高中数学专题-平面向量历年真题整理
高中数学必修二 6 平面向量的基本定理及坐标表示(精练)(含答案)

6.3 平面向量的基本定理及坐标表示(精练)【题组一 向量基底的选择】1.(2021·全国·高一课时练习)下列说法错误的是( )A .一条直线上的所有向量均可以用与其共线的某个非零向量表示B .平面内的所有向量均可以用此平面内的任意两个向量表示C .平面上向量的基底不唯一D .平面内的任意向量在给定基底下的分解式唯一【答案】B【解析】由共线向量的性质可知选项A 正确;根据平面向量基本定理可知:平面内的所有向量均可以用此平面内的任意两个不共线的向量表示,所以选项B 不正确;根据平面向量基本定理可知中:选项C 、D 都正确,故选:B2.(2021·浙江·宁波咸祥中学高一期中)(多选)下列两个向量,不能作为基底向量的是( )A .12(0,0),(1,2)e e ==B .12(2,1),(1,2)e e =-=C .12(1,2),(1,2)e e =--=D .12(1,1),(1,2)e e ==【答案】AC【解析】A 选项,零向量和任意向量平行,所以12,e e 不能作为基底.B 选项,12,e e 不平行,可以作为基底.C 选项,12e e =-,所以12,e e 平行,不能作为基底.D 选项,12,e e 不平行,可以作为基底.故选:AC3.(2021·福建省德化第一中学高一月考)(多选)下列各组向量中,可以作为基底的是( )A .12(0,0),(1,2)e e ==-B .12(1,2),(5,7)e e =-=C .12(3,5),(6,10)e e ==D .1213(2,3),,24e e ⎛⎫==- ⎪⎝⎭ 【答案】BD【解析】A .由于10e =,因为零向量与任意向量共线,因此12,e e 共线,不能作基底,B .因为1725-⨯≠⨯,所以两向量不共线,可以作基底,C .因为212e e =,所以两向量共线,不能作基底,D .因为312342⎛⎫⨯≠⨯- ⎪⎝⎭,所以两向量不共线,可以作基底, 故选:BD.4.(2021·湖北孝感·高一期中)(多选)在下列各组向量中,不能作为基底的是( )A .()1e 0,0→=,()2e 1,2→=-B .()1e 1,2→=-,()2e 5,7→=C .()1e 3,5→=,()2e 6,10→=D .()1e 2,3→=-,()2e 3,2→= 【答案】AC【解析】对A ,1e →∥2e →,不能作为基底;对B ,17250-⨯-⨯≠,1e →与2e →不平行,可以作为基底;对C ,21e 2e →→=,1e →∥2e →,不能作为基底;对D ,22+330⨯⨯≠,1e →与2e →不平行,可以作为基底.故选:AC.5.(2021·全国·高一课时练习)已知1e 与2e 不共线,12122,a e e b e e λ=+=+,且a 与b 是一组基,则实数λ的取值范围是___________. 【答案】11,,22⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭ 【解析】因为1e 与2e 不共线,12122,a e e b e e λ=+=+,若a 与b 共线,则a b μ=,即()12122a e e e e μλ=+=+, 所以12λμμ=⎧⎨=⎩,解得122λμ⎧=⎪⎨⎪=⎩, 因为a 与b 是一组基底,所以若a 与b 不共线,所以实数λ的取值范围是11,,22⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭,故答案为:11,,22⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭【题组二 向量的基本定理】1.(2021·广东·汕头市潮南区陈店实验学校高一月考)已知△ABC 的边BC 上有一点D 满足3BD DC =,则AD 可表示为( )A .1344AD AB AC =+ B .3144AD AB AC =+ C .2133AD AB AC =+ D .1233AD AB AC =+ 【答案】A【解析】由3BD DC =,可得3()AD AB AC AD -=-,整理可得43AD AB AC =+, 所以1344AD AB AC =+, 故选:A2.(2021·四川·成都外国语学校高一月考(文))我国东汉末数学家赵夾在《周髀算经》中利用一副“弦图”给出了勾股定理的证明,后人称其为“赵爽弦图”,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如图所示.在“赵爽弦图”中,若BC a =,BA b =,3BE EF =,则BF =( )A .1292525a b +B .16122525a b + C .4355a b + D .3455a b + 【答案】B【解析】因为此图是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,且BC a =,BA b =,3BE EF =, 所以34BF BC CF BC EA =+=+3()4BC EB BA =++ 33()44BC BF BA =+-+ 93164BC BF BA =-+, 解得16122525BF BC BA =+,即16122525BF a b =+, 故选:B3.(2021·陕西·西安电子科技大学附中高一月考)平面内有三个向量,,OA OB OC ,其中OAOB ,的夹角为120,,OA OC 的夹角为30,且32,,2OA OB ==23OC =,(R)OC OA OB λμλμ=+∈,则( ) A .42λμ==,B .322λμ==,C .423λμ==, D .3423λμ==, 【答案】C 【解析】如图所示:过点C 作//CD OB ,交直线OA 于点D ,因为OAOB ,的夹角为120,,OA OC 的夹角为30,所以90OCD =∠,在Rt OCD △中,tan 30232DC OC ===,24sin 30OD ==, 由OC OA OB OD DC λμ=+=+, 可得OD OA λ=,DC OB μ= 所以OD OA λ=,DC OB μ=,所以42λ=,322μ=,所以42,3λμ==. 故选:C.4.(2021·全国·高一课时练习)若1(3,0)e =,2(0,1)e =-,12a e e =-,(1,)b x y =-,且a b =,则实数x ,y 的值分别是( )A .1x =,4y =B .2x =,1y =-C .4x =,1y =D .1x =-,2y =【答案】C 【解析】由题意,12(3,1)a e e =-=,又a b =13411x x y y -==⎧⎧∴⎨⎨==⎩⎩故选:C5.(2021·江苏南京·高一期末)在Rt ABC 中,90BAC ∠=︒,1AB =,2AC =,D 是ABC 内一点,且45DAB ∠=︒设(,)AD AB AC R λμλμ=+∈,则( )A .20λμ+=B .20λμ-=C .2λμ=D .2μλ= 【答案】B【解析】如图,以A 为原点,AB 所在直线为x 轴,AC 所在直线为y 轴建立平面直角坐标系则B 点的坐标为(1,0),C 点的坐标为(0,2)∵∠DAB =45°,所以设D 点的坐标为(m , m )(m ≠0)(,)(1,0)(0,2)(,2)AD m m AB AC λμλμλμ==+=+=则λ=m ,且μ=12m , ∴2λμ=,即20λμ-= 故选:B6.(2021·山西临汾·高一期末)在ABC 中,已知AB AC ⊥,2AB =,3AC =,D 是ABC 内一点,且45DAB ∠=,若(),AD AB AC λμλμ=+∈R ,则λμ=( ) A .32B .23C .34D .43 【答案】A 【解析】以A 为原点,以AB 所在的直线为x 轴,AC 所在的直线为y 轴建立平面直角坐标系,则()2,0B 、()0,3C ,由于45DAB ∠=,可设(),D m m ,因为AD AB AC λμ=+,所以()()(),2,00,3m m λμ=+,所以23m λμ==, 因此,32λμ=. 故选:A.7.(2021·安徽宣城·高一期中)如图,在长方形ABCD 中,2AB AD =,点M 在线段BD 上运动,若AM x AB y AC =+,则2x y +=( )A .1B .32C .2D .43【答案】A 【解析】解:由题可得,设22AB AD ==,因为ABCD 是长方形,所以以点A 为坐标原点,AB 方向为x 轴正方向,AD 方向为y 轴正方向建立平面直角坐标系,则()2,0B 、()0,1D ,则()()2,0,2,1AB AC ==,()2,1BD =-,因为AM x AB y AC =+,所以()22,AM x y y =+,所以()()()222,222,,0y B A x y y x y M B AM =+==-+++-,因为点M 在BD 上运动,所以有//BM BD ,所以()12222x y y ⨯+-=-,整理得21x y +=,故选:A.8(2021·上海·高一课时练习)已知点G 为△ABC 的重心,过G 作直线与AB 、AC 两边分别交于M 、N 两点,且AM =x AB ,AN =y AC ,求11x y+的值为________. 【答案】3 【解析】根据条件:11,==AC AN AB AM y x,如图设D 为BC 的中点,则1122AD AB AC =+ 因为G 是ABC ∆的重心,211333AG AD AB AC ==+, 1133AG AM AN x y∴=+, 又M ,G ,N 三点共线,11=133x y ∴+,即113x y+=. 故答案为:3.9.(2021·黑龙江·大庆中学高一月考)如图,经过OAB 的重心G 的直线与,OA OB 分别交于点P ,Q ,设,OP mOA OQ nOB →→→→==,,m n R ∈,则11n m+的值为________.【答案】3【解析】设,OA a OB b →→→→==,由题意知211()()323OG OA OB a b →→→→→=⨯+=+, 11,33PQ OQ OP n b m a PG OG OP m a b →→→→→→→→→→⎛⎫=-=-=-=-+ ⎪⎝⎭, 由P ,G ,Q 三点共线,得存在实数λ使得PQ PG λ→→=, 即1133n b m a m a b λλ→→→→⎛⎫-=-+ ⎪⎝⎭, 从而1,31,3m m n λλ⎧⎛⎫-=- ⎪⎪⎪⎝⎭⎨⎪=⎪⎩消去λ,得113n m +=. 故答案为:310.(2021·河北大名·高一期中)已知平面内三个向量()7,5a =,()3,4b =-,()1,2c =.(1)求23a b c -+; (2)求满足a mb nc =-的实数m ,n ;(3)若()()//ka c b c -+,求实数k .【答案】(2)943,1010m n =-=-;(3)526k =. 【解析】(1)∵()()()()237,523,431,216,3a b c -+=--+=,∴22316a b c -+=+=(2)由a mb nc =-得()()7,53,42m n m n =---,∴3,42 5.7m m n n ⎧⎨-=--=⎩解得9,1043.10m n ⎧=-⎪⎪⎨⎪=-⎪⎩(3)()71,52ka c k k -=--,()2,6b c +=-.∵()()//ka c b c -+,∴()()6712520k k -+-=,解得526k =. 11.(2021·福建·莆田第七中学高一期中)已知两向量()2,0a =,()3,2b =.(1)当k 为何值时,ka b -与2a b +共线?(2)若23AB a b =+,BC a mb =+且A ,B ,C 三点共线,求m 的值.【答案】(1)12k =-;(2)32m =. 【解析】(1)()()()2,03,223,2ka b k k -=-=--,()()()22,06,48,4a b +=+=.当ka b -与2a b +共线时,()()423280k ---⨯=, 解得12k =-. (2)由已知可得()()()234,09,613,6AB a b =+=+=,()()()2,03,232,2BC a mb m m m m =+=+=+. 因为A ,B ,C 三点共线,所以//AB BC ,所以()266320m m -+=.解得32m =. 12.(2021·安徽宿州·高一期中)已知(1,0)a =-,(2,1)b =--.(1)当k 为何值时,ka b -与2a b +平行.(2)若23AB a b =+,BC a mb =+且A ,B ,C 三点共线,求m 的值.【答案】(1)12k =-;(2)32m =. 【解析】(1)(1,0)(2,1)(2,1)ka b k k -=----=-,2(1,0)2(2,1)(5,2)a b +=-+--=--.因为ka b -与2a b +共线,所以2(2)(5)10k ----⨯=,解得12k =-. (2)因为A ,B ,C 三点共线,所以()AB BC R λλ=∈,即23()a b a mb λ+=+,又因为a 与b 不共线,a 与b 可作为平面内所有向量的一组基底,所以23m λλ=⎧⎨=⎩, 解得32m =.【题组三 线性运算的坐标表示】1.(2021·天津红桥·高一学业考试)若向量(1,2),(1,1)a b ==-,则a b +的坐标为( )A .(2,3)B .(0,3)C .(0,1)D .(3,5)【答案】B【解析】解:因为(1,2),(1,1)a b ==-,所以()()()1,21,10,3a b +=+-=故选:B2.(2021·山东邹城·高一期中)已知向量()1,0a =,()2,4b =,则a b +=( )A B .5 C .7 D .25【答案】B【解析】根据题意,向量()1,0a =,()2,4b =,则()3,4a b +=,故9165a b +=+.故选:B .3.(2021·全国·高一专题练习)已知向量(1,1)a =,()2,2b x x =+,若a ,b 共线,则实数x 的值为( )A .-1B .2C .1或-2D .-1或2【答案】D【解析】因为向量(1,1)a =,()2,2b x x =+,且a ,b 共线,所以22x x =+,解得1x =-或2x =,故选:D4.(2021·全国·高一单元测试)已知(2,1cos )a θ=--,11cos ,4b θ⎛⎫=+- ⎪⎝⎭,且//a b ,则锐角θ等于( )A .45°B .30°C .60°D .30°或60°【答案】A【解析】因为//a b ,所以()()()121cos 1cos 04θθ⎛⎫-⨯---+= ⎪⎝⎭,得211cos 02θ-+=,即21cos 2θ=,因为θ为锐角,所以cos θ=45θ=.故选:A5.(2021·云南省永善县第一中学高一月考)已知点()2,2,1A ,()1,4,3B ,()4,,C x y 三点共线,则x y -=( )A .0B .1C .1-D .2-【答案】B【解析】因为A ,B ,C 三点共线,所以可设AB AC λ=,因为(1,2,2)AB =-,()2,2,1AC x y =--,所以()()122221x y λλλ⎧-=⎪=-⎨⎪=-⎩,解得1223x y λ⎧=-⎪⎪=-⎨⎪=-⎪⎩, 所以1x y -=.故选:B.6.(2021·广东·佛山市超盈实验中学高一月考)(多选)已知()1,3a =,()2,1b =-,下列计算正确的是( )A .()1,4a b +=-B .()3,2a b -=C .()1,2b a -=D .()1,2a b --=【答案】AB【解析】因为()1,3a =,()2,1b =-,所以()1,4a b +=-,故A 正确; ()3,2a b -=,故B 正确;()3,2b a -=--,故C 错误;()1,4a b --=-,故D 错误.故选:AB.7.(2021·湖南·永州市第一中学高一期中)(多选)已知向量()1,2a =-,()1,b m =-,则( )A .若a 与b 垂直,则1m =-B .若//a b ,则2m =C .若1m =,则13a b -=D .若2m =-,则a 与b 的夹角为60︒ 【答案】BC【解析】A :a 与b 垂直,则120m --=,可得12m =-,故错误; B ://a b ,则20m -=,可得2m =,故正确;C :1m =有()1,1b =-,则(2,3)a b -=-,可得13a b -=,故正确;D :2m =-时,有()1,2b =--,所以33cos ,5||||5a b a b a b ⋅<>===⨯,即a 与b 的夹角不为60︒,故错误. 故选:BC8.(2021·全国·高一课时练习)(多选)已知(4,2),(,2)AB AC k ==-,若ABC 为直角三角形,则k 可取的值是( )A .1B .2C .4D .6 【答案】AD【解析】因为()()4,2,,2AB AC k ==-,所以()4,4BC k =--,当A ∠为直角时,0AB AC ⋅=,所以440k -=,所以1k =,当B 为直角时,0AB BC ⋅=,所以4240k -=,所以6k =,当C ∠为直角时,0AC BC ⋅=,所以2480k k -+=,此时无解,故选:AD.9.(2021·河北·正定中学高一月考)(多选)已知向量(2,1)a =,(3,1)b =-,则( )A .()a b a +⊥B .|2|6a b +=C .向量a 在向量b 上的投影向量是62(,)55-D .是向量a 的单位向量 【答案】AD【解析】对于A ,()1,2a b +=-,则()220a b a +⋅=-+=,所以()a b a +⊥,故A 正确;对于B ,()24,3a b +=-,则|2|5a b +=,故B 错误;对于C ,向量a 在向量b 上的投影向量为531cos ,,1022b a b b b a a b b b b ⋅-⎛⎫⋅⋅=⋅==- ⎪⎝⎭, 故C 错误;对于D ,因为向量的模等于1,120-=,所以向量与向量a 共线,故是向量a 的单位向量,故D 正确. 