(优选)固体物理习题

合集下载

初中固体物理试题及答案

初中固体物理试题及答案

初中固体物理试题及答案一、选择题(每题2分,共20分)1. 固体的三种基本类型是()。

A. 晶体、非晶体、准晶体B. 晶体、非晶体、多晶体C. 晶体、非晶体、单晶体D. 晶体、多晶体、准晶体答案:A2. 晶体的特点是()。

A. 无规则排列B. 规则排列C. 部分规则排列D. 完全无序排列答案:B3. 非晶体与晶体的主要区别在于()。

A. 原子排列方式B. 原子大小C. 原子种类D. 原子数量答案:A4. 晶体的熔点通常比非晶体的熔点()。

A. 低B. 高C. 相同D. 不可比较答案:B5. 准晶体是一种介于晶体和非晶体之间的固体,其特点是()。

A. 完全无序排列B. 长程有序但不具备周期性C. 规则排列D. 完全有序排列答案:B6. 晶体的X射线衍射图样是()。

A. 无规则的斑点B. 规则的点状图案C. 连续的曲线D. 无规则的条纹答案:B7. 固体的热膨胀系数是指()。

A. 固体在加热时体积不变B. 固体在加热时体积变化的比率C. 固体在冷却时体积变化的比率D. 固体在加热时质量变化的比率答案:B8. 固体的导电性主要取决于()。

A. 原子的质量B. 原子的排列方式C. 原子的体积D. 原子的数量答案:B9. 金属导电的原因是()。

A. 金属内部有自由移动的电子B. 金属内部有自由移动的原子C. 金属内部有自由移动的离子D. 金属内部有自由移动的分子答案:A10. 半导体的导电性介于()之间。

A. 金属和绝缘体B. 金属和非金属C. 非金属和绝缘体D. 金属和晶体答案:A二、填空题(每题2分,共20分)1. 晶体的三种基本类型是单晶体、多晶体和________。

答案:准晶体2. 晶体的原子排列具有________性。

答案:长程有序3. 非晶体的原子排列具有________性。

答案:短程有序4. 晶体的熔点较高是因为其内部________。

答案:原子排列紧密5. 准晶体的原子排列具有________性。

初中固体物理试题及答案

初中固体物理试题及答案

初中固体物理试题及答案一、选择题(每题2分,共20分)1. 固体物质的分子排列特点是:A. 无规则排列B. 规则排列C. 部分规则排列D. 完全无序排列答案:B2. 固体物质的分子间作用力是:A. 引力B. 斥力C. 引力和斥力D. 无作用力答案:C3. 下列物质中,属于晶体的是:A. 玻璃B. 橡胶C. 食盐D. 沥青答案:C4. 晶体与非晶体的主要区别在于:A. 颜色B. 形状C. 熔点D. 分子排列答案:D5. 固体物质的熔化过程需要:A. 吸收热量B. 放出热量C. 保持热量不变D. 无法判断答案:A6. 固体物质的硬度与下列哪项因素有关:A. 分子间作用力B. 分子质量C. 分子体积D. 分子形状答案:A7. 固体物质的导电性与下列哪项因素有关:A. 分子间作用力B. 分子运动速度C. 电子的自由移动D. 分子的排列方式答案:C8. 晶体的熔点与下列哪项因素有关:A. 晶体的纯度B. 晶体的颜色C. 晶体的形状D. 晶体的密度答案:A9. 固体物质的热膨胀现象说明:A. 分子间距离不变B. 分子间距离减小C. 分子间距离增大D. 分子间距离先增大后减小答案:C10. 固体物质的热传导性与下列哪项因素有关:A. 分子间作用力B. 分子运动速度C. 电子的自由移动D. 分子的排列方式答案:A二、填空题(每空1分,共20分)1. 固体物质的分子排列特点是________,而非晶体物质的分子排列特点是________。

