《概率论与数理统计》教学大纲[004]
概率论与数理统计教学大纲

《概率论与数理统计》教学大纲一、内容简介《概率论与数理统计》是从数量侧面研究随机现象规律性的数学理论,其理论与方法已广泛应用于工业、农业、军事和科学技术中。
主要包括:随机事件和概率,一维和多维随机变量及其分布,随机变量的数字特征,大数定律与中心极限定理,参数估计,假设检验等内容。
二、本课程的目的和任务本课程是理工学科和社会学科部分专业的基础课程。
课程内容侧重于讲解概率论与数理统计的基本理论与方法,同时在教学中结合各专业的特点介绍性地给出在科研、生产、社会等各领域中的具体应用。
课程的任务在于使学生建立随机现象的基本概念和描述方法,掌握运用概率论和统计学原理对自然和人类社会的现象进行观察、描述和预言的方法和能力。
为学生树立基本的概率论和统计思维素养,以及进一步在相关方向深造,打下基础。
三、本课程与其它课程的关系学生在进入本课程学习之前,应学过:高等数学、线性代数。
这些课程的学习,为本课程提供了必需的数学基础知识。
本课程学习结束后,学生可具备进一步学习相关课程的理论基础,同时由于概率论与数理统计的理论与方法向各基础学科、工程学科的广泛渗透,与其他学科相结合发展成不少边缘学科,所以它是许多新的重要学科的基础,学生应对本课程予以足够的重视。
四、本课程的基本要求概率论与数理统计是一个有特色的数学分支,有自己独特的概念和方法,内容丰富,结果深刻。
通过对本课程的学习,学生应该建立用概率和统计的语言对随机现象进行描述的基本概念,熟练掌握概率论与数理统计中的基本理论和分析方法,能熟练运用基本原理解决某些实际问题。
具体要求如下:(一)随机事件和概率1、理解随机事件的概念,了解样本空间的概念,掌握事件之间的关系和运算。
2、理解概率的定义,掌握概率的基本性质,并能应用这些性质进行概率计算。
3、理解条件概率的概念,掌握概率的加法公式、乘法公式、全概率公式、贝叶斯公式,并能应用这些公式进行概率计算。
4、理解事件的独立性概念,掌握应用事件独立性进行概率计算。
概率论与数理统计教学大纲

《概率论与数理统计》教学大纲编写人:刘雅妹审核:全焕一、课程性质与任务概率论与数理统计是研究随机现象客观规律的数学学科,是高等学校本科各专业的一门重要的基础理论课。
本课程的任务是使学生掌握概率论与数理统计的基本概念,了解它的基本理论和方法,从而使学生初步掌握处理随机现象的基本思想和方法,培养学生运用概率统计方法分析和解决、处理实际不确定问题的基本技能和基本素质,它是为培养我国现代建设所需要的高质量、高素质专门人才服务的。
二、教学基本要求本课程按要求不同,分深入理解、牢固掌握、熟练应用,其中概念、理论用“理解”、“了解”表述其要求的强弱,方法运算用“会”或“了解”一词表述。
〈一〉、随机事件与概率⒈理解随机实验,样本空间和随机事件的概念,掌握事件的关系与运算。
⒉理解概率的定义,掌握概率的基本性质,能计算古典概型和几何概型的概率,能用概率的基本性质计算随机事件的概率。
3.理解条件概率的概念,掌握概率的乘法公式。
⒋理解全概率公式和贝叶斯公式,能计算较复杂随机事件的概率。
⒌理解事件的独立性概念,能应用事件的独立性进行概率计算。
6.理解随机实验的独立性概念,掌握n重贝努里实验中有关随机事件的概率计算。
〈二〉、一维随机变量及其概率分布⒈理解一维随机变量及其概率分布的概念.2.理解随机变量分布函数的概念,了解分布函数的性质,会计算与随机变量有关的事件的概率.3.理解离散型随机变量及概率分布的概念.掌握0-1分布、二项分布、泊松分布及其它们的应用。
4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、指数分布、正态分布及其它们的应用。