故选:AD. 10.(2021·全国·高一课时练习)已知平面向量a =(2,1),b =(m ,2),且a ∥b ,则3a +2b =_______.【答案】(14,7)【解析】因为向量a =(2,1),b =(m ,2),且//a b ,所以1·m-2×2=0,解得m=4.所以b =(4,2).故3a +2b =(6,3)+(8,4)=(14,7).故答案为:(14,7)11.(2021·全国·高一课时练习)已知向量a =(m ,3),b =(2,﹣1),若向量//a b ,则实数m 为____.【答案】6-【解析】∵//a b ,∴﹣m ﹣6=0,∴6m =-.故答案为:6-.12.(2021·全国·高一课时练习)已知(2,4)A -,(2,3)B -,(3,)C y ,若A ,B ,C 三点共线,则y =___________. 【答案】234- 【解析】解:(2,4)A -,(2,3)B -,(3,)C y ,则()4,7AB =-,()5,3BC y =-,若A ,B ,C 三点共线,则向量AB 与向量BC 共线,则有()4335y --=,解得:234y =-. 故答案为:234-. 13.(2021·全国·高一课时练习)已知向量(2,4)a =-,(1,3)b =-,若2a b +与a kb -+平行,则k =___________. 【答案】-2【解析】因为向量(2,4)a =-,(1,3)b =-,所以()202a b +=-,,()2,43a kb k k -+=+--, 又因为2a b +与a kb -+平行,所以()220k -+=,解得2k =-,故答案为:-2【题组四 数量积的坐标表示】1.(2021·全国·高一单元测试)已知矩形ABCD 中,AB =3,AD =4,E 为AB 上的点,且BE =2EA ,F 为BC 的中点,则AF DE ⋅=( )A .﹣2B .﹣5C .﹣6D .﹣8【答案】B【解析】以点B 为坐标原点,BC 所在直线为x 轴,BA 所在直线为y 轴,距离如图所示的直角坐标系, 则()0,0B ,()0,3A ,()4,3D ,()0,2E ,()2,0F , ()2,3AF =-,()4,1DE =--,则()()()24315AF DE ⋅=⨯-+-⨯-=-.故选:B .2.(2021·吉林·延边二中高一期中)在ABC 中, AB AC AB AC +=-, 4, 2AB AC ==,, E F 为线段BC 的三等分点,则AE AF ⋅=( )A .109 B .4 C .409D .569 【答案】C【解析】ABC 中,|AB AC +|=|AB AC -|,∴2AB +2AB ⋅22AC AC AB +=-2AB ⋅2AC AC +, ∴AB ⋅AC =0,∴AB ⊥AC ,建立如图所示的平面直角坐标系,由E ,F 为BC 边的三等分点,则A (0,0),B (0,4),C (2,0),E (23,83),F (43,43), ∴AE =(23,83),AF =(43,43), ∴AE 2433AF ⋅=⨯+3398440⨯=.故选:C3.(2021·福建省宁化第一中学高一月考)在菱形ABCD 中,120ABC ∠=︒,AC =102BM CB →→→+=,DC DN λ→→=,若29AM AN →→⋅=,则λ=( )A .18B .17C .16D .15【答案】D 【解析】作出图形,建立如图所示的平面直角坐标系,设(,)N x y ,因为120,1,AC ABC BO =∠=∴= 因为102BM CB →→→+=,所以12BM BC →→=,即M 是BC 的中点,所以1(),(0,1),2A M D C -所以1),(,1)2AM DC DN x y λλ→→→====+,由题知0λ≠.故1511),429,.5N AM AN λλλ→→-∴⋅=+=∴= 故选:D4.(2021·广东·东莞市新世纪英才学校高一月考)(多选)已知向量 (2,1)a =,(cos ,sin )(0)b θθθπ=,则下列命题正确的是( )A .若a b ⊥,则tan θ=B .若b 在a 上的投影向量为,则向量a 与b 的夹角为23πC .存在θ,使得a b a b +=+D .a b ⋅【答案】BCD【解析】对A ,若a b ⊥,则2cos sin 0a b θθ⋅+==,则tan θ=A 错误;对B ,若b 在a 上的投影向量为,3a =,且||1b =, ,co 3s 6a b a b a a ∴>⋅=-⋅<,则1cos 2a b 〈〉=-,,2π,3a b ∴〈〉=,故B 正确; 对C ,若2()2a b a b a b =+⋅22++,222(||||)||||2||||a b a b a b +=++,若|||||a b a b =+|+,则||||cos ||||a b a b a b a b ⋅⋅〈〉=,=,即cos ,1a b 〈〉=,故0a,b <>=︒,|||||a b a b =+|+,故C 正确;对D ,2cos sin a b θθ⋅+==)θϕ+,因为0πθ≤≤,π02ϕ<<,则当π2θϕ+=时,a b ⋅故D 正确.故选:BCD.5.(2021·上海·高一课时练习)已知点A (-1,1)、B (1,2)、C (-2,-1)、D (3,4),则向量AB 在CD 方向上的投影为___________.【解析】()()2,1,5,5AB CD ==,所以向量AB 在CD 方向上的投影为2AB CDCD ⋅==.6(2021·上海·高一课时练习)设a =(2,x ),b =(-4,5),若a 与b 的夹角θ为钝角,则x 的取值范围是___________.【答案】85x <且 【解析】∵θ为钝角,∴0a b ⋅<且两向量不共线,即850a b x ⋅=-+<,解得85x <, 当//a b 时,1040x +=,解得52x =-, 又因,a b 不共线,所以52x ≠-, 所以x 的取值范围是85x <且52x ≠-.故答案为:85x <且52x ≠-.7.(2021·北京·大峪中学高一期中)如图,在矩形ABCD 中,2AB =,BC E 为BC 的中点,点F 在边CD 上,若1AB AF ⋅=,则AE AF ⋅的值是___________.【答案】2【解析】如图,以A 为坐标原点建立平面直角坐标系,则(0,0)A ,(2,0)B ,(C ,2,2E ⎛ ⎝⎭,(F x ;∴(2,0)AB =,(,AF x =,AE ⎛= ⎝⎭; ∴1212AB AF x x ⋅==⇒=, ∴21112AE AF x ⋅=+=+=.故答案为:2.8.(2021·河北张家口·高一期末)在ABC 中,1AC =,2BC =,60ACB ∠=︒,点P 是线段BC 上一动点,则PA PC ⋅的最小值是______.【答案】116- 【解析】在ABC 中,由余弦定理得AB =ABC 是直角三角形,以点A 为坐标原点,AB 所在直线为x 轴,AC 所在直线为y 轴建立平面直角坐标系,设点P 坐标为(,)a b ,B ,(0,1)C ,(,)PA a b =--,(,1)PC a b =--,直线BC 对应一次函数为1y =,所以1b =,)a b =-,222222(1))]473PA PC a b b a b b b b b b b ⋅=--=-+=--+=-+,[0,1]b ∈,对称轴7[0,1]8b =∈,当78b =时, PA PC ⋅取得最小值116-. 故答案为:116- 9.(2021·山西·平遥县第二中学校高一月考)向量()1,3a =-,()4,2b =-且a b λ+与a 垂直,则λ=___________.【答案】1-【解析】由题意,向量()1,3a =-,()4,2b =-,可得10,10a a b =⋅=,因为a b λ+与a 垂直,可得2()10100a b a a a b λλλ+⋅=+⋅=⨯+=,解得1λ=-.故答案为:1-.10.(2021·上海·高一课时练习)已知a =(1,2),b =(1,λ),分别确定实数λ的取值范围,使得:(1)a 与b 的夹角为直角;(2)a 与b 的夹角为钝角;(3)a 与b 的夹角为锐角. 【答案】(1)λ=-12;(2)1(,)2-∞-;(3)(,)122-∪(2,+∞). 【解析】设a 与b 的夹角为θ,则a b ⋅=(1,2)·(1,λ)=1+2λ.(1)因为a 与b 的夹角为直角,所以cos 0θ=,所以0a b ⋅=,所以1+2λ=0,所以λ=-12.(2)因为a 与b 的夹角为钝角,所以cos 0θ<且cos 1θ≠-,所以0a b ⋅<且a 与b 不反向.由0a b ⋅<得1+2λ<0,故λ<-12,由a 与b 共线得λ=2,故a 与b 不可能反向.所以λ的取值范围为1(,)2-∞-.(3)因为a 与b 的夹角为锐角,所以cos 0θ>,且cos 1θ≠,所以a b ⋅>0且a 与b 不同向. 由a b ⋅>0,得λ>-12,由a 与b 同向得λ=2.所以λ的取值范围为(,)122-∪(2,+∞). 11.(2021·江西·九江一中高一期中)在ABC 中,底边BC 上的中线2AD =,若动点P 满足()22sin cos BP BA BD R θθθ=⋅+⋅∈.(1)求()PB PC AP +⋅的最大值;(2)若=AB AC =PB PC ⋅的范围.【答案】(1)2;(2)[1,3]-.【解析】∵()22sin cos BP BA BD R θθθ=⋅+⋅∈,22sin cos 1θθ+= ∴A 、P 、D 三点共线又∵[]22sin ,cos 0,1θθ∈,∴P 在线段AD 上.∵D 为BC 中点,设PD x =,则2AP x =-,[]0,2x ∈,∴()PB PC AP +⋅=2PD AP ⋅=()22x x -=224x x -+=()2212x --+, ∴()PB PC AP +⋅的最大值为2(2)如图,以D 为原点,BC 为x 轴,AD 为y 轴,建立坐标系,∵=AB AC =,2AD =,∴()()1,0,1,0B C -,设()0,P y 02y ,则()()1,,1,PB y PC y =--=-∴PB PC ⋅=21y -+,∵02y ≤≤,∴[]1,3PB PC ⋅∈-12.(2021·江苏省丹阳高级中学高一月考)已知()1,1a =--,()0,1b =.在①()()//ta b a tb ++;②()()ta b a tb +⊥+;③ta b a tb +=+这三个条件中任选一个,补充在下面问题中,并解答问题.(1)若________,求实数t 的值;(2)若向量(),c x y =,且()1c ya x b =-+-,求c .【答案】(1)选①:1t =±,选②:t =1t =±;【解析】因为()()1,1,0,1a b =--=,所以()()()1,10,1,1ta b t t t +=--+=--,()()()1,10,11,1a tb t t +=--+=--,选①:(1)因为()()//ta b a tb ++,所以()()11t t t --=--;即21t =,解得1t =±;(2)()()()()()10,1,,1,c ya x y y b x y x y x y +=-+-=-=-+=,所以1x y y x y =⎧⎨=-+⎩,可得11x y =⎧⎨=⎩,所以()1,1c =,所以2211c =+= 选②:(1)因为()()ta b a tb +⊥+,所以()()110t t t +--=;即2310t t -+=,解得:t = (2)()()()()()10,1,,1,c ya x y y b x y x y x y +=-+-=-=-+=,所以1x y y x y =⎧⎨=-+⎩,可得11x y =⎧⎨=⎩,所以()1,1c =,所以2211c =+= 选③:(1)因为ta b a tb +=+,=即21t =,解得:1t =±;(2)()()()()()10,1,,1,c ya x y y b x y x y x y +=-+-=-=-+=,所以1x y y x y =⎧⎨=-+⎩,可得11x y =⎧⎨=⎩,所以()1,1c =,所以2211c =+=13.(2021·河南·高一期末)已知向量()2,1a =.(1)若向量()11b =-,,且ma b -与2a b -垂直,求实数m 的值; (2)若向量()2,c λ=-,且c 与a 的夹角为钝角,求2c a -的取值范围.【答案】(1)57-;(2)(3)5,⎡⎣+∞.【解析】(1)因为()21,1ma b m m -=+-,()24,1a b -=-,结合ma b -与2a b -垂直,得到()()42110m m +--=,解得57m =-,所以实数m 的值为57-. (2)因为c 与a 的夹角为钝角,所以()2240a c λλ⋅=⨯-+=-<,4λ<. 又当1λ=-时,//c a ,所以4λ<且1λ≠-. 因为()26,2c a λ-=--,所以()226c a -=-由于当4λ<且1λ≠-时,[)223636,45()(45,)λ-+∈+∞.所以2c a -的取值范围为(3)5,⎡⎣+∞.【题组五 向量与三角函数的综合运用】1.(2021·全国·高三专题练习)已知向量ππ2sin ,sin 44a x x ⎛⎫⎛⎫⎛⎫=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎭,πsin ,sin 4b x m x ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭.(1)若0m =,试研究函数()π3π,84f x a b x ⎛⎫⎡⎤=⋅∈ ⎪⎢⎥⎣⎦⎝⎭在区间上的单调性;(2)若tan 2x =,且//a b ,试求m 的值.【答案】(1)π3π,88x ⎡⎤∈⎢⎥⎣⎦时,函数()f x 单调递增,3π3π,84x ⎡⎤∈⎢⎥⎣⎦时,函数()f x 单调递减;(2) 2m =.【解析】(1)当0m =时,()()2πsin sin sin cos sin sin cos 4f x x x x x x x x x ⎛⎫=+=+=+ ⎪⎝⎭1cos 2sin 2π122242x x x -⎛⎫=+=-+ ⎪⎝⎭,由π3π,84x ⎡⎤∈⎢⎥⎣⎦,得π5π20,44x ⎡⎤-∈⎢⎥⎣⎦.当ππ20,42x ⎡⎤-∈⎢⎥⎣⎦,即π3π,88x ⎡⎤∈⎢⎥⎣⎦时,函数()f x 单调递增;当ππ5π2,424x ⎡⎤-∈⎢⎥⎣⎦,即3π3π,84x ⎡⎤∈⎢⎥⎣⎦时,函数()f x 单调递减.(2)由//a b πππsin sin sin sin 444x x x x ⎛⎫⎛⎫⎛⎫+-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.由tan 2x =,可得πsin 04x ⎛⎫+≠ ⎪⎝⎭(若πsin 04x ⎛⎫+= ⎪⎝⎭,则ππ4x k =-(k Z ∈),此时tan 1x =-,与条件矛盾).πsin sin 4x x ⎛⎫-= ⎪⎝⎭,即()sin cos sin m x x x -=,两边同除以cos x ,可得()tan 1tan 2m x x -==,∴2m =.2.(2021·江苏·金陵中学高一期中)设向量(3cos ,sin ),(sin ,3cos ),(cos ,3sin )a b c ααββββ===-. (1)若a 与b c -垂直,求tan()αβ+的值; (2)求||b c -的最小值.【答案】(1)tan()1αβ+=;.【解析】(1)因为a 与b c -垂直,所以()0a b c ⋅-=,即0a b a c ⋅-⋅=, 所以()()3cos sin cos sin 3cos cos sin sin 0αββααββα+--=, 所以()()3sin 3cos 0βααβ+-+=,所以tan()1αβ+=; (2)因为()sin cos ,3cos 3sin b c ββββ-=-+ ()()()2222||sin cos 3cos 3sin b c b cββββ-=-=-++1016sin cos 108sin 2βββ=+=+, 所以当222k k Z πβπ=-+∈,,即4k k Z πβπ=-+∈,时2||b c -取最小值2,所以||b c -.3.(2021·江苏铜山·高一期中)已知向量(2sin ,sin cos )a θθθ+=,(cos ,2)m b θ-=,函数()f a b θ=⋅, (1)当0m =时,求函数π6f ⎛⎫⎪⎝⎭的值;(2)若不等式4()23sin cos f m θθθ+>-+对所有π02 ,θ⎡⎤∈⎢⎥⎣⎦恒成立.求实数m 的范围.【答案】(1)1+;(2)(,-∞ 【解析】(1)因为向量(2sin ,sin cos )a θθθ+=,(cos ,2)m b θ-=, ()()()()()2sin cos 2sin cos sin 22sin cos f a b m m θθθθθθθθ=⋅=+-+=+-+,当0m =时, ()()()2sin cos 2sin cos sin 22sin cos f a b θθθθθθθθ=⋅=++=++,ππππ1sin 2sin cos 2163662f ⎛⎛⎫⎛⎫=++=+ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭; (2)不等式4()23sin cos f m θθθ+>-+对所有π02 ,θ⎡⎤∈⎢⎥⎣⎦恒成立, 即()()4sin 22sin cos 230sin cos m m θθθθθ+-++-+>+对所有π02 ,θ⎡⎤∈⎢⎥⎣⎦恒成立,令πsin cos 4t θθθ⎛⎫=+=+ ⎪⎝⎭,可得21sin 2t θ=+,所以2sin 21t θ=-,因为π02 ,θ⎡⎤∈⎢⎥⎣⎦,所以ππ3π444,θ⎡⎤+∈⎢⎥⎣⎦,()πsin 14,θ⎤+∈⎥⎣⎦,所以π4t θ⎛⎫⎡=+∈ ⎪⎣⎝⎭所以()2412230t m t m t -+-+-+>对于t ⎡∈⎣恒成立, 即()24222t t m t t+++>+对于t ⎡∈⎣恒成立, 因为20t +>,所以24222t t t m t +++<+对于t ⎡∈⎣恒成立, 令()24222t t t g t t +++=+,t ⎡∈⎣,只需()min m g t <, 因为()()2422222222t t t t t t t t t t t ++++++==+≥++当且仅当2t t=即t ()g t取得最小值所以m <所以实数m的范围为(,-∞.4.