答案:规则排列;无规则排列2. 固体物质的熔化过程中,分子间________,分子间距离________。

答案:作用力减弱;增大3. 晶体的熔点与________有关,而非晶体没有固定的熔点。

答案:晶体的纯度4. 固体物质的硬度与分子间________有关,分子间作用力越强,硬度越大。

答案:作用力5. 固体物质的热膨胀现象是由于温度升高,分子间距离________。

答案:增大三、简答题(每题10分,共30分)1. 简述晶体与非晶体的区别。

固体物理期末考试题及答案

固体物理期末考试题及答案

固体物理期末考试题及答案一、选择题(每题2分,共20分)1. 晶体中原子排列的周期性结构被称为:A. 晶格B. 晶胞C. 晶面D. 晶向答案:A2. 描述固体中电子行为的基本理论是:A. 经典力学B. 量子力学C. 相对论D. 电磁学答案:B3. 以下哪项不是固体物理中的晶体缺陷:A. 点缺陷B. 线缺陷C. 面缺陷D. 体缺陷答案:D4. 固体物理中,晶格振动的量子称为:A. 声子B. 光子C. 电子D. 空穴答案:A5. 以下哪个不是固体的电子能带结构:A. 价带B. 导带C. 禁带D. 散射带答案:D二、简答题(每题10分,共30分)6. 解释什么是晶格常数,并举例说明。

晶格常数是晶体中最小重复单元的尺寸,通常用来描述晶体的周期性结构。

例如,立方晶系的晶格常数a是指立方体的边长。

7. 简述能带理论的基本概念。

能带理论是量子力学在固体物理中的应用,它描述了固体中电子的能量分布。

在固体中,电子的能量不是连续的,而是分成一系列的能带。

价带是电子能量较低的区域,导带是电子能量较高的区域,而禁带是两带之间的能量区域,电子不能存在。

8. 什么是费米能级,它在固体物理中有什么意义?费米能级是固体中电子的最高占据能级,它与温度有关,但与电子的化学势相等。

在绝对零度时,费米能级位于导带的底部,它决定了固体的导电性质。

三、计算题(每题15分,共30分)9. 假设一个一维单原子链的原子质量为m,相邻原子之间的弹簧常数为k。

求该链的声子频率。

解:一维单原子链的声子频率可以通过下面的公式计算:\[ \omega = 2 \sqrt{\frac{k}{m}} \]10. 给定一个半导体的电子亲和能为Ea,工作温度为T,求该半导体在该温度下的费米-狄拉克分布函数。

解:费米-狄拉克分布函数定义为:\[ f(E) = \frac{1}{e^{\frac{E-E_F}{kT}} + 1} \] 其中,E是电子的能量,E_F是费米能级,k是玻尔兹曼常数,T 是温度。

固体物理课后习题与答案

固体物理课后习题与答案

第一章 金属自由电子气体模型习题及答案1. 你是如何理解绝对零度时和常温下电子的平均动能十分相近这一点的?[解答] 自由电子论只考虑电子的动能。

在绝对零度时,金属中的自由(价)电子,分布在费米能级及其以下的能级上,即分布在一个费米球内。

在常温下,费米球内部离费米面远的状态全被电子占据,这些电子从格波获取的能量不足以使其跃迁到费米面附近或以外的空状态上,能够发生能态跃迁的仅是费米面附近的少数电子,而绝大多数电子的能态不会改变。

也就是说,常温下电子的平均动能与绝对零度时的平均动能十分相近。

2. 晶体膨胀时,费米能级如何变化?[解答] 费米能级3/222)3(2πn mE o F= , 其中n 单位体积内的价电子数目。

晶体膨胀时,体积变大,电子数目不变,n 变小,费密能级降低。

3. 为什么温度升高,费米能反而降低?[解答] 当K T 0≠时,有一半量子态被电子所占据的能级即是费米能级。

除了晶体膨胀引起费米能级降低外,温度升高,费米面附近的电子从格波获取的能量就越大,跃迁到费米面以外的电子就越多,原来有一半量子态被电子所占据的能级上的电子就少于一半,有一半量子态被电子所占据的能级必定降低,也就是说,温度生高,费米能反而降低。