5.会求简单的随机变量的函数的分布。
〈三〉、二维随机变量及其分布⒈了解二维(多维)随机变量的概念。
⒉了解二维随机变的联合分布函数及其性质;了解二维离散型随机变的联合概率分布及其性质;了解二维连续型随机变量的联合概率密度函数及其性质,并会用这些性质计算有关事件的概率。
3.掌握二维离散型与二维连续型随机变量的边缘分布的计算,了解条件分布及其计算。
《概率论与数理统计》课程教学大纲

概率论与数理统计》课程教学大纲一教学大纲说明(一)课程的地位、作用和任务《概率论与数理统计》是数学与信息科学学院各专业方向的一门基础课。
该课程较全面地论述了概率论与数理统计的基本概念、理论和方法,从而为后续专业课程的学习打下良好的基础。
(二)课程教学的目的和要求通过本课程的学习,使学生较好地掌握概率论的基本概念和基本理论,并在一定程度上掌握概率论分析问题和解决问题的方法,对数理统计基本概念、基本理论和基本方法有一定的了解,并能初步运用统计方法解决简单的实际问题。
掌握:事件的运算;概率的公理化定义;古典概率;条件概率及其相关公式;随机变量及其分布;随机变量的数字特征;随机向量及其分布;统计量及其分布;参数估计;假设检验;一元线性回归。
理解:概率的公理化定义;随机变量及其分布;随机变量的独立性;极大似然估计的思想;假设检验的基本思想;一元线性回归模型。
了解:条件分布,大数定律及中心极限定理;非参数估计及检验。
(三)课程教学方法与手段本课程的教学采用讲授、实验和自学相结合的方法。
基本知识由老师授课,约占内容的百分之八十。
百分之二十的内容由学生自学,老师提供自学提纲并加强辅导。
对于数理统计中的基本方法配备适量的实验课。
(四)课程与其它课程的联系概率论与数理统计涉及到微积分、线性代数方面的知识,因而先俢课程有:数学分析、高等代数和解析几何。
教育统计、证券投资学、时间序列分析、多元统计、保险精算和信息学基础等课程需在本课程之后开设。
(五)教材与教学参考书教材:峁诗松、程依明、濮晓龙,《概率论与数理统计教程》,高等教育出版社,2004年教学参考书:1、梁之瞬等,《概率论与数理统计》,高等教育出版社2、周概容,《概率论与数理统计教程》,高等教育出版社3、王梓坤,《概率论基础及其应用》,科学出版社二课程的教学内容、重点和难点第一章随机事件与概率随机试验、事件和概率的基本概念,概率的简单性质, 概率空间,古典概型,条件概率,全概率公式,贝叶斯公式,事件的独立性。
概率论与数理统计课程教学大纲

《概率论与数理统计》课程教学大纲一、课程基本信息二、课程目标(一)总体目标:概率论与数理统计是研究随机现象客观规律性的数学学科,在高等工科学校教学计划中是一门基础理论课。
通过本课程的学习,使学生掌握概率论与数理统计的基本概念,基本理论和方法,从而使学生初步掌握处理随机现象的基本思想和方法,培养学生运用概率统计方法分析和解决实际问题的能力。
(二)课程目标:课程目标1:知识目标通过本课程的学习,学生系统掌握随机变量及其分布、参数估计与假设检验等重要知识。
课程目标2:技能目标通过本课程的基本概念、基本理论和基本方法的讲授及学生的练习,培养学生的数学推理,数理逻辑,演绎归纳,数据分析,假设论证能力。
课程目标3:素质培养(1) 通过本课程的教学,培养和提高学生对所学知识进行整理、概括、消化吸收能力,以及围绕教学内容阅读参考资料,自我扩充知识领域的能力。
(2) 通过作业和课堂讨论,培养学生口头表达能力,做到思路清晰,层次分明。
(3)通过作业,培养学生独立思考,深入钻研问题的习惯以及一题多解,举一反三的能力,应用数学的意识以及运用数学知识分析问题的良好品质。
