浙江省义乌、金华、丽水市2021年中考数学模拟试卷附解析附解析2
浙江省金华市金东区2021-2022学年中考数学押题试卷含解析

2021-2022中考数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.有一圆形苗圃如图1所示,中间有两条交叉过道AB ,CD ,它们为苗圃O 的直径,且AB ⊥CD .入口K 位于AD 中点,园丁在苗圃圆周或两条交叉过道上匀速行进.设该园丁行进的时间为x ,与入口K 的距离为y ,表示y 与x 的函数关系的图象大致如图2所示,则该园丁行进的路线可能是( )A .A→O→DB .C→A→O→ BC .D→O→CD .O→D→B→C2.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与111A B C ∆相似的是( )A .B .C .D .3.如图,Rt AOB 中,AB OB ⊥,且AB OB 3==,设直线x t =截此三角形所得阴影部分的面积为S ,则S 与t 之间的函数关系的图象为下列选项中的( )A.B.C.D.4.下列实数中,结果最大的是()A.|﹣3| B.﹣(﹣π)C.7D.35.下列说法正确的是()A.一个游戏的中奖概率是则做10次这样的游戏一定会中奖B.为了解全国中学生的心理健康情况,应该采用普查的方式C.一组数据8 , 8 , 7 , 10 , 6 , 8 , 9 的众数和中位数都是8D.若甲组数据的方差S=" 0.01" ,乙组数据的方差s=0 .1 ,则乙组数据比甲组数据稳定6.《语文课程标准》规定:7﹣9年级学生,要求学会制订自己的阅读计划,广泛阅读各种类型的读物,课外阅读总量不少于260万字,每学年阅读两三部名著.那么260万用科学记数法可表示为()A.26×105B.2.6×102C.2.6×106D.260×1047.下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有()个.A.4 B.3 C.2 D.18.下列说法中,正确的是( )A.两个全等三角形,一定是轴对称的B.两个轴对称的三角形,一定是全等的C.三角形的一条中线把三角形分成以中线为轴对称的两个图形D.三角形的一条高把三角形分成以高线为轴对称的两个图形9.如图,直线m∥n,∠1=70°,∠2=30°,则∠A等于()A.30°B.35°C.40°D.50°10.数轴上分别有A、B、C三个点,对应的实数分别为a、b、c且满足,|a|>|c|,b•c<0,则原点的位置()A.点A的左侧B.点A点B之间C.点B点C之间D.点C的右侧二、填空题(共7小题,每小题3分,满分21分)11.如图,△ABC中,AB=6,AC=4,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为_____.12.已知关于x,y的二元一次方程组2321x y kx y+=⎧⎨+=-⎩的解互为相反数,则k的值是_________.13.大型纪录片《厉害了,我的国》上映25天,累计票房约为402700000元,成为中国纪录电影票房冠军.402700000用科学记数法表示是________.14.若一段弧的半径为24,所对圆心角为60°,则这段弧长为____.15.如图,在平面直角坐标系中,点P的坐标为(0,4),直线y=34x-3与x轴、y轴分别交于点A、B,点M是直线AB上的一个动点,则PM的最小值为________.16.某中学数学教研组有25名教师,将他们分成三组,在38~45(岁)组内有8名教师,那么这个小组的频率是_______。
2023年浙江省丽水市中考数学试题附解析

2023年浙江省丽水市中考数学试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.有左、中、右三个抽屉,左边的抽屉里放有 2个白球,中间和右边的抽屉里各放一个红球和一个白球,从三个抽屉里任选一个球是红球的概率是( )A .14B .13C .16D .252.若△ABC ∽△DEF ,△ABC 与△DEF 的相似比为2︰3,则S △ABC ︰S △DEF 为( )A .2∶3B .4∶9C .2∶3D .3∶23.如图,在等边△ABC 中,P 为BC 上一点,D 为AC 上一点,且∠APD=60°,BP=1,CD=32,则△ABC 的边长为( ) A .3B .4C .5D .6 4.如图,△ABC 中,D 是AB 上一点,已知 AD=4,BD=5.AC 是AD 与 AB 的比例中项,则AC=( )A .25B .6C .20D .365.在平面直角坐标系中,如果抛物线y =2x 2不动..,而把x 轴、y 轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是( )A .y =2(x -2)2 + 2B .y =2(x + 2)2-2C .y =2(x -2)2-2D .y =2(x + 2)2 + 2 6.已知二次函数21y ax bx =++的大致图象如图所示,那么函数y ax b =+的图象不经过( )A .一象限B .二象限C .三象限D .四象限7.已知四边形ABCD 中,AC 交BD 于点O,如果只给条件“AB ∥CD ”,那么还不能判定四边形 ABCD 为平行四边形,给出以下四种说法:(1)如果再加上条件“BC=AD ”,那么四边形ABCD 一定是平行四边形(2)如果再加上条件“∠BAD=∠BCD ”,那么四边形ABCD 一定是平行四边形(3)如果再加上条件“AO=OC ”,那么四边形ABCD 一定是平行四边形(4)如果再加上条件“∠DBA=∠CAB ”,那么四边形ABCD 一定是平行四边形其中正确的说法是()A.(1)(2)B.(1)(3)(4)C.(2)(3)D.(2)(3)(4)8.以下各几何体中,不是多面体的是()A.八圆锥B.棱锥C.三棱锥D.四棱柱9.在同一平面内,作已知直线l的平行线,且到l的距离为7 cm,这样的平行线最多可以作()A.1 条B.2 条C.3 条D.无数条10.如图所示,在4×4的正方形网格中,∠1,∠2,∠3的大小关系是()A.∠1>∠2>∠3 B.∠l<∠2=∠3 C.∠1=∠2>∠3 D.∠1=∠2=∠311.下列各式中,能用平方差公式分解因式的是()A.x2+4y2B.x2-2y+1 C.-x2+4y2D.-x2-4y212.将如图所示的两个三角形适当平移,可组成平行四边形的个数为()A.1个B.2个C.3个D.4个二、填空题13.如图,△ABC 内接于⊙O,∠C=30°,AB=2,则⊙O 的半径为.14.当 m 时,关于x的方程2m x x m-++=是一元二次方程.(2)53015.长方形的面积是24,其中一边长是23,则另一边长是.16.已知一次函数y=kx+5的图象经过点(-l,2),则k= .17.命题“有三边对应相等的两个三角形全等”的题设是,结论是.18.甲种糖果每千克l0元,乙种糖果每千克8元,现把甲、乙两种糖果混合制成什锦糖,若要使什锦糖的单价为每千克9元,则100元的甲种糖果应与元的乙种糖果混合.19.如图所示.(1)图中共有个三角形,分别是;(2)∠CDB是的内角,是的外角;(3)在AACD中,∠A是边和的夹角,边AC是的对边.20.如图,三条直线AB、CD、EF都相交于同一点0,若∠AOE=2∠AOC,∠COF=32∠AOE.则∠DOE的度数是.21.某校七年级(2)班期末数学考试成绩的条形统计图如图所示,根据统计图回答下列问题:(1)全班共有人,成绩为的学生最多;(2)成绩在中等以下的学生占全班人数的百分比是 (精确到0.1%).三、解答题22.如图,严亮家养了一只狗看院子,平时狗拴在门柱上,铁链lm长,试画出狗的活动区域.23.阅读材料:为解方程(x2-1)2-5(x2-1)+4=0,我们可以将x2-1视为一个整体,然后设x2-l=y,则(x2-1)2=y2,原方程化为y2-5y+4=0.①解得y1=1,y2=4当y=1时,x2-1=1.∴x2=2.∴x=±2;当y=4时,x2-1=4,∴x2=5,∴x=±5。