(2021·江苏宜兴·高一期中)已知向量a =(2cos α,2sin α),b =(6cos β,6sin β),且()a b a ⋅-=2. (1)求向量a 与b 的夹角;(2)若33ta b -=,求实数t 的值. 【答案】(1)3π;(2)32. 【解析】(1)由a =(2cos α,2sin α),b =(6cos β,6sin β),得24cos 2a =,36cos 6b ==,又()2a b a ⋅-=,∴22a b a ⋅-=,则2226a b ⋅=+=, 设向量a 与b 的夹角为θ,则cos θ=61262a b a b⋅==⨯, 又θ∈[0,π],∴3πθ=;(2)由33ta b -=,得2()27ta b -=, 即222227t a ta b b -⋅+=, ∴4t 2﹣12t +36=27, ∴4t 2﹣12t +9=0,解得t =32. 5.(2021·河北安平中学高一期末)在①255a b -=,②8()5+⋅=a b b ,③a b ⊥,三个条件中任选一个,补充在下面问题中,然后解答补充完整的题目.已知向量(cos ,sin )a αα=,(cos ,sin )b ββ=, ,若02πα<<,02πβ-<<,且5sin 13β=-,求sin α. 【答案】答案见解析.【解析】因为(cos ,sin )a αα=,(cos ,sin )b ββ=,所以||||1a b ==, 选择方案①:因为255a b -=,所以24()5-=a b ,即22425+-⋅=b a b a , 所以35a b ⋅=,因为(cos ,sin )a αα=,(cos ,sin )b ββ=,所以3cos cos sin sin 5αβαβ⋅=+=a b ,即3cos()5αβ-=, 因为02πα<<,02πβ-<<,所以0αβπ<-<.所以4sin()5αβ-=,因为02πβ-<<,5sin 13β=-,所以12cos 13β==,所以4123533sin sin[()]sin()cos cos()sin =51351365ααββαββαββ⎛⎫=-+=-+-=⨯+⨯- ⎪⎝⎭.选择方案②: 因为8()5+⋅=a b b ,所以285⋅+=a b b ,所以35a b ⋅=, 因为(cos ,sin )a αα=,(cos ,sin )b ββ=, 所以3cos cos sin sin 5αβαβ⋅=+=a b ,即3cos()5αβ-=, 因为02πα<<,02πβ-<<,所以0αβπ<-<,所以4sin()5αβ-=,因为02πβ-<<,5sin 13β=-,所以12cos 13β==,所以4123533sin sin[()]sin()cos cos()sin =51351365ααββαββαββ⎛⎫=-+=-+-=⨯+⨯- ⎪⎝⎭.选择方案③:因为(cos ,sin )a αα=,(cos ,sin )b ββ=,且a b ⊥, 所以cos cos sin sin 0αβαβ⋅=+=a b ,即cos()0αβ-=, 因为02πα<<,02πβ-<<,所以0αβπ<-<,所以2παβ-=,因为02πβ-<<,5sin 13β=-,所以12cos 13β==,所以12sin sin cos 213παββ⎛⎫=+== ⎪⎝⎭.6.(2021·重庆复旦中学高一期中)在ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,且tan 21tan A cB b+=. (1)求角A ;(2)若()0,1m =-,()2cos ,2cos 2Cn B =,试求m n +的取值范围.【答案】(1)3π;(2)54⎫⎪⎪⎝⎭. 【解析】(1)tan 2sin cos 2sin 11tan sin cos sin A c A B CB b B A B+=⇒+=, 即sin cos sin cos 2sin sin cos sin B A A B CB A B +=,()sin 2sin sin cos sin A BC B A B +∴=,1cos 2A ∴=.0πA <<,3A π∴=. (2)()2cos ,2cos1cos ,cos 2C m n B B C ⎛⎫+=-= ⎪⎝⎭, 2222221cos cos cos cos 1sin 2326m n B C B B B ππ⎛⎫⎛⎫∴+=+=+-=-- ⎪ ⎪⎝⎭⎝⎭,3A π=,23π∴+=B C , 20,3B π⎛⎫∴∈ ⎪⎝⎭,从而72666B πππ-<-<,∴当sin 216B π⎛⎫-= ⎪⎝⎭,即3B π=时,m n +取得最小值,1sin 262B π⎛⎫-=- ⎪⎝⎭,时,m n +取得最大值54,故2524m n ⎛⎫+∈ ⎪ ⎪⎝⎭.。
高中数学平面向量经典练习题(附答案)

D、m= -2+2 3,n= 2 +2 3
12、已知向量a与b, 3a + b = 6,a − 3b = 8,若则a ⊥ b,则 + 的值是( )
A、2
B、9
C、 6
D、 10
13、在△APD 中,AC=CD,AB=2BC,点 E 在 PA 上,H 在 PD 上,F 是 EH 的中
点,G 是 PC 与 EH 的交点,则 =(
3 23
2
解得:a=2b
已知 C 是 AD 的中点,设 = n ,
所以
=
2
+2
设 S = t KS,
-----------------------------------------⑤
得:
= 2tb
+(1-t) b
-----------------------⑦
由⑤、⑦式中对应系数相等,2tb = 2 (1 − t) b = 2
( + )·( + )=0 ------------------------⑨
由⑦,⑧,⑨,得:
cos( + , + )= ( + )·(3 + )
+ ∙3 +
=0 所以:向量 + , + 的夹角为 90°
故答案为:C
第 18 题 解: 已知 2 − 3 = 7 等号两边同时平方,得: 4 2- 12 ∙ +9 2 = 7 将 = 2, · =3 代入上式, 4·22-12·3+9 2 = 7 化简得: = 3
则
=
。
=(3,2)
8、已知向量 , 满足 = 3 , ⊥(2 + 3 ),则向量 与 的夹角
高中高考数学专题复习平面向量含试题与详细解答

高中高考数学专题复习平面向量含试题与详细解答1.平面上有一个△ABC 和一点O ,设OA a =,OB b =,OC c =,又OA 、BC 的中点分别为D 、E ,则向量DE 等于( )A.()12a b c ++ B. ()12a b c -++ C. ()12a b c -+ D. ()12a b c +-2.在平行四边形ABCD 中,E 、F 分别是CD 和BC 的中点,若AF AE AC μλ+=,其中R ∈μλ,,则μλ+的值是 A .34 B .1 C . 32 D. 31 3.若四边形ABCD 是正方形,E 是CD 的中点,且AB a =,AD b =,则BE = A.12b a +B.12a b + C.12b a - D.12a b -4.在平面内,已知31==,0=⋅OB OA ,30=∠AOC ,设n m +=,(,R m n ∈),则nm等于A .B .3±C .13±D .3±5.在等腰Rt ABC △中,90A ∠=,(1,2),(,)(0)AB AC m n n ==>,则BC = ( ) A .(-3,-1)B .(-3,1)C .(3,1)-D .(3,1)6.已知,,A B C 三点共线,且(3,6)A -,(5,2)B -,若C 点横坐标为6,则C 点 的纵坐标为( ).A .13-B .9C .9-D .137.设a 、b 、c 是非零向量,则下列说法中正确..是 A .()()a b c c b a ⋅⋅=⋅⋅ B. a b a b -≤+C .若a b a c ⋅=⋅,则b c =D .若//,//a b a c ,则//b c 8.设四边形ABCD 中,有DC =21,且||=|BC |,则这个四边形是 A.平行四边形B.等腰梯形C. 矩形D.菱形9.已知()()0,1,2,3-=-=,向量+λ与2-垂直,则实数λ的值为( ). A.17-B.17C.16- D.1610.若点M 为ABC ∆的重心,则下列各向量中与共线的是( ) A .++ B .++ C .AC AM +3 D .CM BM AM ++11.若|a |=|b |=|a -b|,则b 与a +b 的夹角为 ( )A .30°B .60°C .150°D .120°12. 已知()23,a =,47(,)b =-,则b 在a 上的投影为( )(A)(B)13.R t t ∈+===,),20cos ,20(sin ,)25sin ,25(cos 0000,则||的最小值是 A. 2 B.22C. 1D. 2114.矩阵A 1002⎛⎫=⎪⎝⎭,向量12α⎛⎫= ⎪⎝⎭,则A 10α= ( ) A .1012⎛⎫ ⎪⎝⎭ B .1112⎛⎫ ⎪⎝⎭ C .2060⎛⎫ ⎪⎝⎭ D .1122⎛⎫⎪⎝⎭15.如图,A 、B 分别是射线OM ON ,上的两点,给出下列向量:①OA OB +;②1123OA OB +;③3143OA OB +; ④3145OA OB +;⑤3145OA OB -.这些向量中以O 为起点,终点在阴影区域内的是( )A .①②B .①④C .①③D .⑤16.在△ABC 中,已知D 是AB 边上一点,若=2,=+λ,则λ等于( ) A. B. C. D.17.已知O 为空间内任意一点,P 为ABC ∆所在平面内任意一点,且2OP OA OB mCO =++ 则m 的值为( )A 、 2B 、2-C 、3D 、 3-18.设向量(cos25,sin 25),(sin 20,cos20)a b =︒︒=︒︒,若c a t b =+(t ∈R ),则()2c 的最小值为( )A.2B.1C.22 D.2119.已知20()OA x OB x OC x R ⋅+⋅-=∈,其中,,A B C 三点共线,O 是线外一点,则满足条件的x ( )A .不存在B .有一个C .有两个D .以上情况均有可能 20.平面直向坐标系中,O 为坐标原点,已知两点A (3,1) B (-1,3)若点C 满足OC OA OB αβ=+,其中α β∈R 且α+β=1,则点C 的轨迹方程为 。
高中数学高考专题汇编:专题05 平面向量(理)(含答案解析)

1.【2015高考新课标1,理7】设D 为ABC ∆所在平面内一点3BC CD =,则( )(A )1433AD AB AC =-+ (B)1433AD AB AC =- (C )4133AD AB AC =+ (D)4133AD AB AC =- 【答案】A【命题立意】本题以三角形为载体考查了平面向量的加法、减法及实数与向量的积的法则与运算性质,是基础题.【解析】由题知11()33AD AC CD AC BC AC AC AB =+=+=+-==1433AB AC -+,故选A.【方法技巧】解答本题的关键是结合图形会利用向量加法将向量AD 表示为AC CD +,再用已知条件和向量减法将CD 用,AB AC 表示出来.2.【2015高考山东,理4】已知菱形ABCD 的边长为a ,60ABC ∠= ,则BD CD ⋅=( )(A )232a - (B )234a - (C ) 234a (D ) 232a【答案】D【命题立意】本题考查了平面向量的基础知识,重点考查学生对平面向量的线性运算和数量积的理解与掌握,属基础题. 【解析】因为()BD CD BD BA BA BC BA ⋅=⋅=+⋅()22223cos 602BA BC BA a a a +⋅=+=故选D.3.【2015高考陕西,理7】对任意向量,a b ,下列关系式中不恒成立的是( ) A .||||||a b a b ⋅≤ B .||||||||a b a b -≤- C .22()||a b a b +=+ D .22()()a b a b a b +-=- 【答案】B【命题立意】本题主要考查的是向量的模和向量的数量积,属于容易题.【解析】因为cos ,a b a b a b a b ⋅=≤,所以选项A 正确;当a 与b 方向相反时,a b a b -≤-不成立,所以选项B 错误;向量的平方等于向量的模的平方,所以选项C正确;()()22a ba b ab +-=-,所以选项D 正确.故选B .【易错警示】解题时一定要抓住重要字眼“不”,否则很容易出现错误.解本题需要掌握的知识点是向量的模和向量的数量积,即cos ,a b a b a b ⋅=,22a a =.4.【2015高考四川,理7】设四边形ABCD 为平行四边形,6AB =,4AD =.若点M ,N 满足3BM MC =,2DN NC =,则AM NM ⋅=( ) (A )20 (B )15 (C )9 (D )6 【答案】C【命题立意】本题考查平面向量. 【解析】311,443AM AB AD NM CM CN AD AB =+=-=-+,所以 221111(43)(43)(169)(1636916)94124848AM NM AB AD AB AD AB AD =+-=-=⨯-⨯=,选C.【名师点睛】涉及图形的向量运算问题,一般应选两个向量作为基底,选基底的原则是这两个向量有尽量多的已知元素.本题中,由于6AB =,4AD =故可选,AB AD 作为基底.5.【2015高考重庆,理6】若非零向量a ,b 满足|a |b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( ) A 、4π B 、2π C 、34π D 、π【答案】A【命题立意】本.题考查两向量的夹角,涉及到向量的模,向量的垂直,向量的数量积等知识,考查学生运算求解能力,综合运用能力.【解题思路】 由题意22()(32)320a b a b a a b b -⋅+=-⋅-=,即223cos 20a a b b θ--=,所以2320θ⨯-=,cos θ=,4πθ=,选A.6.【2015高考安徽,理8】C ∆AB 是边长为2的等边三角形,已知向量a ,b 满足2a AB =,C 2a b A =+,则下列结论正确的是( )(A )1b = (B )a b ⊥ (C )1a b ⋅= (D )()4C a b +⊥B 【答案】D【命题立意】本题考查平面向量的线性运算,平面向量的数量积. 【解析】如图,由题意,(2)2BC AC AB a b a b =-=+-=,则||2b =,故A 错误;|2|2||2a a ==,所以||1a =,又22(2)4||222c o s 602A B A C a a b a a b ⋅=⋅+=+=⨯=,所以1a b ⋅=-,故,B C 错误;设,B C 中点为D ,则2AB AC AD +=,且AD BC ⊥,而22(2)4A D a a b a b =++=+,所以()4C a b +⊥B ,故选D.【易错警示】当出现线性运算问题时,注意两个向量的差OA OB BA -=,这是一个易错点,两个向量的和2OA OB OD +=(D 点是AB 的中点).另外,要选好基底向量,如本题就要灵活使用向量,AB AC ,当涉及到向量数量积时,要记熟向量数量积的公式、坐标公式、几何意义等.7.【2015高考福建,理9】已知1,,AB AC AB AC t t⊥== ,若P 点是ABC ∆ 所在平面内一点,且4AB AC AP ABAC=+,则PB PC ⋅ 的最大值等于( )A .13B . 15C .19D .21 【答案】A【解析】以A 为坐标原点,建立平面直角坐标系,如图所示,则1(,0)B t ,(0,)C t ,1AP =(,0)+4(0,1)=(1,4),即1P(,4),所以11PB t-=(,-4),1PC -=(,t-4),因此PB PC ⋅11416t t =--+117(4)t t =-+,因为144t t +≥=,所以PB PC ⋅ 的最大值等于13,当14t t =,即12t =时取等号.【命题立意】本题考查平面向量线性运算和数量积运算.【方法技巧】通过构建直角坐标系,使得向量运算完全代数化,实现了数形的紧密结合,同时将数量积的最大值问题转化为函数的最大值问题,本题容易出错的地方是对AB AB的理解不到位,从而导致解题失败.8.【2015高考北京,理13】在ABC △中,点M ,N 满足2AM MC =,BN NC =.若MN x AB y AC =+,则x = ;y = .【答案】11,26-【命题立意】本题考查平面向量的有关知识及及向量运算,利用向量相等条件求值,本题属于基础题.【解题思路】由多边形法则知MN MA AB BN =++,又211,()322MA CA BN BC AC AB ===-,所以2111()3226MN AC AB AC AB AB AC xAB y AC =-++-=-=+,得11,26x y ==-.【方法技巧】利用坐标运算要建立适当的之间坐标系,准确写出相关点的坐标、向量的坐标,利用向量相等,列方程组,解出未知数的值.9.【2015高考湖北,理11】已知向量OA AB ⊥,||3OA =,则OA OB ∙= .【答案】9【命题立意】本题考查平面向量的加法法则,向量垂直,向量的模与数量积. 【解析】因为OA AB ⊥,||3OA =,所以OA OB ∙=93||||)(222===∙+=+∙OA OB OA OA AB OA OA . 10.【2015高考天津,理14】在等腰梯形ABCD 中,已知//,2,1,A B D C A B B C A B C==∠= ,动点E 和F 分别在线段BC 和DC 上,且,1,,9BE BC DF DC λλ== 则AE AF ⋅的最小值为 . 【答案】2918【解析】因为1,9DF DC λ=12DC AB =, 119199918CF DF DC DC DC DC AB λλλλλ--=-=-==,AE AB BE AB BCλ=+=+,19191818AF AB BC CF AB BC AB AB BC λλλλ-+=++=++=+, ()221919191181818AE AF AB BC AB BC AB BC AB BC λλλλλλλλλ+++⎛⎫⎛⎫⋅=+⋅+=+++⋅⋅ ⎪ ⎪⎝⎭⎝⎭19199421cos1201818λλλλ++=⨯++⨯⨯⨯︒2117172992181818λλ=++≥= 当且仅当2192λλ=即23λ=时AE AF ⋅的最小值为2918. BA【命题立意】本题主要考查向量的几何运算、向量的数量积与基本不等式. 考查数形结合的基本思想,考查思维能力与计算能力.11.【2015高考浙江,理15】已知12,e e 是空间单位向量,1212e e ⋅=,若空间向量b 满足1252,2b e b e ⋅=⋅=,且对于任意,x y R∈,12010200()()1(,)b xe ye b x e y e x y R -+≥-+=∈,则0x = ,0y = ,b =.【答案】1,2,22.【命题立意】本题主要考查了以平面向量模长为背景下的函数最值的求解,属于较难题。