(4)具有自主学习和终身学习的意识,有不断学习和适应发展的能力。
(三)课程目标与毕业要求、课程内容的对应关系三、教学内容第一章随机事件及其概率1.教学目标理解随机事件和样本空间的概念;熟练掌握事件之间的关系与基本运算。
理解事件频率的概念;了解随机现象的统计规律性。
知道概率的公理化定义;理解古典概率的概念;了解几何概率;掌握概率的基本性质;会应用这些性质进行概率计算。
理解条件概率的概念;掌握乘法定理、全概率公式和贝叶斯公式,并会应用这些公式进行概率计算。
理解事件独立性的概念;会应用事件的独立性进行概率计算。
2.教学重难点本节是基础知识,在高中阶段大部分已经学过,都是重点内容。
教学的重难点在于事件的三种关系:互斥,独立和包含,事件概率的两个公式:加法公式和乘法公式,以及全概率和贝叶斯公式的应用。
《概率论与数理统计》教学大纲

《概率论与数理统计》教学大纲教学目的概率论与数理统计是研究随机现象数量规律、统计规律的学科,在高等学校教学计划中是重要的基础理论课。
概率论与数理统计作为现代数学的重要组成部分,不仅理论严谨,而且应用极其广泛。
由于它的介入,改变了经济、金融和管理科学传统的研究方式,是经济、管理中数量分析的基础,是经济管理工作者不可缺少的有力工具。
通过本课程的教学,使学生初步掌握处理随机现象和抽样数据的基本理论和方法,为解决有关实际问题以及后继课程的学习打下良好的基础。
考虑到初学者往往对一些重要的概率统计概念的实质的领会感到困难,以及概率统计应用性很强的特点,在讲授本课程时,以介绍基本概念、基本理论和方法为主,尽量使用较少的数学知识,避免过于数学化的论证,但仍保持系统的严谨性。
在讲授内容的同时,应配备一定数量的习题,以培养学生的基本技能。
预备知识高等数学、线性代数等知识教材指定教材:【1】《概率论与数理统计》参考书目:【1】《概率论与数理统计学习指导与习题全解》教学基本内容第一章事件与概率第一节样本空间与随机事件第二节频率、古典概率及几何概率第三节概率的公理化定义与性质第四节条件概率与独立性第五节全概率公式与贝叶斯公式本章教学要求:1.了解随机现象、样本空间的概念。
理解随机事件的概念,掌握事件之间关系与运算。
2.了解频率稳定性的概念。
掌握古典概型及概率的计算方法。
掌握几何概率及其计算方法。
3.理解概率的公理化定义的必要性和三条基本性质。
掌握概率的五条性质,并熟练应用。
4.理解条件概率及事件独立性的概念,掌握用事件的独立性进行概率的计算。
理解伯努利概型,掌握独立重复试验中有关事件概率的计算方法。
5.会熟练运用概率的乘法公式、全概率公式及贝叶斯公式进行事件概率的计算。
第二章随机变量及其分布第一节随机变量及其分布函数第二节散型随机变量及其分布第三节连续性随机变量及其分布第四节随机变量函数的分布本章教学要求:1.了解随机变量的概念,理解分布函数的概念和性质。
概率论与数理统计教学大纲

本章教学目的:通过本章的学习,要求学生掌握二维随机向量的 联合分布、边缘分布的概念,理解它们之间的关系。理解随机变量的 独立性的概念及相互独立与不相关的关系。 会求常见分布的和的分布 与极值分布。 本章主要内容:二元随机变量分布函数的定义及性质;二元离散 型随机变量的联合概率分布;二元连续型随机变量的联合概率密度; 边缘分布的概念;随机变量的独立性;二元随机变量函数的分布;常 见二元随机变量的分布。 本章重点:二元离散型随机变量的联合概率分布的求法;边缘分 布的概念;随机变量的独立性;二元随机变量函数的分布;二元均匀 分布与二元正态分布的应用。 本章难点:边缘分布的求法;随机变量的独立性;二元连续型随 机变量函数的分布。 本章思考题: 第一节 二元随机变量的概念和类型 1. 