浙江省丽水市第四中学2022年中考数学适应性模拟试题含解析

2021-2022中考数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,“赵爽弦图”是由四个全等的直角三角形与中间一个小正方形拼成的一个大正方形,大正方形与小正方形的边长之比是2∶1,若随机在大正方形及其内部区域投针,则针孔扎到小正方形(阴影部分)的概率是()A.0.2 B.0.25 C.0.4 D.0.52.已知A(x1,y1),B(x2,y2)是反比例函数y=(k≠0)图象上的两个点,当x1<x2<0时,y1>y2,那么一次函数y=kx -k的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限3.如图给定的是纸盒的外表面,下面能由它折叠而成的是()A.B.C.D.4.如图,这是由5个大小相同的整体搭成的几何体,该几何体的左视图是()A.B.C.D.5.如图,矩形ABCD中,E为DC的中点,AD:AB32,CP:BP=1:2,连接EP并延长,交AB的延长线于点F ,AP 、BE 相交于点O .下列结论:①EP 平分∠CEB ;②2BF =PB•EF ;③PF•EF =22AD ;④EF•EP =4AO•PO .其中正确的是( )A .①②③B .①②④C .①③④D .③④6.为了解某校初三学生的体重情况,从中随机抽取了80名初三学生的体重进行统计分析,在此问题中,样本是指( )A .80B .被抽取的80名初三学生C .被抽取的80名初三学生的体重D .该校初三学生的体重7.在Rt ABC ∆中,90︒∠=C ,2AC =,下列结论中,正确的是( )A .2sin AB A =B .2cos AB A =C .2tan BC A =D .2cot BC A =8.抚顺市中小学机器人科技大赛中,有7名学生参加决赛,他们决赛的成绩各不相同,其中一名参赛选手想知道自己能否进入前4名,他除了知道自己成绩外还要知道这7名学生成绩的( )A .中位数B .众数C .平均数D .方差9.近两年,中国倡导的“一带一路”为沿线国家创造了约180000个就业岗位,将180000用科学记数法表示为( )A .1.8×105B .1.8×104C .0.18×106D .18×10410.分式2231x x x +--的值为0,则x 的取值为( ) A .x=-3 B .x=3 C .x=-3或x=1 D .x=3或x=-1二、填空题(共7小题,每小题3分,满分21分)11.函数y=12x -的定义域是________. 12.如图,正方形ABCD 的边长为6,E ,F 是对角线BD 上的两个动点,且EF =12x x ,连接CE ,CF ,则△CEF 周长的最小值为_____.13.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是_____.14.如图,一根直立于水平地面的木杆AB在灯光下形成影子AC(AC>AB),当木杆绕点A按逆时针方向旋转,直至到达地面时,影子的长度发生变化.已知AE=5m,在旋转过程中,影长的最大值为5m,最小值3m,且影长最大时,木杆与光线垂直,则路灯EF的高度为_____ m.15.如图,正方形ABCD的边长为3,点E,F分别在边BCCD上,BE=CF=1,小球P从点E出发沿直线向点F 运动,完成第1次与边的碰撞,每当碰到正方形的边时反弹,反弹时反射角等于入射角,则小球P与正方形的边第2次碰撞到__边上,小球P与正方形的边完成第5次碰撞所经过的路程为__.16.不透明袋子中装有5个红色球和3个蓝色球,这些球除了颜色外没有其他差别.从袋子中随机摸出一个球,摸出蓝色球的概率为_______.17.可燃冰是一种新型能源,它的密度很小,31cm可燃冰的质量仅为0.00092kg.数字0.00092用科学记数法表示是__________.三、解答题(共7小题,满分69分)18.(10分)如图,在▱ABCD中,AB=4,AD=5,tanA=43,点P从点A出发,沿折线AB﹣BC以每秒1个单位长度的速度向中点C运动,过点P作PQ⊥AB,交折线AD﹣DC于点Q,将线段PQ绕点P顺时针旋转90°,得到线段PR,连接QR.设△PQR与▱ABCD重叠部分图形的面积为S(平方单位),点P运动的时间为t(秒).(1)当点R与点B重合时,求t的值;(2)当点P在BC边上运动时,求线段PQ的长(用含有t的代数式表示);(3)当点R落在▱ABCD的外部时,求S与t的函数关系式;(4)直接写出点P运动过程中,△PCD是等腰三角形时所有的t值.19.(5分)如图,某人站在楼顶观测对面的笔直的旗杆AB,已知观测点C到旗杆的距离CE=83m,测得旗杆的顶部A的仰角∠ECA=30°,旗杆底部B的俯角∠ECB=45°,求旗杆AB的髙.20.(8分)已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果∠BDC=30°,DE=2,EC=3,求CD的长.21.(10分)甲班有45人,乙班有39人.现在需要从甲、乙班各抽调一些同学去参加歌咏比赛.如果从甲班抽调的人数比乙班多1人,那么甲班剩余人数恰好是乙班剩余人数的2倍.请问从甲、乙两班各抽调了多少参加歌咏比赛?22.(10分)顶点为D的抛物线y=﹣x2+bx+c交x轴于A、B(3,0),交y轴于点C,直线y=﹣x+m经过点C,交x轴于E(4,0).求出抛物线的解析式;如图1,点M为线段BD上不与B、D重合的一个动点,过点M作x轴的垂线,垂足为N,设点M的横坐标为x,四边形OCMN的面积为S,求S与x之间的函数关系式,并求S的最大值;点P为x轴的正半轴上一个动点,过P作x轴的垂线,交直线y=﹣34x+m于G,交抛物线于H,连接CH,将△CGH沿CH翻折,若点G的对应点F恰好落在y轴上时,请直接写出点P的坐标.23.(12分)某学校为了解学生的课余活动情况,抽样调查了部分学生,将所得数据处理后,制成折线统计图(部分)和扇形统计图(部分)如图:(1)在这次研究中,一共调查了学生,并请补全折线统计图;(2)该校共有2200名学生,估计该校爱好阅读和爱好体育的学生一共有多少人?24.(14分)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】设大正方形边长为2,则小正方形边长为1,所以大正方形面积为4,小正方形面积为1,则针孔扎到小正方形(阴影部分)的概率是0.1.【详解】解:设大正方形边长为2,则小正方形边长为1,因为面积比是相似比的平方,所以大正方形面积为4,小正方形面积为1,则针孔扎到小正方形(阴影部分)的概率是10.25 4=;故选:B.