4. 为什么价电子的浓度越大,价电子的平均动能就越大?[解答] 由于绝对零度时和常温下电子的平均动能十分相近,我们讨论绝对零度时电子的平均动能与电子的浓度的关系。

价电子的浓度越大,价电子的平均动能就越大,这是金属中的价电子遵从费米—狄拉克统计分布的必然结果。

在绝对零度时,电子不可能都处于最低能级上,而是在费米球中均匀分布。

由式3/120)3(πn k F =可知,价电子的浓度越大费米球的半径就越大,高能量的电子就越多,价电子的平均动能就越大。

这一点从3/2220)3(2πn m E F=和3/222)3(10353πn mE E oF ==式看得更清楚。

电子的平均动能E 正比于费米能o F E ,而费米能又正比于电子浓度32l n。

固体物理40题

固体物理40题

1. 设晶体中的每个振子的零点振动能.试用德拜模型求晶体的零点振动能.证明:根据量子力学零点能是谐振子所固有的,与温度无关,故T=0K 时振动能0E 就是各振动模零点能之和。

()()()000012mE E g d E ωωωωωω==⎰将和()22332s V g v ωωπ=代入积分有402339168m m s V E N v ωωπ==,由于098m B D B D k E Nk ωθθ==得 一股晶体德拜温度为~210K ,可见零点振动能是相当大的,其量值可与温升数百度所需热能相比拟.2. 试画出二维长方格子的第一、第二布里渊区.3. 证明:在磁场中运动的布洛赫电子,在K 空间中,轨迹面积A n 和在r 空间的轨迹面积S n之间的关系A n= (qB hc)2S n()d k d rc qv B q B dt dt⋅=-⨯=--⋅解: dk qB dr dt c dt∴=⋅ t k qBr c两边对积分,即 =22()()n n A r c S k qB∴== 4. 证明:面心立方晶格的倒格子为体心立方. 解:面心立方晶格的基矢为()()()a a aa j ,b ,c 222k i k i j =+=+=+ 则面心立方原胞体积3V []4a abc ⋅⨯==a 2bc V π*⨯=面心立方倒格矢 ()()2384a i k i j a π=⋅+⨯+()ai j k π-++2=()b a i j k π*=-+2同理: ,()ac i j k π*=+-2 a b c ***显然,,为体心立方原胞基矢,因此面心立方晶格倒格子为体心立方 5. 证明:根据倒格子的定义证明简单立方格子体积与其倒格子体积成反比解:设简单立方晶格常数为a ,则基矢为a ,b ,c ,V a ai a j ak ===3体积=其倒格矢2312b 2a a i V aππ⨯==,3122b 2a a j V a ππ⨯==,1232b 2a a k V a ππ⨯== 则倒格子体积()31232[]V b b b Vπ*=⋅⨯=6. 是否存在与库伦力无关的晶型,为什么?答:不存在与库仑力无关的晶型,因为①共价结合中电子虽不能脱离电负性 的原子,但靠近的两个原子各给出一个电子,形成电子共有的形状,位于两原子之间通过库仑力把两个原子结合起来。