为什么要引入二元随机变量? 2. 二元随机变量的联合分布函数与一维随机变量的分布函数的 性质有哪些异同点? 3. 联合分布与边缘分布之间的关系是什么? 4. 联合分布与边缘分布一定是同类型的分布吗? 5. 若随机变量 X 与 Y 相互独立,问 X 2 与 Y 2 是否独立? 6. 若 X 2 与 Y 2 相互独立,问随机变量 X 与 Y 是否独立? 7. 若 Z 与 X 独立,Z 与 Y 独立,是否有 Z 与 f ( X , Y ) 独立? 8. 若 X 与 Y 相互独立且同分布,是否有 X=Y? 第二节 二元随机变量函数的分布
本章教学目的:通过本章的学习,要求学生理解大数定律与中心 极限定理的概念; 了解大数定律与中心极限定理在概率论中地位与作 用;掌握切比雪夫不等式。 本章主要内容:切比雪夫不等式;切比雪夫大数定律,贝努里大 数定律,辛钦大数定律;林德贝格—勒维中心极限定理、德莫佛—拉 普拉斯中心极限定理。 本章重点:切比雪夫不等式;切比雪夫大数定律;德莫佛—拉普 拉斯中心极限定理。 本章难点:德莫佛—拉普拉斯中心极限定理的应用。 本章思考题: 第一节 大数定律 1. 依概率收敛的意义是什么? 2. 大数定律在概率论中有何意义? 第二节 中心极限定理 1. 中心极限定理有何实际意义?
《概率论与数理统计》课程教学大纲

《概率论与数理统计》课程教学大纲【课程编码】181****0008【课程类别】专业必修课【学时学分】54学时,3学分【适用专业】物流管理一、课程性质和目标课程性质:《概率论与数理统计》是为国际经济与贸易、市场营销、人力资源管理、财务管理、物流管理、电子商务等专业本科生开设的一门必修课。
本课程由概率论与数理统计两部分组成。
概率论部分侧重于理论探讨,介绍概率论的基本概念,建立一系列定理和公式,寻求解决统计和随机过程问题的方法。
其中包括随机事件和概率、随机变量及其分布、随机变量的数字特征、大数定律和中心极限定理等内容;数理统计部分则是以概率论作为理论基础,研究如何对试验结果进行统计推断。
包括数理统计的基本概念、参数统计、假设检验等。
通过本课程的教学,应使学生掌握概率论与数理统计的基本概念,了解它的基本理论和方法,从而使学生初步掌握处理随机事件的基本思想和方法,培养学生运用概率统计方法分析和解决实际问题的能力。
课程目标:通过本课程的学习,要求学生能够理解随机事件、样本空间与随机变量的基本概念,掌握概率的运算公式,常见的各种随机变量(如0-1分布、二项分布、泊松(POiSSon)分布、均匀分布、正态分布、指数分布等)的表述、性质、数字特征及其应用,一维随机变量函数的分布。
理解数学期望、方差、协方差与相关系数的本质涵义,掌握数学期望、方差、协方差与相关系数的性质,熟练运用各种计算公式。
了解大数定律和中心极限定量的内容及应用,熟悉数据处理、参数估计、假设检验的一些基本方法,能用所掌握的方法具体解决所遇到的经济与管理问题,为建设社会主义现代化国家贡献力量。
二、教学内容、要求和学时分配(一)概率论的基本概念学时(6学时)教学内容:1随机试验、随机事件与样本空间;2.事件的关系与运算、完全事件组;3.概率的概念、概率的基本性质、概率的基本公式;4.等可能概型(古典概型)、几何型概率;5.条件概率、全概率公式、贝叶斯公式;6.事件的独立性、独立重复试验。
〈概率论与数理统计〉教学大纲(附作业布置)