2024全国高考真题数学汇编:平面向量及其应用章节综合

2024全国高考真题数学汇编平面向量及其应用章节综合一、单选题1.(2024全国高考真题)已知向量,a b满足1,22a a b ,且2b a b ,则b ()A .12B C .2D .12.(2024全国高考真题)已知向量(0,1),(2,)a b x ,若(4)b b a,则x ()A .2B .1C .1D .23.(2024全国高考真题)设向量 1,,,2a x x b x,则()A .“3x ”是“a b”的必要条件B .“3x ”是“//a b”的必要条件C .“0x ”是“a b”的充分条件D .“1x ”是“//a b”的充分条件4.(2024全国高考真题)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,若π3B ,294b ac ,则sin sin A C ()A .13B .13C .2D .135.(2024北京高考真题)设a ,b 是向量,则“·0a b a b”是“a b 或a b ”的().A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题6.(2024上海高考真题)已知 ,2,5,6,k a b k R ,且//a b ,则k 的值为.7.(2024天津高考真题)在边长为1的正方形ABCD 中,点E 为线段CD 的三等分点,1,2CE DE BE BA BC u u r u u r u u u r ,则;F 为线段BE 上的动点,G 为AF 中点,则AF DG的最小值为.三、解答题8.(2024天津高考真题)在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知92cos 5163a Bbc ,.(1)求a ;(2)求sin A ;(3)求 cos 2B A 的值.9.(2024全国高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 2A A .(1)求A .(2)若2asin sin 2C c B ,求ABC 的周长.10.(2024北京高考真题)在ABC 中,内角,,A B C 的对边分别为,,a b c ,A 为钝角,7a ,sin 2cos B B .(1)求A ;(2)从条件①、条件②、条件③这三个条件中选择一个作为已知,使得ABC 存在,求ABC 的面积.条件①:7b ;条件②:13cos 14B;条件③:sin c A 注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.11.(2024全国高考真题)记ABC 的内角A 、B 、C 的对边分别为a ,b ,c ,已知sin C B ,222a b c (1)求B ;(2)若ABC 的面积为3c .参考答案1.B【分析】由2b a b 得22b a b,结合1,22a a b ,得22144164a b b b ,由此即可得解.【详解】因为 2b a b ,所以20b a b ,即22b a b,又因为1,22a a b ,所以22144164a b b b ,从而2b .故选:B.2.D【分析】根据向量垂直的坐标运算可求x 的值.【详解】因为 4b b a ,所以40b b a,所以240b a b即2440x x ,故2x ,故选:D.3.C【分析】根据向量垂直和平行的坐标表示即可得到方程,解出即可.【详解】对A ,当a b 时,则0a b,所以(1)20x x x ,解得0x 或3,即必要性不成立,故A 错误;对C ,当0x 时, 1,0,0,2a b ,故0a b,所以a b,即充分性成立,故C 正确;对B ,当//a b时,则22(1)x x ,解得1x ,即必要性不成立,故B 错误;对D ,当1x 时,不满足22(1)x x ,所以//a b不成立,即充分性不立,故D 错误.故选:C.4.C【分析】利用正弦定理得1sin sin 3A C ,再利用余弦定理有22134a c ac ,由正弦定理得到22sin sin A C 的值,最后代入计算即可.【详解】因为29,34B b ac,则由正弦定理得241sin sin sin 93A C B .由余弦定理可得:22294b ac ac ac ,即:22134a c ac,根据正弦定理得221313sin sin sin sin 412A C A C ,所以2227(sin sin )sin sin 2sin sin 4A C A C A C,因为,A C 为三角形内角,则sin sin 0A C ,则sin sin A C .故选:C.5.B【分析】根据向量数量积分析可知0a b a b 等价于a b,结合充分、必要条件分析判断.【详解】因为220a b a b a b ,可得22a b ,即a b ,可知0a b a b 等价于a b ,若a b 或a b ,可得a b ,即0a b a b,可知必要性成立;若0a b a b ,即a b,无法得出a b 或a b ,例如 1,0,0,1a b,满足a b ,但a b 且a b ,可知充分性不成立;综上所述,“0a b a b”是“a b 且a b ”的必要不充分条件.故选:B.6.15【分析】根据向量平行的坐标表示得到方程,解出即可.【详解】//a b ,256k ,解得15k .故答案为:15.7.43518【分析】解法一:以,BA BC 为基底向量,根据向量的线性运算求BE,即可得 ,设BF BE k u u u r u u r ,求,AF DG u u u r u u u r ,结合数量积的运算律求AF DG 的最小值;解法二:建系标点,根据向量的坐标运算求BE,即可得 ,设 1,3,,03F a a a,求,AF DG u u u r u u u r ,结合数量积的坐标运算求AF DG 的最小值.【详解】解法一:因为12CE DE ,即13CE BA ,则13BE BC CE BA BC u u u r u u r u u u u r r u u u r ,可得1,13,所以43;由题意可知:1,0BC BA BA BC,因为F 为线段BE 上的动点,设 1,0,13BF k BE k BA k BC k,则113AF AB BF AB k BE k BA k BC,又因为G 为AF 中点,则1111112232DG DA AG BC AF k BA k BC,可得11111113232AF DG k BA k BC k BA k BC22111563112329510k k k k,又因为 0,1k ,可知:当1k 时,AF DG 取到最小值518;解法二:以B为坐标原点建立平面直角坐标系,如图所示,则 11,0,0,0,0,1,1,1,,13A B C D E,可得 11,0,0,1,,13BA BC BE,因为 ,BE BA BC 131,所以43 ;因为点F 在线段1:3,,03BE y x x 上,设 1,3,,03F a a a,且G 为AF 中点,则13,22a G a ,可得 131,3,,122a AF a a DG a,则 22132331522510a AF DG a a a,且1,03a,所以当13a 时,AF DG 取到最小值为518 ;故答案为:43;518 .8.(1)4(3)5764【分析】(1)2,3a t c t ,利用余弦定理即可得到方程,解出即可;(2)法一:求出sin B ,再利用正弦定理即可;法二:利用余弦定理求出cos A ,则得到sin A ;(3)法一:根据大边对大角确定A 为锐角,则得到cos A ,再利用二倍角公式和两角差的余弦公式即可;法二:直接利用二倍角公式和两角差的余弦公式即可.【详解】(1)设2,3a t c t ,0t ,则根据余弦定理得2222cos b a c ac B ,即229254922316t t t t ,解得2t (负舍);则4,6a c .(2)法一:因为B 为三角形内角,所以sin 16B ,再根据正弦定理得sin sin a b A B ,即4sin A sin 4A ,法二:由余弦定理得2222225643cos 22564b c a A bc ,因为 0,πA ,则sin 4A(3)法一:因为9cos 016B ,且 0,πB ,所以π0,2B,由(2)法一知sin 16B,因为a b ,则A B ,所以3cos 4A ,则3sin 22sin cos 24A A A2231cos 22cos 12148A A9157cos 2cos cos 2sin sin 216816864B A B A B A.法二:3sin 22sin cos 24A A A,则2231cos 22cos 12148A A,因为B 为三角形内角,所以sin 16B,所以 9157cos 2cos cos 2sin sin 216864B A B A B A9.(1)π6A(2)2【分析】(1)根据辅助角公式对条件sin 2A A 进行化简处理即可求解,常规方法还可利用同角三角函数的关系解方程组,亦可利用导数,向量数量积公式,万能公式解决;(2)先根据正弦定理边角互化算出B ,然后根据正弦定理算出,b c 即可得出周长.【详解】(1)方法一:常规方法(辅助角公式)由sin 2A A 可得1sin 122A A ,即sin()1π3A ,由于ππ4π(0,π)(,)333A A ,故ππ32A ,解得π6A方法二:常规方法(同角三角函数的基本关系)由sin 2A A ,又22sin cos 1A A ,消去sin A 得到:224cos 30(2cos 0A A A ,解得cos 2A,又(0,π)A ,故π6A方法三:利用极值点求解设()sin (0π)f x x x x ,则π()2sin (0π)3f x x x,显然π6x时,max ()2f x ,注意到π()sin 22sin(3f A A A A ,max ()()f x f A ,在开区间(0,π)上取到最大值,于是x A 必定是极值点,即()0cos sin f A A A ,即tan 3A ,又(0,π)A ,故π6A方法四:利用向量数量积公式(柯西不等式)设(sin ,cos )a b A A ,由题意,sin 2a b A A,根据向量的数量积公式,cos ,2cos ,a b a b a b a b,则2cos ,2cos ,1a b a b ,此时,0a b,即,a b 同向共线,根据向量共线条件,1cos sin tan A A A 又(0,π)A ,故π6A方法五:利用万能公式求解设tan 2A t,根据万能公式,22sin 21t A A t整理可得,2222(2(20((2t t t ,解得tan22A t 223tan 13t A t ,又(0,π)A ,故π6A(2)由题设条件和正弦定理sin sin 2sin 2sin sin cos C c B B C C B B ,又,(0,π)B C ,则sin sin 0B C,进而cos 2B ,得到π4B ,于是7ππ12C A B,26sin sin(π)sin()sin cos sin cos 4C A B A B A B B A,由正弦定理可得,sin sin sin a b cA B C ,即2ππ7πsin sin sin6412bc,解得b c 故ABC的周长为2 10.(1)2π3A;(2)选择①无解;选择②和③△ABC【分析】(1)利用正弦定理即可求出答案;(2)选择①,利用正弦定理得3B,结合(1)问答案即可排除;选择②,首先求出sin B 式子得3b ,再利用两角和的正弦公式即可求出sin C ,最后利用三角形面积公式即可;选择③,首先得到5c,再利用正弦定理得到sin Csin B ,最后利用三角形面积公式即可;【详解】(1)由题意得2sin cos cos B B B,因为A 为钝角,则cos 0B,则2sin B,则7sin sin sin b a BA A,解得sin A ,因为A 为钝角,则2π3A.(2)选择①7b ,则333sin 714142B,因为2π3A ,则B 为锐角,则3B ,此时πA B ,不合题意,舍弃;选择②13cos 14B ,因为B 为三角形内角,则sin B ,则代入2sin 7B得2147,解得3b , 2π2π2πsin sin sin sin cos cos sin 333C A B B B B3131335321421414,则1153153sin 7322144ABC S ab C.选择③sin c Ac 5c ,则由正弦定理得sin sin a c A C 5sin C ,解得sin C ,因为C 为三角形内角,则11cos 14C ,则 2π2π2πsin sin sin sin cos cos sin 333B A C C C C3111533321421414,则11sin 7522144ABC S ac B △11.(1)π3B (2)【分析】(1)由余弦定理、平方关系依次求出cos ,sin C C ,最后结合已知sin C B 得cos B 的值即可;(2)首先求出,,A B C ,然后由正弦定理可将,a b 均用含有c 的式子表示,结合三角形面积公式即可列方程求解.【详解】(1)由余弦定理有2222cos a b c ab C ,对比已知222a b c ,可得222cos 222a b c C ab ab,因为 0,πC ,所以sin 0C ,从而sin2C ,又因为sin C B,即1cos2B ,注意到0,πB ,所以π3B .(2)由(1)可得π3B,cos2C ,0,πC ,从而π4C ,ππ5ππ3412A ,而5πππ1sin sin sin12462A,由正弦定理有5πππsin sin sin1234a b c,从而,a b,由三角形面积公式可知,ABC的面积可表示为21113sin222228ABCS ab C c c,由已知ABC的面积为323338c所以c。
高中数学第六章平面向量及其应用必考考点训练(带答案)