【点睛】本题考查了概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率()mP An=.2、B【解析】试题分析:当x1<x2<0时,y1>y2,可判定k>0,所以﹣k<0,即可判定一次函数y=kx﹣k的图象经过第一、三、四象限,所以不经过第二象限,故答案选B.考点:反比例函数图象上点的坐标特征;一次函数图象与系数的关系.3、B【解析】将A、B、C、D分别展开,能和原图相对应的即为正确答案:【详解】A、展开得到,不能和原图相对应,故本选项错误;B、展开得到,能和原图相对,故本选项正确;C、展开得到,不能和原图相对应,故本选项错误;D、展开得到,不能和原图相对应,故本选项错误.故选B.4、A【解析】观察所给的几何体,根据三视图的定义即可解答.【详解】左视图有2列,每列小正方形数目分别为2,1.故选A.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.5、B【解析】由条件设3,AB=2x,就可以表示出3,BP=33x,用三角函数值可以求出∠EBC的度数和∠CEP的度数,则∠CEP=∠BEP,运用勾股定理及三角函数值就可以求出就可以求出BF、EF的值,从而可以求出结论.【详解】解:设3,AB=2x∵四边形ABCD是矩形∴AD=BC,CD=AB,∠D=∠C=∠ABC=90°.DC∥AB∴3x,CD=2x∵CP:BP=1:2∴3,23∵E为DC的中点,∴CE=12CD=x,∴tan∠CEP=PCEC3tan∠EBC=ECBC3∴∠CEP=30°,∠EBC=30°∴∠CEB=60°∴∠PEB=30°∴∠CEP=∠PEB∴EP平分∠CEB,故①正确;∵DC∥AB,∴∠CEP=∠F=30°,∴∠F=∠EBP=30°,∠F=∠BEF=30°,∴△EBP∽△EFB,∴BE BP EF BF∴BE·BF=EF·BP∵∠F=∠BEF,∴BE=BF∴2BF=PB·EF,故②正确∵∠F=30°,∴PF=2PB=433x,过点E作EG⊥AF于G,∴∠EGF=90°,∴3∴PF·43322AD2=2×3x)2=6x2,∴PF·EF≠2AD2,故③错误. 在Rt△ECP中,∵∠CEP=30°,∴x∵tan ∠PAB=PB AB =3 ∴∠PAB=30°∴∠APB=60°∴∠AOB=90°在Rt △AOB 和Rt △POB 中,由勾股定理得,x ,∴4AO·2又EF·x=4x 2 ∴EF·EP=4AO·PO .故④正确.故选,B【点睛】本题考查了矩形的性质的运用,相似三角形的判定及性质的运用,特殊角的正切值的运用,勾股定理的运用及直角三角形的性质的运用,解答时根据比例关系设出未知数表示出线段的长度是关键.6、C【解析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】样本是被抽取的80名初三学生的体重,故选C .【点睛】此题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位. 7、C【解析】直接利用锐角三角函数关系分别计算得出答案.【详解】∵90︒∠=C ,2AC =, ∴2cos AC A AB AB==, ∴2cos AB A =, 故选项A ,B 错误,∵tan 2BC BC A AC ==, ∴2tan BC A =,故选项C 正确;选项D 错误.故选C .【点睛】此题主要考查了锐角三角函数关系,熟练掌握锐角三角函数关系是解题关键.8、A【解析】7人成绩的中位数是第4名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有7个人,且他们的分数互不相同,第4的成绩是中位数,要判断是否进入前4名,故应知道中位数的多少,故选A .【点睛】本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义,熟练掌握相关的定义是解题的关键. 9、A【解析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】180000=1.8×105,故选A.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10、A【解析】分式的值为2的条件是:(2)分子等于2;(2)分母不为2.两个条件需同时具备,缺一不可.据此可以解答本题.【详解】∵原式的值为2,∴2230 {10x xx+--≠=,∴(x-2)(x+3)=2,即x=2或x=-3;又∵|x|-2≠2,即x≠±2.∴x=-3.故选:A.【点睛】此题考查的是对分式的值为2的条件的理解,该类型的题易忽略分母不为2这个条件.二、填空题(共7小题,每小题3分,满分21分)11、2x≠【解析】分析:根据分式有意义的条件是分母不为0,即可求解.详解:由题意得:x-2≠0,即x2≠.故答案为x2≠点睛:本题考查了使函数有意义的自变量的取值范围的确定.函数是整式型,自变量去全体实数;函数是分式型,自变量是使分母不为0 的实数;根式型的函数的自变量去根号下的式子大于或等于0的实数;当函数关系式表示实际问题时,自变量不仅要使函数关系式有意义,还要使实际问题有意义.12、【解析】如图作CH∥BD,使得CH=EF=22,连接AH交BD由F,则△CEF的周长最小.【详解】如图作CH∥BD,使得CH=EF=22,连接AH交BD由F,则△CEF的周长最小.∵CH=EF,CH∥EF,∴四边形EFHC是平行四边形,∴EC=FH,∵FA=FC,∴EC+CF=FH+AF=AH,∵四边形ABCD是正方形,∴AC⊥BD,∵CH∥DB,∴AC⊥CH,∴∠ACH=90°,在Rt△ACH中,AH=22AC CH=45,∴△EFC的周长的最小值=22+45,故答案为:22+45.【点睛】本题考查轴对称﹣最短问题,正方形的性质、勾股定理、平行四边形的判定和性质等知识,解题的关键是学会利用轴对称解决最短问题.13、5 13【解析】如图,有5种不同取法;故概率为513.14、7.5【解析】试题解析:当旋转到达地面时,为最短影长,等于AB,∵最小值3m,∴AB=3m,∵影长最大时,木杆与光线垂直,即AC=5m,∴BC=4,又可得△CAB∽△CFE,∴BC AB EC EF=,∵AE=5m,∴4310EF=,解得:EF=7.5m.故答案为7.5.点睛:相似三角形的性质:相似三角形的对应边成比例.15、AB,115【解析】根据已知中的点E,F的位置,可知入射角的正切值为12,通过相似三角形,来确定反射后的点的位置.再由勾股定理就可以求出小球第5次碰撞所经过路程的总长度.根据已知中的点E,F 的位置,可知入射角的正切值为12,第一次碰撞点为F ,在反射的过程中,根据入射角等于反射角及平行关系的三角形的相似可得, 第二次碰撞点为G ,在AB 上,且AG=16AB , 第三次碰撞点为H,在AD 上,且AH=13AD , 第四次碰撞点为M,在DC 上,且DM=13DC , 第五次碰撞点为N,在AB 上,且BN=16AB , 第六次回到E 点,BE=13BC. 由勾股定理可以得出EF=5,FG=32 5,GH=12 5,HM=5,MN=32 5,NE=125,故小球第5次经过的路程为:5+32 5+12 5+5+32 5=1125, 故答案为AB , 112 5. 【点睛】本题考查了正方形与轴对称的性质,解题的关键是熟练的掌握正方形与轴对称的性质.16、38【解析】分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值即其发生的概率.