固体物理学考试题及答案

固体物理学考试题及答案

固体物理学考试题及答案一、选择题(每题2分,共20分)1. 固体物理学中,描述晶体中原子排列的周期性规律的数学表达式是()。

A. 布洛赫定理B. 薛定谔方程C. 泡利不相容原理D. 费米-狄拉克统计答案:A2. 固体中电子的能带结构是由()决定的。

A. 原子的核外电子B. 晶体的周期性势场C. 原子的核电荷D. 原子的电子云答案:B3. 在固体物理学中,金属导电的原因是()。

A. 金属中存在自由电子B. 金属原子的电子云重叠C. 金属原子的价电子可以自由移动D. 金属原子的电子云完全重叠答案:C4. 半导体材料的导电性介于导体和绝缘体之间,这是因为()。

A. 半导体材料中没有自由电子B. 半导体材料的能带结构中存在带隙C. 半导体材料的原子排列无序D. 半导体材料的电子云完全重叠答案:B5. 固体物理学中,描述固体中电子的波动性的数学表达式是()。

A. 薛定谔方程B. 麦克斯韦方程C. 牛顿第二定律D. 热力学第一定律答案:A6. 固体中声子的概念是由()提出的。

A. 爱因斯坦B. 德拜C. 玻尔D. 费米答案:B7. 固体中电子的费米能级是指()。

A. 电子在固体中的最大能量B. 电子在固体中的最小能量C. 电子在固体中的平均水平能量D. 电子在固体中的动能答案:A8. 固体物理学中,描述固体中电子的分布的统计规律是()。

A. 麦克斯韦-玻尔兹曼统计B. 费米-狄拉克统计C. 玻色-爱因斯坦统计D. 高斯统计答案:B9. 固体中电子的能带理论是由()提出的。

A. 薛定谔B. 泡利C. 费米D. 索末菲答案:D10. 固体中电子的跃迁导致()的发射或吸收。

A. 光子B. 声子C. 电子D. 质子答案:A二、填空题(每题2分,共20分)1. 固体物理学中,晶体的周期性势场是由原子的______产生的。

答案:周期性排列2. 固体中电子的能带结构中,导带和价带之间的能量区域称为______。

答案:带隙3. 金属导电的原因是金属原子的价电子可以______。

固体物理试题库(大全)

一、名词解释1。

晶态-—晶态固体材料中的原子有规律的周期性排列,或称为长程有序.2。

非晶态-—非晶态固体材料中的原子不是长程有序地排列,但在几个原子的范围内保持着有序性,或称为短程有序。

3.准晶-—准晶态是介于晶态和非晶态之间的固体材料,其特点是原子有序排列,但不具有平移周期性.4.单晶-—整块晶体内原子排列的规律完全一致的晶体称为单晶体。

5。

多晶--由许多取向不同的单晶体颗粒无规则堆积而成的固体材料.6.理想晶体(完整晶体)——内在结构完全规则的固体,由全同的结构单元在空间无限重复排列而构成。

7.空间点阵(布喇菲点阵)--晶体的内部结构可以概括为是由一些相同的点子在空间有规则地做周期性无限重复排列,这些点子的总体称为空间点阵。

8。

节点(阵点)-—空间点阵的点子代表着晶体结构中的相同位置,称为节点(阵点)。

9。

点阵常数(晶格常数)-—惯用元胞棱边的长度。

10。

晶面指数—描写布喇菲点阵中晶面方位的一组互质整数.11。

配位数—晶体中和某一原子相邻的原子数.12。

致密度—晶胞内原子所占的体积和晶胞体积之比。

13.原子的电负性—原子得失价电子能力的度量;电负性=常数(电离能+亲和能)14.肖特基缺陷—晶体内格点原子扩散到表面,体内留下空位.15.费仑克尔缺陷——晶体内格点原子扩散到间隙位置,形成空位-填隙原子对。

16。

色心—-晶体内能够吸收可见光的点缺陷。

17.F心——离子晶体中一个负离子空位,束缚一个电子形成的点缺陷。

18。

V心——离子晶体中一个正离子空位,束缚一个空穴形成的点缺陷。

19.近邻近似-—在晶格振动中,只考虑最近邻的原子间的相互作用。

20。

Einsten模型-—在晶格振动中,假设所有原子独立地以相同频率ωE振动。

21.Debye模型—-在晶格振动中,假设晶体为各向同性连续弹性媒质,晶体中只有3支声学波,且ω=vq .22.德拜频率ωD──Debye模型中g(ω)的最高频率。