高中数学第六章平面向量及其应用必考考点训练单选题1、在△ABC 中,AB =3,AC =2,∠BAC =60°,点P 是△ABC 内一点(含边界),若AP⃗⃗⃗⃗⃗ =23AB ⃗⃗⃗⃗⃗ +λAC ⃗⃗⃗⃗⃗ ,则|AP ⃗⃗⃗⃗⃗ |的最大值为( ) A .2√73B .83C .2√193D .2√133答案:D分析:以A 为原点,以AB 所在的直线为x 轴,建立坐标系,设点P 为(x,y),根据向量的坐标运算可得y =√3(x −2),当直线y =√3(x −2)与直线BC 相交时|AP⃗⃗⃗⃗⃗ |最大,问题得以解决 以A 为原点,以AB 所在的直线为x 轴,建立如图所示的坐标系, ∵AB =3,AC =2,∠BAC =60°, ∴A(0,0),B(3,0),C(1,√3),设点P 为(x,y),0⩽x ⩽3,0⩽y ⩽√3, ∵AP⃗⃗⃗⃗⃗ =23AB ⃗⃗⃗⃗⃗ +λAC ⃗⃗⃗⃗⃗ , ∴(x ,y)=23(3,0)+λ(1,√3)=(2+λ,√3λ),∴{x =2+λy =√3λ, ∴y =√3(x −2),① 直线BC 的方程为y =−√32(x −3),②,联立①②,解得{x =73y =√33, 此时|AP⃗⃗⃗⃗⃗ |最大, ∴|AP|=√499+13=2√133, 故选:D .小提示:本题考查了向量在几何中的应用,考查了向量的坐标运算,解题的关键是建立直角坐标系将几何运算转化为坐标运算,同时考查了学生的数形结合的能力,属于中档题 2、在△ABC 中,已知b 2=ac 且c =2a ,则cos B 等于( ) A .14B .C .√24D .√23答案:B分析:利用余弦定理求得cosB . b 2=ac,c =2a ,则b 2=2a 2, 由余弦定理得cosB =a 2+c 2−b 22ac=a 2+4a 2−2a 22a⋅2a=34.故选:B3、在△ABC 中,已知a =2,b =3,B =30°,则此三角形( ) A .有一解B .有两解C .无解D .无法判断有几解 答案:A分析:根据给定条件,结合正弦定理计算判断作答. 在△ABC 中,a =2,b =3,B =30°,由正弦定理得sinA =asinB b=2sin30∘3=13,而a <b ,有A <B =30∘,即A 为锐角,所以此三角形有一解. 故选:A4、已知平面向量a =(1,2),b ⃗ =(-2,m ),且a ∥b ⃗ ,则2a +3b⃗ =( ) 34A.(-4,-8)B.(-8,-16)C.(4,8)D.(8,16)答案:A分析:根据向量平行的坐标表示求出m,再根据向量线性运算得坐标表示即可求解.∵a∥b⃗,∴1×m=2×(-2),∴m=-4,∴b⃗=(-2,-4),∴2a+3b⃗=(2,4)+(-6,-12)=(-4,-8).故选:A.5、a ,b⃗为非零向量,且|a+b⃗|=|a|+|b⃗|,则()A.a //b⃗,且a与b⃗方向相同B.a ,b⃗是共线向量且方向相反C.a=b⃗D.a ,b⃗无论什么关系均可答案:A分析:根据向量加法的性质及三角形边之间的关系即可得出答案.当两个非零向量a ,b⃗不共线时,a+b⃗的方向与a ,b⃗的方向都不相同,且|a+b⃗|<|a|+|b⃗|;当两个非零向量a ,b⃗同向时,a+b⃗的方向与a ,b⃗的方向都相同,且|a+b⃗|=|a|+|b⃗|;当两个非零向量a ,b⃗反向时且|a|<|b⃗|,a+b⃗的方向与b⃗的方向相同,且|a+b⃗|=|b⃗|−|a|,所以对于非零向量a ,b⃗,且|a+b⃗|=|a|+|b⃗|,则a //b⃗,且a与b⃗方向相同.故选:A.6、在△ABC中,角A,B,C的对边分别为a,b,c,且B=π3,b=3,a=√3,则c=().A.√3B.2√3C.3−√3D.3答案:B分析:利用余弦定理可构造方程直接求得结果.在△ABC中,由余弦定理得:b2=a2+c2−2accosB=3+c2−√3c=9,即c2−√3c−6=0,解得:c=−√3(舍),∴c=2√3.故选:B.7、在△ABC中,角A,B,C的对边分别是a,b,c,若A=45°,B=60°,b=2√3,则c等于()cA .√6−√24B .√6+√24C .√6−√2D .√6+√2答案:D分析:先求出C ,再由正弦定理求解即可. 解:在△ABC 中,C =180°−45°−60°=75°. 由正弦定理可知csinC=b sinB,所以c sin75°=2√3sin60°, 故c =2√3sin75°sin60°=4sin75°=4sin(30°+45°)=4×√6+√24=√6+√2.故选:D.8、已知向量a =(2,3),b ⃗ =(3,2),则|a –b ⃗ |= A .√2B .2 C .5√2D .50 答案:A分析:本题先计算a −b ⃗ ,再根据模的概念求出|a −b ⃗ |. 由已知,a −b ⃗ =(2,3)−(3,2)=(−1,1), 所以|a −b ⃗ |=√(−1)2+12=√2, 故选A小提示:本题主要考查平面向量模长的计算,容易题,注重了基础知识、基本计算能力的考查.由于对平面向量的坐标运算存在理解错误,从而导致计算有误;也有可能在计算模的过程中出错. 多选题9、G 是△ABC 的重心,AB =2,AC =4,∠CAB =120°,P 是△ABC 所在平面内的一点,则下列结论正确的是( )A .GA⃗⃗⃗⃗⃗ +GB ⃗⃗⃗⃗⃗ +GC ⃗⃗⃗⃗⃗ =0→B .AC⃗⃗⃗⃗⃗ 在AB ⃗⃗⃗⃗⃗ 方向上的投影向量等于AB ⃗⃗⃗⃗⃗ C .GB ⃗⃗⃗⃗⃗ ⋅AG ⃗⃗⃗⃗⃗ =−43D .AP ⃗⃗⃗⃗⃗ ⋅(BP ⃗⃗⃗⃗⃗ +CP ⃗⃗⃗⃗⃗ )的最小值为-1 答案:AC分析:根据向量的线性运算结合重心的性质判断A ,根据投影向量的定义判断B ,根据向量的数量积的运算律判断C ,D.A :当点G 为△ABC 的重心时,如图所示:四边形BDCG 为平行四边形,根据重心性质可得AG⃗⃗⃗⃗⃗ =2GO ⃗⃗⃗⃗⃗ .则GA⃗⃗⃗⃗⃗ +GB ⃗⃗⃗⃗⃗ +GC ⃗⃗⃗⃗⃗ =GA ⃗⃗⃗⃗⃗ +GD ⃗⃗⃗⃗⃗ =GA ⃗⃗⃗⃗⃗ +2GO ⃗⃗⃗⃗⃗ =0→,∴A 正确, B :∵AC ⃗⃗⃗⃗⃗ 在AB ⃗⃗⃗⃗⃗ 方向上的投影为|AC ⃗⃗⃗⃗⃗ |cos120°=4×(−12)=−2, ∴AC⃗⃗⃗⃗⃗ 在AB ⃗⃗⃗⃗⃗ 方向上的投影向量为−AB ⃗⃗⃗⃗⃗ ,∴B 错误, C :∵G 是△ABC 的重心,∴GB ⃗⃗⃗⃗⃗ =−13(BA ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ )=−13(BA ⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )=13(2AB ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ ),AG ⃗⃗⃗⃗⃗ =13(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ), ∴GB ⃗⃗⃗⃗⃗ ⋅AG⃗⃗⃗⃗⃗ =19(2AB ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ )⋅(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )=19(2AB ⃗⃗⃗⃗⃗ 2+AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ 2) =19[8+2×4×(−12)−16]=−43,∴C 正确,D :当P 与G 重合时,∵AP ⃗⃗⃗⃗⃗ ⋅(BP ⃗⃗⃗⃗⃗ +CP ⃗⃗⃗⃗⃗ )=AG⃗⃗⃗⃗⃗ ⋅(BG ⃗⃗⃗⃗⃗ +CG ⃗⃗⃗⃗⃗ ) =−AG ⃗⃗⃗⃗⃗ 2=−19(AB ⃗⃗⃗⃗⃗ 2+AC ⃗⃗⃗⃗⃗ 2+2AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ )=−43,与AP ⃗⃗⃗⃗⃗ ⋅(BP ⃗⃗⃗⃗⃗ +CP⃗⃗⃗⃗⃗ )的最小值为−1矛盾 ∴D 错误, 故选:AC .10、已知向量a ,b ⃗ ,c 满足|a |=2,|b ⃗ |=1,a ⋅b ⃗ =1,|c |2−2b ⃗ ⋅c +34=0,则下列说法正确的是( )A .|c −b ⃗ |=1B .若|c |=√32,则c ⊥(c −b⃗ ) C .∀t ∈R ,有|b ⃗ +ta |≥√32D .若c =λa +(1−λ)b ⃗ ,λ∈R ,则|a −c →|的值唯一 答案:BC分析:结合已知条件,利用平面向量数量积的运算性质逐个检验即可 对于A :∵|b →|=1,|c →|2−2b →⋅c →+34=0∴|c →−b →|2=(c →−b →)2=c →2−2c →⋅b →+b →2=−34+1=14,故A 错误;对于B :∵|c →|2−2b →⋅c →+34=0,∴|c →|2=2b →⋅c →−34, 当|c →|=√32,34=2b →⋅c →−34,得b →⋅c →=34∴c →⋅(c →−b →)=c →2−b →⋅c →=34−34=0, ∴c →⊥(c →−b →),故B 正确;对于C :∵|b →+ta →|2=(b →+ta →)2=b →2+2ta →⋅b →+t 2a →2=1+2t +4t 2 =4(t +14)2+34≥34,∴|b →+ta →|≥√32恒成立,故C 正确;对于D :∵c →=λa →+(1−λ)b →,∴c →2=[λa →+(1−λ)b →]2=λ2a →2+2λ(1−λ)a →⋅b →+(1−λ)2b →2=4λ2+2λ(1−λ)+(1−λ)2=3λ2+1,b →⋅c →=b →⋅[λa →+(1−λ)b →]=λa →⋅b →+(1−λ)b →2=λ+(1−λ)=1, ∵|c →|2−2b →⋅c →+34=0,∴|c →|2−2b →⋅c →+34=3λ2+1−2+34=3λ2−14=0, ∴λ2=112,∴λ=±√36∵a →−c →=a →−(λa →+(1−λ)b →)=(1−λ)a →−(1−λ)b →,∴|a →−c →|2=[(1−λ)a →−(1−λ)b →]2=(1−λ)2a →2−2(1−λ)2a →⋅b →+(1−λ)2b →2=4(1−λ)2−2(1−λ)2+(1−λ)2=3(1−λ)2当λ=√36时,|a→−c→|2=3(1−λ)2=13−4√34=(2√3−1)24,|a→−c→|=2√3−12;当λ=−√36时,|a→−c→|2=3(1−λ)2=13−4√34=(2√3+1)24,|a→−c→|=2√3+12;故D错误;故选:BC11、甲,乙两楼相距20m,从乙楼底仰望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则下列说法正确的有()A.甲楼的高度为20√3m B.甲楼的高度为10√3mC.乙楼的高度为40√33m D.乙楼的高度为10√3m答案:AC分析:根据题意画出示意图,把有关条件正确表示,解三角形求出甲、乙两楼的高度.如图示,在Rt△ABD中,∠ABD=60°,BD=20m,∴AD=BDtan60°=20√3m,在△ABC中,设AC=BC=x,由余弦定理得:AB2=AC2+BC2−2AC BC cos∠ACB,即1600=x2+x2+x2解得:x=40√33则乙楼的高度分别为40√33m.故选:AC小提示:数学建模是高中数学六大核心素养之一,在高中数学中,应用题是常见考查形式:(1)求解应用性问题时,首先要弄清题意,分清条件和结论,抓住关键词和量,理顺数量关系,然后将文字语言转化成数学语言,建立相应的数学模型;(2)三角函数型应用题根据题意正确画图,把有关条件在图形中反映,利用三角知识是关键. 12、在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,已知cosBcosC =b2a−c , S △ABC =3√34,且b =3,则A .cosB =12B .C .a +c =√3D .a +c =3√2答案:AD分析:利用正弦定理边化角,再结合余弦定理即可求解. ∵cosBcosC =b2a−c =sinB2sinA−sinC .整理可得: sinBcosC =2sinAcosB −sinCcosB可得 sinBcosC +sinCcosB =sin(B +C)=sinA =2sinAcosB ∵A 为三角形内角, cosB =12, 故A 正确,B 错误.B ∈(0,π)∴B =π3S △ABC =3√34,b =3 ∴3√34=12acsinB =12×a ×c ×√32=√34ac 解得 ac =3,由余弦定理得 9=a 2+c 2−ac =(a +c)2−3ac =(a +c)2−9 解得a +c =3√2, 故C 错误,D 正确. 故选: AD.小提示:解三角形的基本策略:一是利用正弦定理实现“边化角”,二是利用余弦定理实现“角化边”. 13、某货轮在A 处看灯塔B 在货轮北偏东75°,距离为12√6nmile ;在A 处看灯塔C 在货轮的北偏西30°,距离cos 2B =sin 0A ≠8√3nmile .货轮由A 处向正北航行到D 处时,再看灯塔B 在南偏东60°,则下列说法正确的是( ) A .A 处与D 处之间的距离是24nmile ;B .灯塔C 与D 处之间的距离是16nmile ; C .灯塔C 在D 处的西偏南60°;D .D 在灯塔B 的北偏西30°. 答案:AC分析:根据题意作出图形,然后在△ABD 中,结合正弦定理得求出AD ,在△ACD 中,由余弦定理得CD ,然后求出相关角度,进而逐项分析即可.由题意可知∠ADB =60∘,∠BAD =75∘,∠CAD =30∘,所以∠B =180∘−60∘−75∘=45∘,AB =12√6,AC =8√3,在△ABD 中,由正弦定理得ADsin∠B=AB sin∠ADB,所以AD =12√6×√22√32=24(nmile ),故A 正确;在△ACD 中,由余弦定理得CD =√AC 2+AD 2−2AC ⋅ADcos∠CAD , 即CD =(8√3)2+242−2×8√3×24×√32=8√3(nmile ),故B 错误;因为CD =AC ,所以∠CDA =∠CAD =30∘,所以灯塔C 在D 处的西偏南60∘,故C 正确; 由∠ADB =60∘,D 在灯塔B 的北偏西60∘处,故D 错误. 故选:AC 填空题14、△ABC 内接于半径为2的圆,三个内角A ,B ,C 的平分线延长后分别交此圆于A 1,B 1,C 1.则AA 1cos A 2+BB 1cos B 2+CC 1cosC 2sinA+sinB+sinC的值为_____________.答案:4分析:连BA1,由正弦定理得AA1=2Rsin(B+A2),利用三角形内角和性质得AA1=4cos(B−C2),进而利用积化和差公式、诱导公式得AA1cos A2=2(sinC+sinB),同理求BB1cos B2、CC1cos C2,即可求值.连BA1,则AA1=2Rsin(B+A2)=4sin(A+B+C2+B2−C2)=4cos(B−C2),∴AA1cos A2=4cos(B−C2)cos A2=2(cos A+B−C2+cos A+C−B2)=2(sinC+sinB),同理可得:BB1cos B2=2(sinA+sinC),CC1cos C2=2(sinA+sinB).∴AA1cos A2+BB1cos B2+CC1cos C2=4(sinA+sinB+sinC),即AA1cosA2+BB1cos B2+CC1cos C2sinA+sinB+sinC=4.所以答案是:4小提示:关键点点睛:应用正弦定理、三角形内角和性质求得AA1=2Rsin(B+A2)=2Rcos(B−C2),再由积化和差公式、诱导公式求AA1cos A2,同理求出BB1cos B2、CC1cos C2.15、三条直线l1、l2、l3两两平行,l1到l2的距离为1,l2到l3的距离为2,等边三角形三个顶点分别在这三条直线上,则该三角形的面积为_______.答案:73√3或√3分析:分两种情况讨论:(1)l1、l3在l2的异侧;(2)l2、l3在l1的异侧.在两种情况下,设等边三角形ABC的顶点A∈l1、B∈l2、C∈l3,设等边三角形ABC的边长为a,设AB与直线l2的夹角为θ,根据已知条件建立关于a、θ的等式组,求出a的值,由此可求得等边三角形ABC的面积.分以下两种情况讨论:(1)若l1、l3在l2的异侧,设等边三角形ABC的顶点A∈l1、B∈l2、C∈l3,如下图所示:过点B作直线l2的垂线分别交直线l1、l3于点E、F,则BE=1,BF=2,设等边三角形ABC的边长为a,设AB与直线l2的夹角为θ,则π3−θ也为锐角,由{0<θ<π20<π3−θ<π2,解得0<θ<π3,由题意可得{BE=asinθ=1BF=asin(π3−θ)=20<θ<π3,解得{sinθ=√2114a=2√213,此时,该三角形的面积为S=12a2sinπ3=√34×283=7√33;(2)若l2、l3在l1的异侧,设等边三角形ABC的顶点A∈l1、B∈l2、C∈l3,如下图所示:过点A 作直线l 1的垂线分别交直线l 2、l 3于点E 、F ,则AE =AF =1, 设等边三角形ABC 的边长为a ,设AB 与直线l 2的夹角为θ,则π3−θ也为锐角,由{0<θ<π20<π3−θ<π2,解得0<θ<π3, 由题意可得{AE =asinθ=1AF =asin (π3−θ)=10<θ<π3,解得{sinθ=12a =2, 此时,该三角形的面积为S =12a 2sin π3=√34×4=√3.综上所述,该等边三角形的面积为7√33或√3. 所以答案是:7√33或√3. 小提示:关键点点睛:本题考查解三角形的实际应用,解题的关键就是选择合适的角θ,将问题中的边与相应的角用θ来边角,根据已知条件产生相等关系,结合三角函数相关知识求解.16、△ABC 的内角A,B,C 的对边分别为a,b,c .若b =6,a =2c,B =π3,则△ABC 的面积为__________. 答案:6√3分析:本题首先应用余弦定理,建立关于c 的方程,应用a,c 的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查.由余弦定理得,所以(2c)2+c 2−2×2c ×c ×12=62,即c 2=12解得c =2√3,c =−2√3(舍去) 所以a =2c =4√3,S ΔABC =12acsinB =12×4√3×2√3×√32=6√3.小提示:本题涉及正数开平方运算,易错点往往是余弦定理应用有误或是开方导致错误.解答此类问题,关键是在明确方法的基础上,准确记忆公式,细心计算. 解答题2222cos b a c ac B =+-17、如图,在△OAB 中,延长BA 到C ,使AC =BA ,在OB 上取点D ,使DB =13OB ,DC 与OA 交点为E ,设OA ⃗⃗⃗⃗⃗ =a ,OB ⃗⃗⃗⃗⃗ =b ⃗ ,用a ,b ⃗ 表示向量OC ⃗⃗⃗⃗⃗ ,DC⃗⃗⃗⃗⃗ .答案:OC ⃗⃗⃗⃗⃗ =2a −b ⃗ ,DC ⃗⃗⃗⃗⃗ =2a −53b⃗ . 分析:利用向量的加、减运算即可求解. ∵AC =BA ,∴A 是BC 的中点,∴OA ⃗⃗⃗⃗⃗ =12(OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ ),∴OC ⃗⃗⃗⃗⃗ =2OA ⃗⃗⃗⃗⃗ −OB ⃗⃗⃗⃗⃗ =2a −b⃗ . ∴DC ⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ −OD ⃗⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ −23OB ⃗⃗⃗⃗⃗ =2a −b ⃗ −23b ⃗ =2a −53b ⃗ . 18、记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为S 1,S 2,S 3,已知S 1−S 2+S 3=√32,sinB =13.(1)求△ABC 的面积; (2)若sinAsinC =√23,求b .答案:(1)√28 (2)12分析:(1)先表示出S 1,S 2,S 3,再由S 1−S 2+S 3=√32求得a 2+c 2−b 2=2,结合余弦定理及平方关系求得ac ,再由面积公式求解即可;(2)由正弦定理得b 2sin 2B =acsinAsinC ,即可求解. (1)由题意得S 1=12⋅a 2⋅√32=√34a 2,S 2=√34b 2,S 3=√34c 2,则S 1−S 2+S 3=√34a 2−√34b 2+√34c 2=√32, 即a 2+c 2−b 2=2,由余弦定理得cosB =a 2+c 2−b 22ac,整理得accosB =1,则cosB >0,又sinB =13,则cosB =√1−(13)2=2√23,ac =1cosB=3√24,则S △ABC =12acsinB =√28; (2)由正弦定理得:bsinB=a sinA=c sinC,则b 2sin 2B=a sinA⋅c sinC=acsinAsinC=3√24√23=94,则bsinB=32,b =32sinB =12.。