详解:由于共有8个球,其中篮球有5个,则从袋子中摸出一个球,摸出蓝球的概率是38 ,故答案是38. 点睛:此题主要考查了概率的求法,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件 A 出现m 种结果,那么事件A 的概率P (A )=m n . 17、9.2×10﹣1. 【解析】根据科学记数法的正确表示为()10110n a a ⨯≤<,由题意可得0.00092用科学记数法表示是9.2×10﹣1.根据科学记数法的正确表示形式可得:0.00092用科学记数法表示是9.2×10﹣1.故答案为: 9.2×10﹣1.【点睛】本题主要考查科学记数法的正确表现形式,解决本题的关键是要熟练掌握科学记数法的正确表现形式.三、解答题(共7小题,满分69分)18、(1)127;(2)45(9﹣t);(3)①S =﹣23t2+163t﹣327;②S=﹣27t2+1.③S=24175(9﹣t)2;(3)3或215或4或173.【解析】(1)根据题意点R与点B重合时t+43t=3,即可求出t的值;(2)根据题意运用t表示出PQ即可;(3)当点R落在□ABCD的外部时可得出t的取值范围,再根据等量关系列出函数关系式;(3)根据等腰三角形的性质即可得出结论.【详解】解:(1)∵将线段PQ绕点P顺时针旋转90°,得到线段PR,∴PQ=PR,∠QPR=90°,∴△QPR为等腰直角三角形.当运动时间为t秒时,AP=t,PQ=PQ=AP•t anA=43t.∵点R与点B重合,∴AP+PR=t+43t=AB=3,解得:t=127.(2)当点P在BC边上时,3≤t≤9,CP=9﹣t,∵tanA=43,∴tanC=43,sinC=45,∴PQ=CP•sin C=45(9﹣t).(3)①如图1中,当127<t≤3时,重叠部分是四边形PQKB.作KM⊥AR于M.∵△KBR∽△QAR,∴KMQP=BRAR,∴KM4t3=74373tt,∴KM=47(73t﹣3)=43t﹣167,∴S=S△PQR﹣S△KBR=12×(43t)2﹣12×(73t﹣3)(43t﹣167)=﹣23t2+163t﹣327.②如图2中,当3<t≤3时,重叠部分是四边形PQKB.S=S△PQR﹣S△KBR=12×3×3﹣12×t×47t=﹣27t2+1.③如图3中,当3<t<9时,重叠部分是△PQK.S=47•S △PQC =47×12×35(9﹣t )•45(9﹣t )=24175(9﹣t )2. (3)如图3中,①当DC=DP 1=3时,易知AP 1=3,t=3.②当DC=DP 2时,CP 2=2•CD•324=55, ∴BP 2=15, ∴t=3+121=55. ③当CD=CP 3时,t=4.④当CP 3=DP 3时,CP 3=2÷310=53, ∴t=9﹣103=173. 综上所述,满足条件的t 的值为3或215或4或173. 【点睛】本题考查四边形综合题、动点问题、平行四边形的性质、多边形的面积、等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想解决问题,学会利用参数构建方程解决问题,属于中考压轴题.19、 3.【解析】利用∠ECA 的正切值可求得AE ;利用∠ECB 的正切值可求得BE ,由AB=AE+BE 可得答案.【详解】在Rt△EBC中,有BE=EC×tan45°=83m,在Rt△AEC中,有AE=EC×tan30°=8m,∴AB=83+8(m).【点睛】本题考查了解直角三角形的应用-俯角、仰角问题,要求学生能借助其关系构造直角三角形并解直角三角形..20、(1)证明见解析;(2)CD的长为223【解析】(1)首先证得△ADE≌△CDE,由全等三角形的性质可得∠ADE=∠CDE,由AD∥BC可得∠ADE=∠CBD,易得∠CDB=∠CBD,可得BC=CD,易得AD=BC,利用平行线的判定定理可得四边形ABCD为平行四边形,由AD=CD 可得四边形ABCD是菱形;(2)作EF⊥CD于F,在Rt△DEF中,根据30°的性质和勾股定理可求出EF和DF的长,在Rt△CEF中,根据勾股定理可求出CF的长,从而可求CD的长.【详解】证明:(1)在△ADE与△CDE中,,∴△ADE≌△CDE(SSS),∴∠ADE=∠CDE,∵AD∥BC,∴∠ADE=∠CBD,∴∠CDE=∠CBD,∴BC=CD,∵AD=CD,∴BC=AD,∴四边形ABCD为平行四边形,∵AD=CD,∴四边形ABCD是菱形;(2)作EF⊥CD于F.∵∠BDC=30°,DE=2,∴EF=1,DF=,∵CE=3,∴CF=2,∴CD=2+..【点睛】本题考查了全等三角形的判定与性质,平行线的性质,菱形的判定,含30°的直角三角形的性质,勾股定理.证明AD=BC 是解(1)的关键,作EF⊥CD于F,构造直角三角形是解(2)的关键.21、从甲班抽调了35人,从乙班抽调了1人【解析】分析:首先设从甲班抽调了x人,那么从乙班抽调了(x﹣1)人,根据题意列出一元一次方程,从而得出答案.详解:设从甲班抽调了x人,那么从乙班抽调了(x﹣1)人,由题意得,45﹣x=2[39﹣(x﹣1)],解得:x=35,则x﹣1=35﹣1=1.答:从甲班抽调了35人,从乙班抽调了1人.点睛:本题主要考查的是一元一次方程的应用,属于基础题型.理解题目的含义,找出等量关系是解题的关键.22、(1)y=﹣x2+2x+3;(2)S=﹣(x﹣94)2+8116;当x=94时,S有最大值,最大值为8116;(3)存在,点P的坐标为(4,0)或(32,0).【解析】(1)将点E代入直线解析式中,可求出点C的坐标,将点C、B代入抛物线解析式中,可求出抛物线解析式.(2)将抛物线解析式配成顶点式,可求出点D的坐标,设直线BD的解析式,代入点B、D,可求出直线BD的解析式,则MN可表示,则S可表示.(3)设点P的坐标,则点G的坐标可表示,点H的坐标可表示,HG长度可表示,利用翻折推出CG=HG,列等式求解即可.【详解】(1)将点E代入直线解析式中,0=﹣34×4+m,解得m =3,∴解析式为y =﹣34x+3, ∴C(0,3),∵B(3,0), 则有3093c b c =⎧⎨=-++⎩, 解得23b c =⎧⎨=⎩, ∴抛物线的解析式为:y =﹣x 2+2x+3; (2)∵y =﹣x 2+2x+3=﹣(x ﹣1)2+4, ∴D(1,4),设直线BD 的解析式为y =kx+b ,代入点B 、D , 304k b k b +=⎧⎨+=⎩, 解得26k b =-⎧⎨=⎩, ∴直线BD 的解析式为y =﹣2x+6,则点M 的坐标为(x ,﹣2x+6),∴S =(3+6﹣2x)•x•12=﹣(x ﹣94)2+8116, ∴当x =94时,S 有最大值,最大值为8116. (3)存在,如图所示,设点P 的坐标为(t ,0),则点G(t ,﹣34t+3),H(t ,﹣t 2+2t+3), ∴HG =|﹣t 2+2t+3﹣(﹣34t+3)|=|t 2﹣114t| CG 223(33)4t t +-+-54t , ∵△CGH 沿GH 翻折,G 的对应点为点F ,F 落在y 轴上,而HG ∥y 轴,∴HG ∥CF ,HG =HF ,CG =CF ,∠GHC =∠CHF ,∴∠FCH =∠CHG ,∴∠FCH =∠FHC ,∴∠GCH =∠GHC ,∴CG =HG ,∴|t 2﹣114t|=54t , 当t 2﹣114t =54t 时, 解得t 1=0(舍),t 2=4,此时点P(4,0).