
4.高建飞.丁悌平.罗续荣.田世洪.王怀柏.李明.GAO Jianfei.DING Tiping.LUO Xurong.TIAN Shihong.WANG Huaibo.LI Ming黄河水氢、氧同位素组成的空间变化特征及其环境意义[期刊论文]-地质学报2011,85(4)
5.章新平.姚檀栋.田立德.刘晶淼乌鲁木齐河流域不同水体中的氧稳定同位素[期刊论文]-水科学进展2003,14(1)
6.徐庆.蒋有绪.刘世荣.安树青.段正峰.XU Qing.JIANG You-xu.LIU Shi-rong.AN Shu-qing.DUAN Zheng-feng卧龙巴郎山流域大气降水与河水关系的研究[期刊论文]-林业科学研究2007,20(3)
7.李海林.范与李.李俊同位素示踪剂测定干热河谷草地土壤侵蚀模数[期刊论文]-水土保持应用技术2010(6)
8.吴笛.邓保军.谭晓哲.李红燕.WU Di.DENG Bao-jun.TAN Xiao-zhe.LI Hong-yan当代河流系统研究中稳定性同位素的应用[期刊论文]-中国环境管理干部学院学报2007,17(3)
9.林云.潘国营.靳黎明.武亚遵氢氧稳定同位素在新乡市地下水研究中的应用[期刊论文]-人民黄河2007,29(10)
10.付湘.李娟.梅亚东.FU Xiang.LI Juan.MEI Yadong武汉市水资源承载能力研究[期刊论文]-水电能源科学2006,24(1)
1.孟玉川.刘国东长江流域降水稳定同位素的云下二次蒸发效应[期刊论文]-水科学进展 2010(3)
2.童海滨.王新建.陈建生.董海洲考虑稳定同位素浓度垂向变化的蒸发分馏模型[期刊论文]-河海大学学报(自然科学版) 2010(6)
本文链接:/Periodical_skxjz200902008.aspx。

相关文档
最新文档