高一数学平面向量试题答案及解析
高一数学平面向量试题答案及解析1.已知,是平面内两个互相垂直的单位向量,若向量满足,则的最大值是;【答案】【解析】略2.已知平面向量,且∥,则()A.-3B.-9C.9D.1【答案】B【解析】由两向量平行坐标间的关系可知【考点】向量平行的性质3.(12分)已知向量,令且的周期为.(1)求函数的解析式;(2)若时,求实数的取值范围.【答案】(1)(2).【解析】(1)本题考察的是求函数解析式,本题中根据平面向量的数量积,再结合辅助角公式进行化简,又的周期为,可以求出从而求出的解析式.(2)本题考察的是求参数的取值范围问题,本题中根据所给的定义域求出的值域,再根据不等式恒成立问题即可求出参数的取值范围.试题解析:(1)∵的周期为∴(2),则【考点】(1)辅助角公式(2)三角函数的值域4.在边长为的正三角形中,设,,若,则的值为A.B.C.D.【答案】D【解析】由已知可得:D为BC中点,,又因为在边长为的正三角形中,所以,故解得,故选择D【考点】平面向量的线性运算5.若向量满足:,,,则 .【答案】【解析】【考点】向量垂直与向量的坐标运算6.设,向量,,且,∥,则______________.【答案】【解析】因为,∥,所以有即,,所以【考点】向量坐标运算7.向量a=,b=,则A.a∥bB.C.a与b的夹角为60°D.a与b的夹角为30°【答案】B【解析】根据两向量平行坐标表示公式“”可得A错误;根据两向量垂直的坐标表示公式“”可得B正确;根据B可知两向量夹角为,所以C,D错误,故选择B【考点】向量线性关系8.如图所示,D是△ABC的边AB上的中点,则向量A.B.C.D.【答案】A【解析】因为,故选择A【考点】向量的加减法运算9.设是平面上一定点,A、B、C是平面上不共线的三点,动点P满足,,则动点P的轨迹一定通过△ABC的()A.外心 B.内心 C.重心 D.垂心【答案】D【解析】,,,,则动点的轨迹一定通过的垂心.故C正确.【考点】1向量的加减法;2数量积;3向量垂直.10.已知向量则x=【答案】6【解析】由题意可得,解得.【考点】向量共线.11.(2015秋•友谊县校级期末)已知△ABC和点M满足+=﹣,若存在实数m使得m+m=成立,则m等于()A.B.2C.D.3【答案】C【解析】作出图象,由向量加法的平行四边形法则可知M是△ABC的重心,故,代入m+m=可解出m.解:以MB,MC为邻边作平行四边形MBEC,连结ME交BC于D,如图.则,∵+=﹣,∴M在线段AD上,且|MA|=2|MD|,∵D是BC中点,∴=2=3,∵m+m=,∴3m=,∴m=.故选C.【考点】平面向量的基本定理及其意义.12.已知点(1)求证:恒为锐角;(2)若四边形为菱形,求的值【答案】(1)证明见解析(2)2【解析】(1)只需证明且三点不在一条直线上即可;(2)利用菱形的定义可求得坐标,进而求出所求的值.试题解析:(1)∵点∴∴.若A,P,B三点在一条直线上,则,得到,此方程无解,∴∴∠APB恒为锐角.(2)∵四边形ABPQ为菱形,∴,即,化简得到解得设Q(a,b),∵,∴,∴【考点】平面向量数量积的运算13.如图所示,是的边上的中点,则向量= (填写正确的序号).①,②,③,④【答案】①【解析】.故选A.【考点】向量的线性运算.【名师】在向量线性运算时,要尽可能转化到平行四边形或三角形中,运用平行四边形法则、三角形法则,利用三角形中位线、相似三角形对应边成比例等平面几何的性质,把未知向量转化为与已知向量有直接关系的向量来求解.14. O为平面上的定点,A、B、C是平面上不共线的三点,若(﹣)•(+﹣2)=0,则△ABC是()A.以AB为底边的等腰三角形B.以AB为斜边的直角三角形C.以AC为底边的等腰三角形D.以AC为斜边的直角三角形【答案】C【解析】将条件式展开化简,两边同时加上,根据向量的线性运算的几何意义即可得出答案.解:∵(﹣)•(+﹣2)=0,∴+﹣2=+﹣2.即﹣2=﹣2.两边同时加,得()2=()2,即AB2=BC2.∴AB=BC.∴△ABC是以AC为底边的等腰三角形.故选:C.【考点】平面向量数量积的运算.15.已知,,,则=()A.﹣8B.﹣10C.10D.8【答案】B【解析】向量的数量积的运算和向量的模即可求出.解:,,,∴=+|+2=16+25+2=21,∴=﹣10,故选:B.【考点】平面向量数量积的运算.16.已知||=1,||=2,∠AOB=150°,点C在∠AOB的内部且∠AOC=30°,设=m+n,则=()A.B.2C.D.1【答案】B【解析】可画出图形,由可得到,根据条件进行数量积的运算便可得到,从而便可得出关于m,n的等式,从而可以求出.解:如图,由的两边分别乘以得:;∴;∴得:;∴;∴.故选:B.【考点】向量在几何中的应用.17.已知正方形的边长为2,点是边上的中点,则的值为()A.1B.2C.4D.6【答案】B【解析】以为原点,所在直线为轴建立直角坐标系,则,.【考点】向量数量积的坐标表示.18.=(2,3),=(﹣3,5),则在方向上的投影为.【答案】【解析】由已知向量的坐标求出与,代入投影公式得答案.解:∵=(2,3),=(﹣3,5),∴,,则=.故答案为:.【考点】平面向量数量积的运算.19.已知向量,满足||=1,||=2,与的夹角为120°.(1) 求及+;(2)设向量+与-的夹角为θ,求cosθ的值.【答案】(1);;(2).【解析】(1)根据向量的数量积的运算公式;以及;(2)根据公式,根据数量积公式,再根据公式试题解析:解析:(1)=||||cos 120°θ=1×2×(-)=-1,所以|+|2=(+)2=2+2+2=12+22+2×(-1)=3.所以|+|=(2)同理可求得|-|=.因为(+)(-)=2-2=12-22=-3,所以cosθ===-.所以向量+与-的夹角的余弦值为-.【考点】向量数量积20.(1)在直角坐标系中,已知三点,当为何值时,向量与共线?(2)在直角坐标系中,已知为坐标原点,,,当为何值时,向量与垂直?【答案】(1);(2).【解析】首先根据向量减法的线性运算得到向量与的坐标,当与共线时坐标交叉积的差等于零,当与垂直是数量积等于零,从而列出的方程,即可求得满足条件的的值.试题解析:(1)∵,又向量与共线,∴,解得(2),当向量与垂直时,,即,解得【考点】向量的线性运算及平行与垂直的坐标表示.21.已知a,b为非零向量,且|a+b|=|a|+|b|,则一定有()A.a=b B.a∥b,且a,b方向相同C.a=-b D.a∥b,且a,b方向相反【答案】B【解析】根据向量加法的几何意义, a,b方向相同,方向相同即是共线向量.【考点】向量加法的几何意义.22.已知向量.(1)若点三点共线,求的值;(2)若为直角三角形,且为直角,求的值.【答案】(Ⅰ)-19;(Ⅱ)1.【解析】(Ⅰ)根据向量的减法运算和向量平行的充要条件即可解得;(Ⅱ)根据向量的减法运算和向量垂直的充要条件即可解得.试题解析:解:(Ⅰ)∴,.(Ⅱ),则,∴,【考点】向量的减法运算;向量平行和垂直的充要条件.23.平面内有一个和一点,线段的中点分别为的中点分别为,设.(1)试用表示向量;(2)证明线段交于一点且互相平分.【答案】(1),,;(2)证明见解析.【解析】(1)根据向量的加法、数乘的几何意义,以及向量加法的平行四边形法则,并进行向量的数乘运算便可得到,从而同理可以用分别表示出;(2)设线段、的中点分别为,用分别表示出,从而可得,即证得线段交于一点且互相平分.试题解析:(1),.(2)证明:设线段的中点为,则,设中点分别为,同理:,,∴,即其交于一点且互相平分.【考点】1、向量的三角形法则;2、向量的线性运算.【方法点睛】本题考查向量加法、数乘的几何意义,向量加法的平行四边形法则,以及向量的数乘运算,三角形中位线的性质,平行四边形的判定,平行四边形的对角线相交于一点且互相平分,考查学生逻辑推理能力,属于中档题.另一种解法:(1);同理,;(2)证明:如图,连接,则,且,,且,∴,且,∴四边形为平行四边形,∴线段交于一点且互相平分,同理,线段交于一点且互相平分,∴线段交于一点且互相平分.24.已知是两个非零向量,当的模取最小值时.①求的值;②已知与共线且同向,求证:与垂直.【答案】①;②证明见解析.【解析】(1)设出两个向量的夹角,表示出两个向量的模长,对于模长形式,通常两边平方,得到与已知条件有关的运算,整理成平方形式,当底数为零时,结果最小;(2)本题要证明两个向量垂直,这种问题一般通过向量的数量积为零来证明,求两个向量数量积,根据上一问做出的结果,代入数量积的式子,合并同类项,得到数量积为零.得到垂直.试题解析:①令,则.当时,.②证明:与共线且同向,,,,.【考点】(1)向量的模;(2)数量积判断两个向量的垂直关系.【方法点晴】本题主要考查模长形式,通常两边平方以及证明两个向量垂直,这种问题一般通过向量的数量积为零来证明,因为在本题中主要是数学符号的运算,所以对学生的运算能力要求较高,属于难题.启发学生在理解数量积的运算特点的基础上,逐步把握数量积的运算律,引导学生注意数量积性质的相关问题的特点,以熟练地应用数量积的性质.25.已知,在方向上的投影为,则()A.3B.C.2D.【答案】B【解析】由在方向上的投影为,则,所以,故选B.【考点】向量的数量积及向量的投影的应用.26.给出下列命题:(1)若,则;(2)向量不可以比较大小;(3)若则;(4).其中真命题的个数为()A.1B.2C.3D.4【答案】B【解析】由题意得,(1)中,例如,此时,但,所以不正确;(2)中,向量是既有大小又有方向的量,所示向量不能比较大小,所以(2)是正确的;(3)中,根据相等向量的概念,可得“若则”是正确的;(4)中,由,则是成立的,但由,则与是相等向量或相反向量,所以不正确,综上所述,正确命题的个数为个,故选B.【考点】向量的基本概念.【方法点晴】本题主要考查了平面向量的基本的概念——向量的模、相等向量、向量的概念、共线向量及相反向量的概念,其中牢记平面向量的基本概念是判断此类问题的关键,试题很容易出错,属于易错题,本题的解答中,(4)中,,容易忽视相反向量的概念,造成错解,应牢记向量是既有大小又有方向的量这一基本概念,防止出错.27.已知向量,若,则=()A.B.C.D.【答案】A【解析】,.故选A.【考点】数量积的坐标运算.28.已知向量,.(1)若四边形ABCD是平行四边形,求的值;(2)若为等腰直角三角形,且为直角,求的值.【答案】(1);(2)或.【解析】(1)根据四边形为平行四边形,利用,即可求解的值;(2)利用为等腰直角三角形,且为直角,则且,列出方程,即可求解的值.试题解析:(1),,由得x=-2,y=-5.(2),若为直角,则,∴,又,∴,再由,解得或.【考点】向量的运算及向量的垂直关系的应用.29.(1)已知,,且与的夹角为60°,求的值;(2)在矩形中,,点为的中点,点在边上,若,求的值.【答案】(1);(2).【解析】(1)利用向量模的平方等于向量的平方,即可化简,即可求解的值;(2)设,利用,求得的值,又由,,即可运算的值.试题解析:(1) =169,得;(2)矩形ABCD中,∵点F在边CD上,∴设,,本小题也可建坐标系,用平面向量坐标运算解决.【考点】向量的模的计算及向量数量积的运算.30.已知三角形△ABC中,角A,B,C的对边分别为,若,则 =()A.B.C.D.【答案】C【解析】【考点】向量的坐标运算31.已知向量与的夹角为,||=2,||=3,记,(1)若,求实数k的值。
高中数学平面向量专题经典练习题(附答案)高中数学平面向量专题经典练习题(附答案)
高中数学平面向量专题经典练习题(附答案)一.单选题(共10小题,每题5分,共50分)1.设,是两个非零向量,下列说法正确的是()A.若,则B.若,则C.若,则存在实数,使得D.若存在实数,使得,则2.如图,在平行四边形中,分别是的中点,则图中所示的向量中与平行的有()A.个B.个C.个D.个3.下列说法中正确的是()A.两个有共同起点的单位向量,其终点必相同B.向量与向量的长度相等C.向量就是有向线段D.零向量是没有方向的4.数轴上点分别对应则向量的长度是()A. B. C. D.5.已知向量与的方向相反,且,若点的坐标为,则点的坐标为()A. B. C., D.6.已知为两个单位向量,则下列叙述正确的是()A.B.若,则C.或D.若,,则7.已知点,,,,则与向量同向的单位向量为()A. B. C. D.8.已知抛物线的焦点为,准线为是上一点是直线与抛物线的一个交点,若,则()A. B. C. D.9.下列结论中正确的是()若且,则;若,则且;若与方向相同且,则;若,则与方向相反且.A. B. C. D.10.已知直线经过点和点,则直线的单位方向向量为()A.,B.C.D.二.填空题(共10小题,每题5分,共50分)11.已知向量,,若与方向相反,则等于.12.若向量满足,则.13.等腰直角中,点是斜边边上一点,若,则的面积为.14.在中,,是的中点,,则,.15.在中,内角所对的边分别为则.16.在中,内角的对边分别是若则.17.在中,,是中点,,试用表示为,若,则的最大值为.18.如图,已知在矩形中设则.19.已知向量满足则.20.已知向量与的夹角为则.三.解答题(共5小题,每题10分,共50分)21.已知与的夹角为.(1)若求;(2)若与垂直,求.22.在平面直角坐标系中,以坐标原点为极点,以轴的非负半轴为极轴建立极坐标系是曲线:上任一点,点满足.设点的轨迹为曲线.(1)求曲线的直角坐标方程;(2)已知曲线向上平移个单位后得到曲线设曲线与直线:为参数)相交于两点,求的值.23.已知向量向量函数.(1)当时,求函数的最小正周期和单调递减区间;(2)若函数在区间的最大值为,求函数在的最小值.24.已知的内角满足.(1)求角;(2)若的外接圆半径为求的面积的最大值.25.在中,内角的对边分别为且.(1)求角的大小;(2)若且外接圆的半参考答案一、选择题第1题第2题故选C第3题单位向量的方向是任意的,所以当两个单位向量的起点相同时,其终点在以起点为圆心的单位圆上,终点不一定相同,所以选项A不正确;向量与向量方向相反,长度相等,所以选项B正确;向量是既有大小,又有方向的量,可以用有向线段表示,但不能说向量就是有向线段,所以选项C不正确;规定零向量的方向任意,而不是没有方向,所以选项D不正确.故选B.第4题第5题故选A 第6题故选D第7题故选A第8题故选B第9题选B第10题二、填空题第11题第12题第13题第14题第15题第16题第18题第20题三、解答题第21题第23题第24题第25题。
高中数学高考总复习平面向量的概念及线性运算习题及详解