当t 2﹣114t =﹣54t 时,解得t1=0(舍),t2=32,此时点P(32,0).综上,点P的坐标为(4,0)或(32,0).【点睛】此题考查了待定系数法求函数解析式,点坐标转换为线段长度,几何图形与二次函数结合的问题,最后一问推出CG =HG为解题关键.23、(1)200名;折线图见解析;(2)1210人.【解析】(1)由“其他”的人数和所占百分数,求出全部调查人数;先由“体育”所占百分数和全部调查人数求出体育的人数,进一步求出阅读的人数,补全折线统计图;(2)利用样本估计总体的方法计算即可解答.【详解】(1)调查学生总人数为40÷20%=200(人),体育人数为:200×30%=60(人),阅读人数为:200﹣(60+30+20+40)=200﹣150=50(人).补全折线统计图如下:.(2)2200×5060200=1210(人).答:估计该校学生中爱好阅读和爱好体育的人数大约是1210人.【点睛】本题考查了统计知识的应用,试题以图表为载体,要求学生能从中提取信息来解题,与实际生活息息相关,符合新课标的理念.24、(1)PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形,理由详见解析;(3)492.【解析】(1)利用三角形的中位线得出PM=12CE,PN=12BD,进而判断出BD=CE,即可得出结论,再利用三角形的中位线得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出结论;(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=12BD,PN=12BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)方法1、先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论.方法2、先判断出BD最大时,△PMN的面积最大,而BD最大是AB+AD=14,即可.【详解】解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=12 BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=12 CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN,(2)由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,同(1)的方法,利用三角形的中位线得,PN=12BD,PM=12CE,∴PM =PN ,∴△PMN 是等腰三角形,同(1)的方法得,PM ∥CE ,∴∠DPM =∠DCE ,同(1)的方法得,PN ∥BD ,∴∠PNC =∠DBC ,∵∠DPN =∠DCB +∠PNC =∠DCB +∠DBC ,∴∠MPN =∠DPM +∠DPN =∠DCE +∠DCB +∠DBC=∠BCE +∠DBC =∠ACB +∠ACE +∠DBC=∠ACB +∠ABD +∠DBC =∠ACB +∠ABC ,∵∠BAC =90°,∴∠ACB +∠ABC =90°,∴∠MPN =90°,∴△PMN 是等腰直角三角形,(3)方法1、如图2,同(2)的方法得,△PMN 是等腰直角三角形, ∴MN 最大时,△PMN 的面积最大,∴DE ∥BC 且DE 在顶点A 上面,∴MN 最大=AM +AN ,连接AM ,AN ,在△ADE 中,AD =AE =4,∠DAE =90°,∴AM =,在Rt △ABC 中,AB =AC =10,AN =,∴MN 最大==,∴S △PMN 最大=12PM 2=12×12MN 2=14×()2=492. 方法2、由(2)知,△PMN 是等腰直角三角形,PM =PN =12BD , ∴PM 最大时,△PMN 面积最大,∴点D 在BA 的延长线上,∴BD =AB +AD =14,∴PM =7,∴S△PMN最大=12PM2=12×72=492【点睛】本题考查旋转中的三角形,关键在于对三角形的所有知识点熟练掌握.。
2021年浙江省金华市中考数学试卷及详细答案

2021年浙江省金华市中考数学试卷及详细答案2021年浙江省金华市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分) 1.(3分)在0,1,﹣,﹣1四个数中,最小的数是() A.0B.1C.D.﹣12.(3分)计算(﹣a)3÷a结果正确的是() A.a2 B.﹣a2 C.﹣a3 D.﹣a43.(3分)如图,∠B的同位角可以是()A.∠1 B.∠2 C.∠3 D.∠4 4.(3分)若分式A.3的值为0,则x的值为()B.﹣3 C.3或﹣3 D.05.(3分)一个几何体的三视图如图所示,该几何体是()A.直三棱柱 B.长方体 C.圆锥 D.立方体6.(3分)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()第1页(共30页)A. B. C. D.7.(3分)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30) B.(8,10) C.(9,10) D.(10,10)8.(3分)如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A. B. C. D.9.(3分)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E 在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55° B.60° C.65° D.70°10.(3分)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()第2页(共30页)A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多 C.每月上网时间为35h时,选择B方式最省钱 D.每月上网时间超过70h时,选择C方式最省钱二、填空题(本题有6小题,每小题4分,共24分) 11.(4分)化简(x ﹣1)(x+1)的结果是.12.(4分)如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是.13.(4分)如图是我国2013~2021年国内生产总值增长速度统计图,则这5年增长速度的众数是.14.(4分)对于两个非零实数x,y,定义一种新的运算:x*y=+.若1*(﹣1)=2,则(﹣2)*2的值是.15.(4分)如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰第3页(共30页)图中的三角形顶点E,F分别在边AB,BC上,三角形①的边GD在边AD上,则的值是.16.(4分)如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=60cm.沿AD方向拉动弓弦的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为 cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为 cm.