《概率论与数理统计》课程教学大纲一、课程基本信息课程名称:概率论与数理统计英文名称:Probability Theory & Mathematical Statistics课程编号:19003040课程类别:公共基础课预修课程:微积分、线性代数开设部门:数学与信息学院适用专业:会计学财务管理审计学工商管理市场营销国际经济与贸易金融学信息管理与信息系统税务信用管理经济学等专业学分:4总课时:68学时, 其中理论课时:68学时,实践课时:0学时选用教材:吴传生主编,《概率论与数理统计》,高等教育出版社,2009年3月第一版二、课程性质、目的概率论与数理统计是理工类、经管类本科生的公共基础课。
概率论与数理统计作为研究随机现象客观规律性的数学学科,它的理论和方法已广泛地应用于自然学科,社会科学的各个领域。
本课程的教学目的是使学生正确理解概率论与数理统计的基本概念,掌握概率论与数理统计的基本理论和基本计算方法,使学生初步掌握处理随机现象的基本思想和方法,培养学生运用概率统计方法分析处理经济现象中比较简单的随机问题的能力。
三、与其他课程的衔接本课程在先修课程高等数学、线性代数的基础上,通过概率论与数理统计基本理论、基本方法的介绍,帮助学生为后继经济、金融、工商管理、工程等专业课程的学习提供了坚实的数理基础。
不仅为数学应用开拓了空间,同时对培养学生的逻辑思维能力、分析解决问题能力、数学建模能力、研究生入学考试能力均有重要作用。
四、教学基本要求1.本课程通过课堂讲授、练习等教学手段,使学生初步掌握概率论与数理统计的基本概念、基本理论和基本计算方法,学会应用概率论与数理统计的知识分析研究经济现象中比较简单的随机问题。
2.掌握随机事件和随机事件的概率的定义、古典概型与几何概型、条件概率与乘法公式、全概率公式与贝叶斯公式、事件的独立性。
3.掌握离散型和连续型随机变量及其分布。
4.掌握二维随机量量及分布的有关概念、二维随机变量的独立性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《概率论与数理统计》教学大纲
一、教学目的:
通过本课程的学习,要求能够理解随机事件、样本空间与随机变量的基本概念,掌握概率的运算公式,常见的各种随机变量(如0-1分布、二项分布、泊松分布、均匀分布、正态分布、指数分布等)的表述、性质、数字特征及其应用,一维随机变量函数的分布、二维随机变量的和分布、顺序统计量的分布。
理解数学期望、方差、协方差与相关系数的本质涵义,掌握数学期望、方差、协方差与相关系数的性质,熟练运用各种计算公式。
了解大数定律和中心极限定理的内容及应用,熟悉数据处理、数据分析、数据推断的各种基本方法,能用所掌握的方法具体解决所遇到的各种问题,为学生进一步学习专业课打下坚实的基础。
二、教学要求
第一章概率论的基本概念
1、熟悉样本空间的概念,掌握随机事件的概念,事件的关系与运算。
2、掌握概率、条件概率的概念,概率的基本性质,会计算古典型概率,重点掌握概率的加法公式、乘法公式、全概率公式,以及贝叶斯公式。
3、掌握事件的独立性的概念,用事件独立性进行概率计算;重点掌握独立重复试验的概念,掌握计算有关事件概率的方法。
第二章随机变量及其分布
1、掌握随机变量及其概率分布的概念;分布函数的概念及性质;熟悉计算与随机变量相联系的事件的概率。
2、掌握离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、泊松分布及其应用。
3、熟悉泊松定理的结论和应用条件,熟悉泊松分布近似表示二项分布。
)、指数
4、重点掌握连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布N(μ,2
分布及其应用。
5、熟悉根据自变量的概率分布求其简单函数的概率分布。
第三章多维随机变量及其概率分布
1、掌握二维随机变量的概念、二维随机变量的联合分布的概念、性质及两种基本形式。
2、重点掌握离散型联合概率分布,边缘分布和条件分布;连续型联合概率密度、边缘密度和条件密度。