23.爱因斯坦频率ωE──Einsten模型中g(ω)的最可几频率。

大学固体物理试题及答案

大学固体物理试题及答案一、选择题(每题5分,共20分)1. 下列关于晶体结构的描述,错误的是:A. 晶体具有规则的几何外形B. 晶体内部的原子排列是无序的C. 晶体具有各向异性D. 晶体具有固定的熔点答案:B2. 固体物理中,描述电子在晶格中运动的方程是:A. 薛定谔方程B. 牛顿运动方程C. 麦克斯韦方程D. 热力学第一定律答案:A3. 固体中,电子能带的宽度与下列哪个因素有关?A. 电子的电荷B. 电子的质量C. 晶格的周期性D. 电子的自旋答案:C4. 金属导电的原因是:A. 金属内部存在自由电子B. 金属内部存在空穴C. 金属内部存在离子D. 金属内部存在分子答案:A二、填空题(每题5分,共20分)1. 晶体的周期性结构可以用_________来描述。

答案:晶格常数2. 能带理论中,电子在能带之间跃迁需要吸收或释放_________。

答案:光子3. 根据泡利不相容原理,一个原子轨道内最多可以容纳_________个电子。

答案:24. 半导体的导电性介于金属和绝缘体之间,其原因是半导体的_________较窄。

答案:能带间隙三、简答题(每题10分,共30分)1. 简要说明什么是费米能级,并解释其在固体物理中的重要性。

答案:费米能级是指在绝对零度时,电子占据的最高能级。

在固体物理中,费米能级是描述电子分布状态的重要参数,它决定了固体的导电性、磁性等物理性质。

2. 解释为什么金属在常温下具有良好的导电性。

答案:金属具有良好的导电性是因为其内部存在大量的自由电子,这些电子可以在电场作用下自由移动,形成电流。

3. 什么是超导现象?请简述其物理机制。

答案:超导现象是指某些材料在低于某一临界温度时,电阻突然降为零的现象。

其物理机制与电子之间的库珀对形成有关,这些库珀对在低温下能够无阻碍地流动,从而实现零电阻。

四、计算题(每题15分,共30分)1. 假设一个一维晶格,晶格常数为a,电子的有效质量为m*,求电子在第一能带的最低能级。

固体物理习题带答案


第二章:原子的结合
1. 设原子间的互作用能表示为 u (r ) 态,则 n>m. 解:原子间的相互作用能为: u (r )
作用能处于极小值: 这时有

r
m


rn
。证明:要使两原子处于平衡状

r
m


rn
。若两原子处于平衡状态时,则其相互
du (r ) (m) m 1 (n) n 1 dr r r
子晶格的情形比较, 与 q 之间存在着两种不同的色散关系。一维复式晶体中可以存在两 种独立的格波。两种不同的格波的色散关系:
2 2
(m M ) 4mM {1 [1 sin 2 aq]1 / 2 } 2 mM (m M ) (m M ) 4mM {1 [1 sin 2 aq]1 / 2 } 2 mM (m M )
xn (t ) A cos(t 2 naq) 。试求格波的色散关系。
解:一维单原子链中,牛顿方程为:
n ( x n 1 xn 1 2 xn ) m x
若将其振动位移写成 xn (t )
A cos(t 2 naq) 代入牛顿方程,则有
2