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程) 17.(6分)计算:+(﹣2021)0﹣4sin45°+|﹣2|.18.(6分)解不等式组:19.(6分)为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:第4页(共30页)(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.20.(8分)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.21.(8分)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=,求⊙O的半径.22.(10分)如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当第5页(共30页)t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.23.(10分)如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.24.(12分)在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长.第6页(共30页)②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.第7页(共30页)2021年浙江省金华市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分) 1.(3分)在0,1,﹣,﹣1四个数中,最小的数是() A.0B.1C.D.﹣1【解答】解:∵﹣1<﹣<0<1,∴最小的数是﹣1,故选:D.【点评】本题考查了对有理数的大小比较法则的应用,用到的知识点是正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小. 2.(3分)计算(﹣a)3÷a结果正确的是() A.a2 B.﹣a2 C.﹣a3 D.﹣a4【解答】解:(﹣a)3÷a=﹣a3÷a=﹣a31=﹣a2,﹣故选:B.【点评】此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法则是解题关键.3.(3分)如图,∠B的同位角可以是()A.∠1 B.∠2 C.∠3 D.∠4【解答】解:∠B的同位角可以是:∠4.故选:D.【点评】此题主要考查了同位角的定义,正确把握定义是解题关键.第8页(共30页)4.(3分)若分式A.3的值为0,则x的值为()B.﹣3 C.3或﹣3 D.0【解答】解:由分式的值为零的条件得x﹣3=0,且x+3≠0,解得x=3.故选:A.【点评】本题考查了分式值为0的条件,具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.5.(3分)一个几何体的三视图如图所示,该几何体是()A.直三棱柱 B.长方体 C.圆锥 D.立方体【解答】解:观察三视图可知,该几何体是直三棱柱.故选:A.【点评】本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键.6.(3分)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A. B. C. D.第9页(共30页)【解答】解:∵黄扇形区域的圆心角为90°,所以黄区域所占的面积比例为 =,即转动圆盘一次,指针停在黄区域的概率是,故选:B.【点评】本题将概率的求解设置于转动转盘游戏中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.7.(3分)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30) B.(8,10) C.(9,10) D.(10,10)【解答】解:如图,过点C作CD⊥y轴于D,∴BD=5,CD=50÷2﹣16=9, OA=OD ﹣AD=40﹣30=10,∴P(9,10);故选:C.第10页(共30页)【点评】此题考查了坐标确定位置,根据题意确定出CD=9,AD=10是解本题的关键.8.(3分)如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A. B. C. D.,【解答】解:在Rt△ABC中,AB=在Rt△ACD中,AD=∴AB:AD=故选:B.:, =,【点评】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.9.(3分)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E 在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55° B.60° C.65° D.70°【解答】解:∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°﹣20°=70°,第11页(共30页)∵点A,D,E在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选:C.【点评】此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答. 10.(3分)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多 C.每月上网时间为35h时,选择B方式最省钱 D.每月上网时间超过70h时,选择C方式最省钱【解答】解:A、观察函数图象,可知:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可知:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、设当x≥25时,yA=kx+b,第12页(共30页)。
浙江省丽水市第四中学2022年中考三模数学试题含解析