熟悉二维概率分布求有关事件的概率。
3、熟悉随机变量的独立性概念,掌握离散型和连续型随机变量独立的条件。
4、掌握二维均匀分布,熟悉二维正态分布的联合概率密度,掌握其中参数的概率意义。
5、熟悉求两个随机变量的简单函数的分布。
第四章随机变量的数字特征
1、重点掌握随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,并熟悉运用数字特征基本性质计算具体分布的数字特征,
2、掌握常用分布(如0-1分布、二项分布、泊松分布、均匀分布、正态分布、指数分布等)的数字特征。
3、熟悉根据随机变量的概率分布求其函数的数学期望;会根据二维随机变量的概率分布求其
函数的数学期望。
4、熟悉切比雪夫不等式及其应用。
第五章大数定律和中心极限定理
1、熟悉切比雪夫大数定律、伯努利大数定律和辛钦大数定律
2、熟悉棣莫弗-拉普拉斯定理和李雅普诺夫定理。
第六章样本及抽样分布
1、掌握总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念。
分布、t分布和F分布的概念及性质,熟悉分位数的概念并会查表计算。
2、熟悉2
3、熟悉正态总体的某些常用抽样分布。
第七章参数估计
1、掌握参数的点估计、估计量与估计值的概念。
2、重点掌握矩估计法(一阶、二阶矩)和最大似然估计法。
3、熟悉估计量的无偏性、有效性和相合性的概念,并会验证估计量的无偏性。
4、熟悉区间估计的概念,熟悉单个正态总体,的均值和方差的置信区间。
三、课程内容与学时分配
第一章内容:
1、随机试验、随机事件与样本空间。
2、事件的关系与运算、完全事件组。
3、概率的概念、概率的基本性质、概率的基本公式。
4、等可能概型(古典概型)、几何型概率。
5、条件概率、全概率公式、贝叶斯公式。
6、事件的独立性、独立重复试验。
第二章内容:
1、随机变量及其分布函数的概念及其性质。
2、离散型随机变量及其分布律。
3、连续型随机变量及其概率密度。
4、常见随机变量的概率分布。
5、随机变量的函数分布。
第三章内容:
1、二维随机变量及其概率分布。
2、二维离散型随机变量的概率分布、边缘分布和条件分布。
3、二维连续型随机变量的概率密度、边缘密度和条件密度,常用二维随机变量的概率分布。
4、随机变量的独立性和相关性。
5、两个随机变量函数的分布。
第四章内容:
1、随机变量的数学期望、随机变量函数的数学期望。
2、方差、标准差及其性质,切比雪夫(Chebyshev)不等式。
3、协方差、相关系数及其性质。
4、矩、协方差矩阵。
第五章内容:
1、几乎处处收敛、依概率收敛、依分布收敛。
2、切比雪夫大数定律、伯努利大数定律、辛钦大数定律。
3、棣莫弗-拉普拉斯定理、李雅普诺夫定理。
第六章内容:
1、总体、个体、简单随机样本、统计量、样本均值、样本方差和样本矩。
分布、t分布和F分布,分位数,正态总体的常用抽样分布。
2、2
第七章内容:
1、点估计的概念、估计量与估计值。
2、矩估计法、最大似然估计法。
3、估计量的评选标准。
4、区间估计的概念。
5、单个正态总体的均值和方差的区间估计。
课时分配:
四、教材及主要教学参考书
教材:
《概率论与数理统计》武汉大学珞珈学院高数教研室,武汉大学出版社,2012年
参考书目
1、《概率论与数理统计》(第三版),盛骤等,北京:高等教育出版社,2001年
2、《概率论与数理统计》,茆诗松等,中国统计出版社,2000
3、《概率论与数理统计》,苏均和,上海财经大学出版社,1999
4、《概率论与数理统计》,华东师范大学数学系编,中国科学技术大学出版社,1992
五、考核方式:
笔试
执笔者:孟新焕唐五龙。