2 [1 cos(2aq)] 因此其色散关系为 m
0 。 所 以 有
r0
m

r0
m 1
n

r0
n 1
。所以
m nm r0 。 n
0
r0



d 2u ( r ) (m)( m 1) m 2 (n)( n 1) n 2 2 dr r r


固体物理学题库.docx

固体物理学题库.docx.一、填空1. 固体按其微结构的有序程度可分为、和准晶体。

2. 组成粒子在空间中周期性排列,具有长程有序的固体称为;组成粒子在空间中的分布完全无序或仅仅具有短程有序的固体称为。

3. 在晶体结构中,所有原子完全等价的晶格称为;而晶体结构中,存在两种或两种以上不等价的原子或离子的晶格称为。

4 晶体结构的最大配位数是____;具有最大配位数的晶体结构包括 ______________ 晶体结构和晶体结构。

5. 简单立方结构原子的配位数为______;体心立方结构原子的配位数为______。

6.NaCl 结构中存在_____个不等价原子,因此它是晶格,它是由氯离子和钠离子各自构成的格子套构而成的。

7. 金刚石结构中存在 ______个不等价原子,因此它是晶格,由两个结构的布拉维格子沿空间对角线位移1/4 的长度套构而成,晶胞中有 _____个碳原子。

8. 以结晶学元胞(单胞)的基矢为坐标轴来表示的晶面指数称为指数。

r r当 i时r rr2 ,9. 满足 a i b j 2ij,当i 时( i, j1,2,3) 关系的 b 1 ,b 2 , b 3 为基矢,由jrrr3r。

K h 1 13 构成的点阵,称为hb h 2b 2hb10. 晶格常数为 a 的一维单原子链,倒格子基矢的大小为。

11. 晶格常数为 a 的面心立方点阵初基元胞的体积为 _______;其第一布里渊区的体积为。

12. 晶格常数为 a 的体心立方点阵初基元胞的体积为 _______;其第一布里渊区的体积为。

13.晶格常数为 a 的简立方晶格的 ()面间距为 ________14.体心立方的倒点阵是点阵,面心立方的倒点阵是点阵,简单立方的倒点阵是。

15.一个二维晶格的第一布里渊区形状是。

16.若简单立方晶格的晶格常数由a 增大为2a,则第一布里渊区的体积变为原来的倍。

17.考虑到晶体的平移对称性后,晶体点群的独立对称素有种,分别是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

b
mω2
b2
x2
i
e
2π a
x
dx
4b b 2
2 1 4b
b mω2 b 2
b2 x2 cos π x dx 2b
8mω2b2 π3
第二禁带宽度为
Eg2 2V2
21 a
a2
V
a 2
i 4π x
x e a dx
2 1
b
mω2
b2
x2
i π
eb
x
dx
4b b 2
2 1 4b
1
eα x ,α为正的常数。
α
(1)试写出该晶体的紧束缚近似波函数;
(2)证明上面写出的紧束缚近似波函数具有布洛赫波函数 的性质;
(3)对比说明孤立原子的电子和晶体中的电子的波函数及 能量的特征。
解:(1)按紧束缚近似,三维晶体电子的波函数为
ψat k,r
1 N
e ikRl aαt
ห้องสมุดไป่ตู้Rl
k Rl
能带中的能量取最小值
Emin E0 A 8J
当 kx 1 a ,k y 1 a ,kz 1 a 时,
能量取最大值
Emax E0 A 8J
因而能带的宽度为
ΔE Emax Emin 16J
5.5由N格原子组成的三维晶体(简单晶格),其孤立原子中的
电子基态波函数为at x
V(x) 解:
x
O
a
2a
3a
如图所示,由于势能具有周期性,因此只在一个周期内求平均
即可,于是得
V 1 a 2 V xdx 1 2b V xdx
a a 2
4b 2b
1 b 1mω2 b2 x2 dx 4b b 2
mω2 8b
b2 x
1 3
x
3
b b
1 mω2b2 6
5.3 用近自由电子模型求解上题,确定晶体的第一及第二个禁带
kza 2
e
i
a 2
k
x
ky
cos
kza 2
i a
e2
kx ky
cos
kza 2
e
i
a 2
k
x
k
y
cos
kza 2
E
at s
A
4J
e
i
a 2
k
x
e
i
a 2
k
x
cos
kya 2
cos
k
z
a
2
E
at s
A
8Jcos
kxa 2
cos
kya 2
cos
kza 2
由余弦函数的性质,用观察法即可断定,当 kx k y kz 0 时,
一维晶体情况下,晶格常数a ,Rl na
所以
ψ k, x
1
N
e ikna aαt
n
x na