2021-2022中考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分) 1.下面运算结果为6a 的是( ) A .33a a + B .82a a ÷C .23•a aD .()32a -2.一、单选题在某校“我的中国梦”演讲比赛中,有7名学生参加了决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这7名学生成绩的( ) A .平均数B .众数C .中位数D .方差3.如图,已知四边形ABCD ,R ,P 分别是DC ,BC 上的点,E ,F 分别是AP ,RP 的中点,当点P 在BC 上从点B 向点C 移动而点R 不动时, 那么下列结论成立的是( ).A .线段EF 的长逐渐增大B .线段EF 的长逐渐减少C .线段EF 的长不变D .线段EF 的长不能确定4.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线. 不考虑空气阻力,足球距离地面的高度h (单位:m )与足球被踢出后经过的时间t (单位:s )之间的关系如下表: t 0 1 2 3 4 5 6 7 … h8141820201814…下列结论:①足球距离地面的最大高度为20m ;②足球飞行路线的对称轴是直线92t =;③足球被踢出9s 时落地;④足球被踢出1.5s 时,距离地面的高度是11m. 其中正确结论的个数是( ) A .1B .2C .3D .45.如图,两个一次函数图象的交点坐标为(2,4),则关于x ,y 的方程组111222,y k x b y k x b =+⎧⎨=+⎩的解为( )A .2,4x y =⎧⎨=⎩B .4,2x y =⎧⎨=⎩C .4,x y =-⎧⎨=⎩D .3,x y =⎧⎨=⎩6.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为( ) A .5.6×10﹣1B .5.6×10﹣2C .5.6×10﹣3D .0.56×10﹣17.如图,在ABC 中,点D 、E 、F 分别在边AB 、BC 、CA 上,且DE CA ,DFBA .下列四种说法: ①四边形AEDF 是平行四边形;②如果90BAC ∠=,那么四边形AEDF 是矩形;③如果AD 平分BAC ∠,那么四边形AEDF 是菱形;④如果AD BC ⊥且AB AC =,那么四边形AEDF 是菱形. 其中,正确的有( ) 个A .1B .2C .3D .48.如图,AB 是定长线段,圆心O 是AB 的中点,AE 、BF 为切线,E 、F 为切点,满足AE=BF ,在EF 上取动点G ,国点G 作切线交AE 、BF 的延长线于点D 、C ,当点G 运动时,设AD=y ,BC=x ,则y 与x 所满足的函数关系式为( )A .正比例函数y=kx (k 为常数,k≠0,x >0)B .一次函数y=kx+b (k ,b 为常数,kb≠0,x >0)C .反比例函数y=kx(k 为常数,k≠0,x >0) D .二次函数y=ax 2+bx+c (a ,b ,c 为常数,a≠0,x >0)9.随着我国综合国力的提升,中华文化影响日益增强,学中文的外国人越来越多,中文已成为美国居民的第二外语,美国常讲中文的人口约有210万,请将“210万”用科学记数法表示为( ) A .70.2110⨯B .62.110⨯C .52110⨯D .72.110⨯10.甲、乙两盒中分别放入编号为1、2、3、4的形状相同的4个小球,从甲盒中任意摸出一球,再从乙盒中任意摸出一球,将两球编号数相加得到一个数,则得到数( )的概率最大. A .3B .4C .5D .6二、填空题(共7小题,每小题3分,满分21分) 11.2(2)-=__________12.当﹣4≤x≤2时,函数y=﹣(x+3)2+2的取值范围为_____________. 13.27的立方根为 .14.如图,已知CD 是Rt △ABC 的斜边上的高,其中AD=9cm ,BD=4cm ,那么CD 等于_______cm.15.如图,a ∥b ,∠1=110°,∠3=40°,则∠2=_____°.16.将一张长方形纸片折叠成如图所示的形状,若∠DBC=56°,则∠1=_____°.17.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车先后经过这个十字路口,则至少有一辆汽车向左转的概率是___. 三、解答题(共7小题,满分69分)18.(10分)某景区门票价格80元/人,景区为吸引游客,对门票价格进行动态管理,非节假日打a 折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打b 折,设游客为x 人,门票费用为y 元,非节假日门票费用y 1(元)及节假日门票费用y 2(元)与游客x (人)之间的函数关系如图所示. (1)a= ,b= ; (2)确定y 2与x 之间的函数关系式:(3)导游小王6月10日(非节假日)带A旅游团,6月20日(端午节)带B旅游团到该景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?19.(5分)如图,在四边形ABCD中,AB=AD,BC=DC,AC、BD相交于点O,点E在AO上,且OE=OC.求证:∠1=∠2;连结BE、DE,判断四边形BCDE的形状,并说明理由.20.(8分)2018年平昌冬奥会在2月9日到25日在韩国平昌郡举行,为了调查中学生对冬奥会比赛项目的了解程度,某中学在学生中做了一次抽样调查,调查结果共分为四个等级:A、非常了解B、比较了解C、基本了解D、不了解.根据调查统计结果,绘制了如图所示的不完整的三种统计图表.对冬奥会了解程度的统计表对冬奥会的了解程度百分比A非常了解10%B比较了解15%C基本了解35%D不了解n%(1)n=;(2)扇形统计图中,D部分扇形所对应的圆心角是;(3)请补全条形统计图;(4)根据调查结果,学校准备开展冬奥会的知识竞赛,某班要从“非常了解”程度的小明和小刚中选一人参加,现设计了如下游戏来确定谁参赛,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4然后放到一个不透明的袋中,一个人先从袋中摸出一个球,另一人再从剩下的三个球中随机摸出一个球,若摸出的两个球上的数字和为偶数,则小明去,否则小刚去,请用画树状图或列表的方法说明这个游戏是否公平.21.(10分)如图,在三个小桶中装有数量相同的小球(每个小桶中至少有三个小球),第一次变化:从左边小桶中拿出两个小球放入中间小桶中;第二次变化:从右边小桶中拿出一个小球放入中间小桶中;第三次变化:从中间小桶中拿出一些小球放入右边小桶中,使右边小桶中小球个数是最初的两倍.(1)若每个小桶中原有3个小球,则第一次变化后,中间小桶中小球个数是左边小桶中小球个数的____倍;(2)若每个小桶中原有a个小球,则第二次变化后中间小桶中有_____个小球(用a表示);(3)求第三次变化后中间小桶中有多少个小球?22.(10分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,DE交AC于点E,且∠A=∠ADE.求证:DE是⊙O的切线;若AD=16,DE=10,求BC的长.23.(12分)某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y (本)与每本纪念册的售价x (元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.求出y 与x 的函数关系式;当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?设该文具店每周销售这种纪念册所获得的利润为w 元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少? 24.(14分)某蔬菜加工公司先后两次收购某时令蔬菜200吨,第一批蔬菜价格为2000元/吨,因蔬菜大量上市,第二批收购时价格变为500元/吨,这两批蔬菜共用去16万元. (1)求两批次购蔬菜各购进多少吨?