高考总复习高中数学高考总复习平面向量的概念及线性运算习题及详解一、选择题→→→1.在四边形 ABCD 中,AB =a+ 2b,BC=- 4a-b,CD =- 5a- 3b,其中a,b不共线,则四边形 ABCD 为 ()A .梯形B.平行四边形C.菱形D.矩形[答案 ]A[解析 ]→ → →→→→由已知得 AD = AB+ BC+CD =- 8a- 2b,故 AD= 2BC,由共线向量知识知 AD∥BC ,且 |AD |= 2|BC|,故四边形 ABCD 为梯形,所以选 A.2. (文 )(2010 芜·湖十二中 )已知平面向量a= (2m+ 1,3),b= (2, m),且a∥b,则实数 m 的值等于 ()33A.2 或-2 B.232C.- 2 或2D.-7[答案 ]C[解析 ]∵ a∥b,∴(2m+1)m-6=0,∴ 2m2+ m-6= 0,∴ m=- 2 或3.2(理 )(2010 广·东湛江一中 )已知向量a= (1,2) ,b= (x,1),c=a+ 2b,d= 2a-b,且c∥d,则实数 x 的值等于 ()A .-1B.-1 2611C.6D.2[答案 ]D[解析 ]c= a+2b=(1+2x,4),d=2a- b=(2-x,3),∵ c∥d,∴(1+2x)×3-4(2-x)=0,∴x=1.2→→与 e2不共线,且点P 在线段 AB 上, |AP |PB|= 2,如图3.设 OA =e1,OB=e2,若e1→)所示,则 OP= (12e2A. e1-3321B. e1+e23312 C.3e 1+3e 221D. 3e 1- 3e 2[答案 ]C[解析 ] →→→→→→, AP = 2PB ,∴ AB = AP +PB = 3PB→ → → → 1→OP = OB + BP = OB -3AB→→ →1e 1+ 2e 2.= OB -1(OB - OA)=33 34. (2010 重·庆南开中学 )已知一正方形,其顶点依次为 A 1, A 2, A 3, A 4,在平面上任取一点 P 0,设 P 0 关于 A 1 的对称点为 P 1,P 1 关于 A 2 的对称点为 P 2,P 2 关于 A 3 的对称点为 P 3,→P 3 关于 A 4 的对称点为 P 4 ,则向量 P 0P 4等于 ()→ → A. A 1A 2B.A 1A 4 →D . 0 C .2A 1A 4[答案 ]D1[解析 ]如图,由题意知 A 2A 3 是△ P 1P 2P 3 的中位线,故 A 2A 3 綊 2P 1P 3,又正方形 A 1A 2A 3A 4中, A 1A 4 綊 A 2A 3,∴ A 1A 4 1綊 P 1P 3,2∴ A 1A 4 是△ P 0P 1 P 3 的中位线,故 →P 0P 4= P 4P 3,P 3 关于 A 4 的对称点 P 4 ,即 P 0,∴ P 0P 4=0.5. (2010 胶·州三中 )已知平面向量 a = (1,- 3), b =(4 ,- 2), λa + b 与 b 垂直,则 λ等于() A .-1 B .1C .-2D .2[答案]C[解析 ]λa +b = (λ+ 4,- 3λ- 2),∵ λa + b 与 b 垂直,∴ (λ+ 4,- 3λ- 2) ·(4,- 2)= 4(λ+ 4) - 2(- 3λ- 2)= 10λ+ 20=0,∴ λ=- 2.→ →→→6.(文 )(2010 河·北唐山 )已知 P 、A 、B 、C 是平面内四个不同的点, 且 PA+PB +PC =AC ,则()A.A、B、C 三点共线B.A、 B、 P 三点共线C.A、 C、 P 三点共线D. B、 C、 P 三点共线[答案 ]B[解析 ]→→→∵AC= PC-PA,∴原条件式变形为:→→→→PB=-2PA,∴ PB∥PA,∴ A、 B、 P 三点共线.(理 )若点 M 为△ ABC 的重心,则下列各向量中与→共线的是 () AB→→→→→→A.AB+BC +AC B.AM+ MB+ BC→→→→→C.AM+ BM +CM D. 3AM+ AC [答案 ]C[解析 ]→→→→→→→ →AB+ BC+ AC= 2AC,与 AB不共线,故排除A;AM+MB+BC→→B;如图,设 E 为 BC 的中点,则→→=AC ,与AB不共线,故排除MB+ MC=→→→→→→→→→2ME=- MA ,∴ MA+MB+ MC=0,即 AM + BM + CM = 0,与 AB共线,→→→由图可知, 3AM+ AC显然不与 AB共线.7.(2010 湖·北文 )已知→→→→→ABC和点 M 满足 MA+MB+ MC= 0.若存在实数m 使得 AB+ AC→成立,则 m= ()=mAMA . 2B. 3C.4D. 5[答案 ]B[解析 ]→→→→→→∵AB+ AC= (AM+ MB )+ (AM + MC)→→→=MB+MC+ 2AM→→→→→→由MA+MB+MC=0 得, MB+MC=AM→→→∴ AB+ AC= 3AM,故 m= 3.→→→→→+ s 的值是 () 8.已知△ ABC 中,点 D 在 BC 边上,且 CD= 2DB,CD = rAB + sAC,则 r24A. 3B.3C.- 3D. 0含详解答案[解析 ]→ → → → → → CD = AD -AC ,DB = AB - AD . →→ → → → 1 → →∴ CD =AB - DB -AC =AB - CD - AC.23 → → →∴ CD =AB - AC ,2→ 2 → 2 →∴ CD = AB - AC .3 3→→→2 , s =-2 又 CD = rAB + sAC ,∴ r =,33∴ r + s = 0.9. (文 )(2010 重·庆一中 )已知 a , b 是不共线的向量,若 → = λ1 → = a + λ2 1, λ2AB a + b , AC b (λ∈R ),则 A 、 B 、 C 三点共线的充要条件为 ()= λ=- 1 B . λ= λ= 1 A . λ1 21 2λ-1= 0D . λλ+ 1=0C .λ1 2 1 2[答案 ] C[解析 ]→ →→ →∵ A 、 B 、C 共线,∴ AB 与 AC 共线,∴存在实数λ使 AB = λAC ,即 λ1a +b = λ(a+λ2b ),∴ (λ-1 λ)a = (λλ-2 1)b ,λ1- λ= 0∵ a 与 b 不共线,∴ ,λλ2- 1= 0∴ λ1λ2= 1.→→ → , O(理 )(2010 江·西萍乡中学 )设 OA = (1 ,- 2),OB = (a ,- 1), OC = (-b,0), a>0, b>0 为坐标原点,若A 、B 、C 三点共线,则 1+2的最小值是 ()a b A . 2 B . 4 C .6D . 8[答案 ]D[解析 ]→ →λ,使 (a - 1,1)= λ(- b - 1,2),∵ A 、 B 、C 共线,∴ AB 与 AC 共线,∴存在实数∴a + b = 1,∵ a>0 ,b>0,∴ 1+2= 1+ 24a + b≥ 8,等号在 a = 1, b =1时2 2a ba b ·(2a + b)= 4+ ba42成立.10.(文 )(2010 河·北邯郸 )如图,在等腰直角三角形ABC 中,点 O 是斜边 BC 的中点,过点O 的直线分别交直线AB 、 AC 于不同的两点M 、→ → → →)N ,若 AB = mAM , AC = nAN(m>0,n>0),则 mn 的最大值为 (1C .2D . 3[答案 ] B[解析 ]以 A 为原点,线段AC 、 AB 所在直线分别为x 轴、 y 轴建立直角坐标系,设三角形 ABC 的腰长为→ → →→2,则 B(0,2), C(2,0), O(1,1) .∵ AB =mAM , AC = nAN ,2 2nx my m n∴ M 0, m ,N ,0.∴直线 MN 的方程为2 +2 = 1.∵直线 MN 过点 O(1,1),∴2 + 2n2= 1? m + n = 2.∴mn ≤m + n= 1,当且仅当 m = n = 1 时取等号,4∴ mn 的最大值为 1. (理 )(2010 山·东日照一中 )已知向量a = (x 1,y 1),b = (x 2,y 2),若 |a |= 2,|b |= 3,a ·b =- 6,则x 1+y1的值为() x2+ y 222A. 3B .- 355 C.6D .- 6[答案 ] B[解析 ]因为 |a |= 2,|b |= 3,又 a ·b =|a ||b |cos 〈 a , b 〉= 2× 3× cos 〈 a ,b 〉=- 6,可得cos 〈a , b 〉=- 1.即 a ,b 为共线向量且反向,又 |a |= 2,|b |= 3,所以有 3(x 1, y 1 )=- 2(x 2,2y 2)? x 1 =- 2 , y =- 2 ,所以 x 1+ y 1= - 3 x 2+ y 2=- 2,从而选 B.x 2 1y 22+ y 2 2+ y 2 333xx二、填空题11. (文 )(2010 北·京东城区 )已知向量 a = (1,2),b = (- 3,2),则 a ·b = ______,若 k a + b与 b 平行,则 k = ______.[答案 ] 1,0[解析 ]a ·b =1× (- 3)+ 2× 2= 1,∵ k a + b 与 b 平行,k a + b = (k - 3,2k + 2),∴ (k - 3)× 2- ( -3) ×(2k + 2)= 0,∴ k = 0.(理 )(2010 天·津南开区模拟 ) 在直角坐标系xOy 中, i ,j 分别是与 x ,y 轴正方向同向的单→ →k 的值为 ______.位向量, OB = 2i + j , OC = 3i +k j ,若△ OBC 为直角三角形,则 [答案 ]-6或-1[解析 ] → → → → →∵OB =2i +j ,OC = 3i +k j ,∴ BC = OC - OB = i + (k - 1)j ,→ → → → → → ∵△ OBC 为 Rt △,∴ OB ·OC =6+ k = 0 或 OB ·BC = 2+ k - 1= 0,或 OC ·BC = 3+ k(k - 1)=0,∴ k =- 6 或- 1.π12.(2010 温·州十校 )非零向量a = (sin θ,2),b = (cos θ,1),若 a 与 b 共线, 则 tan θ- 4含详解答案[答案 ]13[解析 ] ∵非零向量 a 、 b 共线,∴存在实数λ,使 a = λb ,即 (sin θ, 2)= λ(cos θ, 1),∴λ= 2, sin θ= 2cos θ,π tan θ- 11 .∴ tan θ= 2,∴ tan(θ-)==4 1+ tan θ 313. (2010 浙·江宁波十校 )在平行四边形→ →→1→→ABCD 中, AB = e 1,AC =e 2,NC = AC ,BM =41 → →MC ,则 MN = ________(用 e 1, e 2 表示 )2[答案 ]2 5- e 1+e 23 12[解析 ]→ 1 →1→1 e2 ,∵NC = AC = e 2,∴ CN =-44 4→ 1→→→→→→∵ BM = 2MC , BM + MC =BC =AC - AB = e 2-e 1,→2→→ → 21 21+ 5∴ MC =2- e 1),∴ MN = MC + CN =2- e 12=-23(e3(e ) -4e3e12e.→ → →14.(文 )(2010 聊·城市模拟 )已知 D 为三角形 ABC 的边 BC 的中点,点 P 满足 PA + BP + CP → →=0, AP = λPD ,则实数 λ的值为 ________.[答案 ] - 2[解析 ]如图,∵ D 是 BC 中点,将△ ABC 补成平行四边形ABQC ,则 Q 在 AD 的延长→→→→→→ → 线上,且 |AQ|= 2|AD |= 2|DP |,∵ PA +BP + CP =BA +CP = 0,∴ BA = PC ,→ → 又BA =QC ,∴ P 与 Q 重合,→ → → 又∵ AP = λPD =- 2PD ,∴ λ=- 2.(理 )(2010 金·华十校 )△ ABO 三顶点坐标为 A(1,0),B(0,2),O(0,0),P(x ,y)是坐标平面内一点,满足 → → → →→ → AP ·OA ≤0, BP ·OB ≥ 0,则 OP ·AB 的最小值为 ________.[答案 ] 3[解析 ]→ →·(1,0)= x - 1≤ 0,∵AP ·OA = (x - 1, y)∴ x ≤ 1,∴- x ≥ -1,→ →∵ BP ·OB = (x , y - 2) ·(0,2)= 2(y -2) ≥0,∴ y ≥ 2.→ →∴ OP ·AB = (x , y) ·(- 1,2)= 2y -x ≥ 3.三、解答题→ → 15.如图,在平行四边形ABCD 中, M 、N 分别为 DC 、BC 的中点,已知 AM =c ,AN =→→d ,试用 c 、d 表示 AB 、 AD .→ →→ 1 →[解析 ] 解法一: AD = AM - DM =c - 2AB ①→ → → 1 →AB = AN - BN = d - AD ②2→2由①②得 AB = 3(2d - c ),→= 2(2c - d ).AD3→ →→ 1→解法二:设 AB = a , AD = b ,因为 M 、N 分别为 CD 、 BC 的中点,所以BN = b ,DM =212a ,于是有:1 2c = b + 2aa = 3 2d - c1,解得2,d = a + 2bb = 3 2c - d→ 2→2(2c - d ).即 AB =(2d - c ), AD =33→ → →16. (2010 重·庆市南开中学 )已知向量 OA = (3,- 4), OB = (6,- 3), OC = (5- m ,- 3-m).(1)若 A , B , C 三点共线,求实数 m 的值;(2)若∠ ABC 为锐角,求实数m 的取值范围.→ → →[解析 ] (1)已知向量 OA = (3,- 4), OB =(6 ,- 3), OC = (5- m ,- (3+m)).→ → ∴ AB = (3,1), AC = (2- m,1- m),∵ A 、 B 、 C 三点共线,∴ → →AB 与 AC 共线,1 ∴ 3(1- m)= 2- m ,∴ m = 2.→ →(2)由题设知 BA = (- 3,- 1), BC = (- 1-m ,- m) ∵∠ ABC 为锐角,→ → 3m + m>0? m>- 3 ∴ BA ·BC = 3+ 4又由 (1)可知,当 m = 12时,∠ ABC = 0°故 m ∈ - 3,1 ∪ 1,+ ∞ .4 2217. (文 )(2010 安·徽江南十校联考 )在锐角△ ABC 中,已知内角 A 、B 、C 所对的边分别为 a 、 b 、 c ,向量 m = (2sin(A + C), 3), n =(cos2B,2cos2B- 1),且向量 m ,n 共线. 2(1)求角 B 的大小;(2)如果 b = 1,求△ ABC 的面积 S △ ABC 的最大值.[解析 ] (1)由向量 m ,n 共线有: 2sin( A + C)(2cos 2B- 1)= 3cos2B ,2化简得 sin2B = 3cos2B ,即 tan2B = 3,又 0<B< ππ π,所以 0<2B<π,则 2B = ,即 B = .236(2)由余弦定理 b 2= a 2+ c 2- 2accosB 知,1= a 2+ c 2- 3ac = (a + c)2- (2+ 3)ac ≥ (2- 3) ac.等号在 a = c 时成立,∴ S △ ABC =121 π 1 1 11(2+3).因此△ ABC 面积的最大值为1 acsinB = acsin =ac ≤ ×= (2+ 3)26 442-34411π(理 )(2010 河·北正定中学模拟 )已知向量 a = sinx ,-sinx ,b =(2 ,cos2x) ,其中 x ∈ 0,2 .(1)试判断向量 a 与 b 能否平行,并说明理由? (2)求函数 f(x)=a ·b 的最小值.11[解析 ](1)若 a ∥ b ,则有 sinx ·cos2x + sinx ·2= 0.π∵ x ∈ 0, 2 ,∴ cos2x =- 2,这与 |cos2x|≤ 1 矛盾,∴ a 与 b 不能平行.2 -cos2x(2)∵ f(x)= a ·b =sinx sinx= 2- cos2x = 1+ 2sin 2x = 2sinx +1 , sinx sinxsinx∵ x ∈ 0, π,∴ sinx ∈ (0,1] ,2∴ f(x)=2sinx + 1 ≥ 2 2sinx ·1= 2 2.sinxsinx高考总复习当 2sinx=1,即 sinx=2时取等号,sinx2故函数 f(x)的最小值为 2 2.含详解答案。
高考数学专题重组卷第1部分专题6平面向量 含解析
专题六 平面向量本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷 (选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2019·漳州质量监测)已知向量a,b 满足|a|=1,|b|=3,且a,b 夹角为π6,则(a +b)·(2a-b)=( )A.12 B .-32 C .-12 D.32 答案 A解析 (a +b)·(2a-b)=2a 2-b 2+a·b=2-3+1×3×32=12.故选A. 2.(2019·全国卷Ⅱ)已知AB →=(2,3),AC →=(3,t),|BC →|=1,则AB →·BC →=( ) A .-3 B .-2 C .2 D .3 答案 C解析 ∵BC →=AC →-AB →=(3,t)-(2,3)=(1,t -3),|BC →|=1,∴12+t -32=1,∴t =3,∴BC →=(1,0),∴AB →·BC →=2×1+3×0=2.故选C.3.(2019·桂林二模)已知向量AB →与AC →的夹角为60°,且|AB →|=2,|AC →|=4,若AP →=AB →+λAC →,且AP →⊥BC →,则实数λ的值为( )A.45 B .-45 C .0 D .-25 答案 C解析 ∵AP →⊥BC →,∴AP →·BC →=0,即(AB →+λAC →)·(AC →-AB →)=0,∴λAC →2+(1-λ)AB →·AC →-AB →2=0,∵AB →·AC →=2×4×cos60°=4,AB →2=4,AC →2=16,∴16λ+4(1-λ)-4=0,∴λ=0.故选C.4.(2019·潍坊二模)在等腰梯形ABCD 中,AB →=2DC →,点E 是线段BC 的中点,若AE →=λAB →+μAD →,则λ+μ=( )A.52B.54C.12D.14 答案 B解析 取AB 的中点F,连接CF,则四边形AFCD 是平行四边形,所以CF ∥AD,且CF =AD因为AE →=AB →+BE →=AB →+12BC →=AB →+12(FC →-FB →)=AB →+12⎝ ⎛⎭⎪⎫AD →-12AB →=34AB →+12AD →,∴λ=34,μ=12,λ+μ=54,故选B.5.(2019·全国卷Ⅰ)已知非零向量a,b 满足|a|=2|b|,且(a -b)⊥b,则a 与b 的夹角为( ) A.π6 B.π3 C.2π3 D.5π6 答案 B解析 由(a -b)⊥b,可得(a -b)·b=0,∴a·b=b 2. ∵|a|=2|b|,∴cos 〈a,b 〉=a·b |a|·|b|=b 22b 2=12.∵0≤〈a,b 〉≤π,∴a 与b 的夹角为π3.故选B.6.