at
x
1
e α x
α

ψ
k, x
1
e ikna e α xna
Nα n
(2) 按正交化平面波方法,三维晶体电子的波函数为
x
1 NΩ
ei k ki r
M
j1
μΦ ij j,k ki
e ψ irRn k
r
可知,在一维周期势场中运动的电子波函数满足
ψk x a eiknaψk x
由此得
(1)
sin
π a
x
a
sin
π a
x
π
1n sin π x eikna sin π x
a
a
于是
eikna 1 n
因此得 kna 2s 1nπ 所以 k 2s 1 π s 0,1,2...
宽度。
解:在布里渊区边界上,电子的能量出现禁带,禁带宽度的表示
式为
Eg 2Vn
其中 Vn 是周期势场V(x)付里叶级数的系数,该系数可由式
Vn
1 a
a2
V
a 2
i 2π nx
x e a dx
求得。第一禁带宽度为
Eg1 2V1
21 a
a2
V
a 2
i 2π x
x e a dx
2 1
由上知 eikna 1
可知 kna 2sπ
所以 k 2s π s 0,1,2... n 1,2...
na
5.2 电子在周期场中得势能
V x
1 2
mω2
b2
x
na2
0
当na b x na b
当n - 1a b x na b
且 a 4b,ω是常数。试画出此势能曲线,并求此势能的平均值。
b mω2 b 2
b2 x2 cos π xdx b
mω2b2 π2
5.4 用紧束缚方法导出体心立方晶体s态电子的能带
E
k
E
at s
A 8J cos
kxa 2
cos
kya 2
cos
kza 2
并求能带宽度。
解:用紧束缚方法处理晶格的s态电子,当只计及最近邻格点
的相互作用时,其能带的表示式为
e
i
a 2
E
at s
A
J
ia
kx ky kz
ia
e 2
ia
kx ky kz
e 2 kx k y kz e 2 kx k y kz
e
i
a 2
kx ky kz
ia
e 2
kx ky kz
E sat
A
2J
e
i
a 2
k
x
k
y
cos
Ek
E
at s
A
J
e ikRn
, Rn是最近邻格矢
n
对体心立方晶格,取参考格点的坐标为(0,0,0), 则8个
最近邻格点的坐标为
a , a , a 2 2 2
将上述8组坐标代入能带的表示式,得
Ek
E
at s
A
J
e ikRn
n
ia
ia
e 2 kx k y kz e 2 kx k y kz
r
μ δ
ij
k,k ki
1
Ω
ajt
Ω
r Rl
e
i
k
ki
r
Rl

Φ jk
1 N
e ikRl ajt
l
r Rl
对于一维晶体情况下,晶格常数 a ,Rl na ,Ω a
x
1 Na
e
i k ki
x
M
μΦ
ij j1
j,k ki
x
μ δ
ij
k,k ki
a
(2)
icos
π a
x
a
icos
π a
x
π
eikna cos
x a

eikna i n

kna 2s 3 nπ
2
所以
2s 3
k 2 π s 0,1,2...
a
(3)
ψk x a f x a la f x l 1a
l
l
令 l l 1
得 ψk x a f x la ψk x eiknaψk x l
(优选)固体物理习题
5.1 一维周期场,电子的波函数 ψk x 应当满足布洛赫定理。
若晶格常数为 a ,电子的波函数为
(1)
ψk
x
sin
x a
π;
(2)
ψk
x
icos
x a
π;
(3)ψk x f x la
l
( f 为某一确定的函数)
试求电子在这些状态的波矢。
解: 由式
ψk
r Rn
1 a
ajt
a
x na e ik ki xna dx
此处
at
x
1
eα x
α
μ δ
ij
k,k ki
1
e e dx α xna
i k 2 π n xna
a
aα a
Φ jk
1 e ikna e α xna Nα n
相关文档
最新文档