(2019·娄底模拟)已知△ABC 中,AB =2,AC =3,∠A =60°,AD ⊥BC 于D,AD →=λAB →+μAC →,则λμ=( )A .3B .6C .2 3D .3 2 答案 B解析 ∵BC →=AC →-AB →,AD →⊥BC →,∴(λAB →+μAC →)·(-AB →+AC →)=0,∴-λAB →2+μAC →2+(λ-μ)AB →·AC →=0,∴λ=6μ,∴λμ=6.故选B.7.(2019·呼和浩特质量检测)设a,b 均是非零向量,且|a|=2|b|,若关于x 的方程x 2+|a|x +a·b =0有实根,则a 与b 的夹角的取值范围为( )A.⎣⎢⎡⎦⎥⎤0,π6B.⎣⎢⎡⎦⎥⎤π3,πC.⎣⎢⎡⎦⎥⎤π3,2π3D.⎣⎢⎡⎦⎥⎤π6,π答案 B解析 ∵关于x 的方程x 2+|a|x +a·b=0有实根,∴|a|2-4a·b≥0,∴a·b≤|a|24,∴cos 〈a,b 〉=a·b |a||b|≤|a|24|a||b|=12,又0≤〈a,b 〉≤π,∴π3≤〈a,b 〉≤π.故选B.8.(2019·内江模拟)若|a|=1,|b|=2,|a +2b|=13,则a 与b 的夹角为( ) A.π6 B.π3 C.π2 D.2π3 答案 D解析 ∵|a|=1,|b|=2,|a +2b|=13, ∴(a +2b)2=a 2+4b 2+4a·b=1+16+4a·b=13,∴a·b=-1,∴cos 〈a,b 〉=a·b |a||b|=-12.又0≤〈a,b 〉≤π, ∴a,b 的夹角为2π3.故选D.9.(2019·四川一诊)在△ABC 中,AB =3,AC =2,∠BAC =120°,点D 为BC 边上一点,且BD →=2DC →,则AB →·AD →=( )A.13B.23 C .1 D .2 答案 C解析 因为AD →=AC →+CD →=AC →+13CB →=AC →+13AB →-13AC →=13AB →+23AC →,所以AB →·AD →=13AB →2+23AB →·AC →=3+23×3×2cos120°=1.故选C.10.(2019·益阳市高三期末)在△ABC 中,M 为AC 的中点,BC →=CD →,MD →=xAB →+yAC →,则x +y =( ) A .1 B.12 C.13 D.32答案 B解析 如图,∵M 为AC 中点,BC →=CD →,∴MD →=MC →+CD →=12AC →+BC →=12AC →+(AC →-AB →)=-AB →+32AC →.又MD →=xAB →+yAC →,且AB →,AC →不共线, ∴根据平面向量基本定理得,x =-1,y =32,∴x +y =12.故选B.11.(2019·大兴区第一学期期末)已知i,j,k 为共面的三个单位向量,且i ⊥j,则(i +k)·(j+k)的取值范围是( )A .[-3,3]B .[-2,2]C .[2-1,2+1]D .[1-2,1+2]答案 D解析 由i ⊥j 得i·j=0,又i,j 为单位向量,则|i +j|=i 2+j 2+2i·j=2, 则(i +k)·(j+k)=i·j+(i +j)·k+k 2=(i +j)·k+1=|i +j|cos 〈i +j,k 〉+1=2cos 〈i +j,k 〉+1, 由-1≤cos〈i +j,k 〉≤1,则(i +k)·(j+k)的取值范围是[1-2,1+2].故选D.12.(2019·武汉市二月调研)在△ABC 中,AB →·AC →=0,|AB →|=4,|BC →|=5,D 为线段BC 的中点,E 为线段BC 垂直平分线l 上任一异于D 的点,则AE →·CB →=( )A.72B.74 C .-74 D .7 答案 A 解析 如图所示,|AC →|=|BC →|2-|AB →|2=3,AE →·CB →=(AD →+DE →)·CB →=AD →·CB →+DE →·CB →=AD →·CB →=12(AB →+AC →)·(AB →-AC →)=12(AB →2-AC →2)=72.故选A.第Ⅱ卷 (非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.(2019·全国卷Ⅲ)已知a,b 为单位向量,且a·b=0,若c =2a -5b,则cos 〈a,c 〉=________. 答案 23解析 由题意,得cos 〈a,c 〉=a·2a -5b|a|·|2a-5b|=2a 2-5a·b|a|·|2a -5b|2=21×4+5=23. 14.(2019·郴州市高三第一次质检)如图所示,已知点G 是△ABC 的重心,过点G 作直线分别交AB,AC 两边于M,N 两点,且AM →=xAB →,AN →=yAC →,则3x +y 的最小值为________.答案4+233解析 ∵G 是△ABC 的重心, ∴AG →=13AC →+13AB →,又AM →=xAB →,AN →=yAC →, ∴AG →=13x AM →+13y AN →,∵M,G,N 三点共线,∴13x +13y =1,∴3x +y =(3x +y)⎝ ⎛⎭⎪⎫13x +13y =1+13+x y +y 3x ≥43+213=4+233. 15.(2019·河南省八市重点高中第二次联合测评)已 知非零向量a,b 满足|2a +b|=|a +2b|=3|a|,则a,b 的夹角为________.答案2π3解析 ∵|2a +b|=|a +2b|,∴(2a +b)2=(a +2b)2,即4a 2+4a·b+b 2=a 2+4a·b+4b 2,∴a 2=b 2,∴|a|=|b|. 又|a +2b|=3|a|,∴(a +2b)2=3a 2, ∴a 2+4a·b+4b 2=3a 2, ∴a 2+4a 2cos 〈a,b 〉+4a 2=3a 2. 又a≠0,∴1+4cos 〈a,b 〉+4=3, ∴cos 〈a,b 〉=-12.又0≤〈a,b 〉≤π,∴〈a,b 〉=2π3.16.(2019·江苏省镇江市高三期末)已知△ABC 是边长为2的等边三角形,点D,E 分别是边AB,BC 的中点,连接DE 并延长到点F,使得DE =3EF,则AF →·BC →的值为________.答案 13解析 DE =3EF,∴AF →=AE →+EF →=AE →+13DE →=AE →+16AC →=12AB →+12AC →+16AC →=12AB →+23AC →,BC →=AC →-AB →,∵△ABC 是边长为2的等边三角形, ∴AB →·AC →=2×2×12=2,∴AF →·BC →=⎝ ⎛⎭⎪⎫12AB →+23AC →·(AC →-AB →)=-16AB →·AC →-12AB →2+23AC →2=-16×2-12×4+23×4=13.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)(2019·连云港二模)已知向量a =(1,cos2x -3sin2x),b =(-1,f(x)),且a ∥b.(1)将f(x)表示成x 的函数并求f(x)的单调递增区间; (2)若f(θ)=65,π3<θ<π2,求cos2θ的值.解 (1)∵向量a =(1,cos2x -3sin2x),b =(-1,f(x)),且a ∥b,∴1×f(x)+(cos2x -3sin2x)=0,即f(x)=-cos2x +3sin2x =2sin ⎝⎛⎭⎪⎫2x -π6.令2kπ-π2≤2x-π6≤2kπ+π2,求得kπ-π6≤x≤kπ+π3,故函数f(x)的单调递增区间为⎣⎢⎡⎦⎥⎤kπ-π6,kπ+π3,k ∈Z.(2)若f(θ)=65,π3<θ<π2,即f(θ)=2sin ⎝ ⎛⎭⎪⎫2θ-π6=65,∴sin ⎝ ⎛⎭⎪⎫2θ-π6=35.∵2θ∈⎝⎛⎭⎪⎫2π3,π,2θ-π6∈⎝ ⎛⎭⎪⎫π2,5π6, ∴cos ⎝⎛⎭⎪⎫2θ-π6=-1-sin 2⎝⎛⎭⎪⎫2θ-π6=-45,∴cos2θ=cos ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫2θ-π6+π6=cos ⎝ ⎛⎭⎪⎫2θ-π6cos π6-sin ⎝ ⎛⎭⎪⎫2θ-π6sin π6=-45×32-35×12=-43+310.18.(本小题满分12分)(2019·佳木斯一中调研)已知向量a,b 满足:|a|=2,|b|=4,a·(b-a)=2.(1)求向量a 与b 的夹角;(2)若|ta -b|=22,求实数t 的值. 解 (1)设向量a 与b 的夹角为θ, ∵|a|=2,|b|=4,∴a·(b-a)=a·b-a 2=|a||b|cosθ-a 2=42cosθ-2=2, ∴cosθ=22,∵0≤θ≤π,∴θ=π4. (2)∵|ta -b|=22,∴t 2a 2-2ta·b+b 2=2t 2-8t +16=8, 即t 2-4t +4=0,解得t =2.19.(本小题满分12分)(2019·泰安模拟)如图所示,在△ABO 中,OC →=14OA →,OD →=12OB →,AD 与BC 相交于点M,设OA →=a,OB →=b.试用a 和b 表示向量OM →.解 设OM →=ma +nb,则AM →=OM →-OA →=ma +nb -a =(m -1)a +nb, AD →=OD →-OA →=12OB →-OA →=-a +12b.又∵A,M,D 三点共线,∴AM →与AD →共线. ∴存在实数t,使得AM →=tAD →, 即(m -1)a +nb =t ⎝ ⎛⎭⎪⎫-a +12b . ∴(m -1)a +nb =-ta +12tb.∴⎩⎪⎨⎪⎧m -1=-t ,n =t2,消去t 得m -1=-2n,即m +2n =1.①又∵CM →=OM →-OC →=ma +nb -14a =⎝ ⎛⎭⎪⎫m -14a +nb,CB →=OB →-OC →=b -14a =-14a +b.又∵C,M,B 三点共线,∴CM →与CB →共线. ∴存在实数t 1,使得CM →=t 1CB →,∴⎝ ⎛⎭⎪⎫m -14a +nb =t 1⎝ ⎛⎭⎪⎫-14a +b , ∴⎩⎪⎨⎪⎧m -14=-14t 1,n =t 1,消去t 1得4m +n =1.②由①②得m =17,n =37,∴OM →=17a +37b.20.(本小题满分12分)(2019·河南段考)已知a,b,c 是同一平面内的三个向量,其中a =(1,-2). (1)若|c|=25,且c ∥a,求c 的坐标;(2)若|b|=1,且a +b 与a -2b 垂直,求a 与b 的夹角θ的余弦值. 解 (1)设c =(x,y),则由c ∥a 和|c|=25,可得⎩⎪⎨⎪⎧1·y+2·x=0,x 2+y 2=20,解得⎩⎪⎨⎪⎧x =-2,y =4或⎩⎪⎨⎪⎧x =2,y =-4.∴c =(-2,4)或c =(2,-4).(2)∵a +b 与a -2b 垂直,∴(a +b)·(a-2b)=0, 即a 2-a·b-2b 2=0,∴a·b=3, ∴cosθ=a·b |a||b|=355.21.(本小题满分12分)(2019·辽宁六校协作体模拟)如图,在同一个平面内,向量OA →,OB →,OC →的模分别为1,1,2,OA →与OC →的夹角为α,且tanα=7,OB →与OC →的夹角为45°.若OC →=mOA →+nOB →(m,n ∈R),求m +n 的值.解 解法一:∵tanα=7,α∈[0,π], ∴cosα=210,sinα=7210, ∵OA →与OC →的夹角为α,∴210=OA →·OC →|OA →||OC →|,∵OC →=mOA →+nOB →,|OA →|=|OB →|=1,|OC →|=2, ∴210=m +nOA →·OB →2,① 又∵OB →与OC →的夹角为45°, ∴22=OB →·OC →|OB →||OC →|=mOA →·OB →+n 2,② 又cos ∠AOB =cos(45°+α)=cosαcos45°-sinαsin45°=210×22-7210×22=-35, ∴OA →·OB →=|OA →||OB →|cos ∠AOB =-35,将其代入①②得m -35n =15,-35m +n =1,两式相加得25m +25n =65,所以m +n =3.解法二:过点C 作CM ∥OB,CN ∥OA,分别交线段OA,OB 的延长线于点M,N, 则OM →=mOA →,ON →=nOB →, 由正弦定理,得 |OM →|sin45°=|OC →|sin 135°-α=|ON →|sinα,∵|OC →|=2,由解法一知,sinα=7210,cosα=210,∴|OM →|=2sin45°sin 135°-α=1sin45°+α=54,|ON →|=2sinαsin 135°-α=2×7210sin45°+α=74, 又OC →=mOA →+nOB →=OM →+ON →,|OA →|=|OB →|=1,∴m =54,n =74,∴m +n =3.22.(本小题满分12分)(2019·安徽淮北、宿迁一模)△ABC 的内角A,B,C 的对边分别为a,b,c,向量m =(b,a +c),n =(a -c,a -b),且满足m ∥n.(1)求角C 的大小;(2)若c =3,sinC +sin(A -B)=2sin2B,求△ABC 的面积.解 (1)因为m ∥n,所以有b(a -b)-(a -c)(a +c)=0,整理得ab =a 2+b 2-c 2,由余弦定理得cosC =a 2+b 2-c 22ab =12.又因为C ∈(0,π),所以C =π3. (2)由sinC +sin(A -B)=2sin2B,得 sin(A +B)+sin(A -B)=4sinBcosB, 整理得2cosB(sinA -2sinB)=0.当cosB =0时,因为B ∈(0,π),所以B =π2.在Rt △ABC 中,tanC =ca =3,解得a =1,此时△ABC 的面积为S =12ac =32.当sinA -2sinB =0时,由正弦定理得a =2b, 将其代入c 2=a 2+b 2-ab,得c 2=3b 2, 解得b =1.此时S =12absinC =32.综上所述,△ABC 的面积为32.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题平面向量
1.【2018年浙江卷】已知a,b,e是平面向量,e是单位向量.若非零向量a与e的夹角为,向量b满足b2−4e·b+3=0,则|a−b|的最小值是
A. −1
B. +1
C. 2
D. 2−
2.【2018年理数天津卷】如图,在平面四边形ABCD中,,,,. 若点E为边CD上的动点,则的最小值为
A. B. C. D.
3.【2018年理新课标I卷】设抛物线C:y2=4x的焦点为F,过点(–2,0)且斜率为的直线与C 交于M,N两点,则=
A. 5
B. 6
C. 7
D. 8
4.【2018年理新课标I卷】在△中,为边上的中线,为的中点,则
A. B. C. D.
5.【2018年理数全国卷II】已知向量,满足,,则
A. 4
B. 3
C. 2
D. 0
6.【2018年江苏卷】在平面直角坐标系中,A为直线上在第一象限内的点,,以AB为直径的圆C与直线l交于另一点D.若,则点A的横坐标为________.7.【2018年全国卷Ⅲ理】已知向量,,.若,则________.1.【2017课标3,理12】在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切
的圆上.若=+,则+的最大值为
A.3 B.2C.D.2
2.【2017北京,理6】设m,n为非零向量,则“存在负数,使得”是“”的(A)充分而不必要条件(B)必要而不充分条件
(C)充分必要条件(D)既不充分也不必要条件
3.【2017浙江,10】如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O,记,,,则
A.B.C.
D.
4.【2017课标1,理13】已知向量a,b的夹角为60°,|a|=2,|b|=1,则| a +2 b |= . 5.【2017浙江,15】已知向量a,b满足则的最小值是________,最大值是_______.
6.【2017江苏,12】如图,在同一个平面内,向量,,的模分别为1,1,,与的夹角为,且tan=7,与的夹角为45°.若, 则.
7.【2017天津,理13】在中,,,.若,
,且,则的值为___________.
8.【2017山东,理12】已知是互相垂直的单位向量,若与的夹角为,则实数的值是.
1.【2016高考新课标1卷】设向量a=(m,1),b=(1,2),且|a+b|2=|a|2+|b|2,则m= .
2.【2016高考山东理数】已知非零向量m,n满足4│m│=3│n│,cos<m,n>=.若n⊥(t m+n),则实数t的值为()(A)4 (B)–4 (C)(D)–
3.【2016高考新课标2理数】已知向量,且,则()(A)-8 (B)-6 (C)6 (D)8
4.【2016高考新课标3理数】已知向量,,则()
(A) (B) (C) (D)
5.【2016年高考北京理数】设,是向量,则“”是“”的()
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
6.【2016高考天津理数】已知△ABC是边长为1的等边三角形,点分别是边的中点,连接并延长到点,使得,则的值为()
(A)(B)(C)(D)
7.【2016年高考四川理数】在平面内,定点A,B,C,D满足==,=
==-2,动点P,M满足=1,=,则的最大值是( )
(A)(B)(C)(D)
8. 【2016高考江苏卷】如图,在中,是的中点,是上的两个三等分点,
,,则的值是 .
9.【2016高考浙江理数】已知向量a、b, |a|=1,|b|=2,若对任意单位向量e,均有|a·e|+|b·e|,则a·b的最大值是.
9.【2017江苏,16】已知向量
(1)若a∥b,求x的值;
(2)记,求的最大值和最小值以及对应的的值.。