(2)公司收购后对蔬菜进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润800元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分) 1、B 【解析】根据合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方逐一计算即可判断. 【详解】A .3332a a a += ,此选项不符合题意;B .826a a a ÷=,此选项符合题意;C .235a a a ⋅=,此选项不符合题意;D .236()a a -=-,此选项不符合题意;故选:B . 【点睛】本题考查了整式的运算,解题的关键是掌握合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方. 2、C 【解析】由于其中一名学生想要知道自己能否进入前3名,共有7名选手参加,故应根据中位数的意义分析.【详解】由于总共有7个人,且他们的成绩各不相同,第4的成绩是中位数,要判断是否进入前3名,故应知道中位数的多少.故选C.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.3、C【解析】因为R不动,所以AR不变.根据三角形中位线定理可得EF= 12AR,因此线段EF的长不变.【详解】如图,连接AR,∵E、F分别是AP、RP的中点,∴EF为△APR的中位线,∴EF= 12AR,为定值.∴线段EF的长不改变.故选:C.【点睛】本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.4、B【解析】试题解析:由题意,抛物线的解析式为y=ax(x﹣9),把(1,8)代入可得a=﹣1,∴y=﹣t2+9t=﹣(t﹣4.5)2+20.25,∴足球距离地面的最大高度为20.25m,故①错误,∴抛物线的对称轴t=4.5,故②正确,∵t=9时,y=0,∴足球被踢出9s时落地,故③正确,∵t=1.5时,y=11.25,故④错误,∴正确的有②③,故选B.5、A【解析】根据任何一个一次函数都可以化为一个二元一次方程,再根据两个函数交点坐标就是二元一次方程组的解可直接得到答案. 【详解】解:∵直线y 1=k 1x+b 1与y 2=k 2x+b 2的交点坐标为(2,4), ∴二元一次方程组111222,y k x b y k x b =+⎧⎨=+⎩的解为2,4.x y =⎧⎨=⎩ 故选A. 【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解. 6、B 【解析】0.056用科学记数法表示为:0.056=-25.610⨯,故选B. 7、D 【解析】先由两组对边分别平行的四边形为平行四边形,根据DE ∥CA ,DF ∥BA ,得出AEDF 为平行四边形,得出①正确;当∠BAC=90°,根据推出的平行四边形AEDF ,利用有一个角为直角的平行四边形为矩形可得出②正确;若AD 平分∠BAC ,得到一对角相等,再根据两直线平行内错角相等又得到一对角相等,等量代换可得∠EAD=∠EDA ,利用等角对等边可得一组邻边相等,根据邻边相等的平行四边形为菱形可得出③正确;由AB=AC ,AD ⊥BC ,根据等腰三角形的三线合一可得AD 平分∠BAC ,同理可得四边形AEDF 是菱形,④正确,进而得到正确说法的个数. 【详解】解:∵DE ∥CA ,DF ∥BA ,∴四边形AEDF 是平行四边形,选项①正确; 若∠BAC=90°,∴平行四边形AEDF 为矩形,选项②正确; 若AD 平分∠BAC , ∴∠EAD=∠FAD ,又DE ∥CA ,∴∠EDA=∠FAD , ∴∠EAD=∠EDA , ∴AE=DE ,∴平行四边形AEDF 为菱形,选项③正确; 若AB=AC ,AD ⊥BC ,∴AD 平分∠BAC ,同理可得平行四边形AEDF 为菱形,选项④正确, 则其中正确的个数有4个. 故选D . 【点睛】此题考查了平行四边形的定义,菱形、矩形的判定,涉及的知识有:平行线的性质,角平分线的定义,以及等腰三角形的判定与性质,熟练掌握平行四边形、矩形及菱形的判定与性质是解本题的关键. 8、C 【解析】延长AD ,BC 交于点Q ,连接OE ,OF ,OD ,OC ,OQ ,由AE 与BF 为圆的切线,利用切线的性质得到AE 与EO 垂直,BF 与OF 垂直,由AE=BF ,OE=OF ,利用HL 得到直角三角形AOE 与直角BOF 全等,利用全等三角形的对应角相等得到∠A=∠B ,利用等角对等边可得出三角形QAB 为等腰三角形,由O 为底边AB 的中点,利用三线合一得到QO 垂直于AB ,得到一对直角相等,再由∠FQO 与∠OQB 为公共角,利用两对对应角相等的两三角形相似得到三角形FQO 与三角形OQB 相似,同理得到三角形EQO 与三角形OAQ 相似,由相似三角形的对应角相等得到∠QOE=∠QOF=∠A=∠B ,再由切线长定理得到OD 与OC 分别为∠EOG 与∠FOG 的平分线,得到∠DOC 为∠EOF 的一半,即∠DOC=∠A=∠B ,又∠GCO=∠FCO ,得到三角形DOC 与三角形OBC 相似,同理三角形DOC 与三角形DAO 相似,进而确定出三角形OBC 与三角形DAO 相似,由相似得比例,将AD=x ,BC=y 代入,并将AO 与OB 换为AB 的一半,可得出x 与y 的乘积为定值,即y 与x 成反比例函数,即可得到正确的选项. 【详解】延长AD ,BC 交于点Q ,连接OE ,OF ,OD ,OC ,OQ ,∵AE ,BF 为圆O 的切线, ∴OE ⊥AE ,OF ⊥FB , ∴∠AEO=∠BFO=90°, 在Rt △AEO 和Rt △BFO 中, ∵{AE BFOE OF= ,∴Rt△AEO≌Rt△BFO(HL),∴∠A=∠B,∴△QAB为等腰三角形,又∵O为AB的中点,即AO=BO,∴QO⊥AB,∴∠QOB=∠QFO=90°,又∵∠OQF=∠BQO,∴△QOF∽△QBO,∴∠B=∠QOF,同理可以得到∠A=∠QOE,∴∠QOF=∠QOE,根据切线长定理得:OD平分∠EOG,OC平分∠GOF,∴∠DOC=12∠EOF=∠A=∠B,又∵∠GCO=∠FCO,∴△DOC∽△OBC,同理可以得到△DOC∽△DAO,∴△DAO∽△OBC,∴AD AO OB BC,∴AD•BC=AO•OB=14AB2,即xy=14AB2为定值,设k=14AB2,得到y=kx,则y与x满足的函数关系式为反比例函数y=kx(k为常数,k≠0,x>0).故选C.【点睛】本题属于圆的综合题,涉及的知识有:相似三角形的判定与性质,切线长定理,直角三角形全等的判定与性质,反比例函数的性质,以及等腰三角形的性质,做此题是注意灵活运用所学知识.9、B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】210万=2100000,2100000=2.1×106,故选B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10、C【解析】解:甲和乙盒中1个小球任意摸出一球编号为1、2、3、1的概率各为,其中得到的编号相加后得到的值为{2,3,1,5,6,7,8}和为2的只有1+1;和为3的有1+2;2+1;和为1的有1+3;2+2;3+1;和为5的有1+1;2+3;3+2;1+1;和为6的有2+1;1+2;和为7的有3+1;1+3;和为8的有1+1.故p(5)最大,故选C.二、填空题(共7小题,每小题3分,满分21分)11、2;【解析】试题解析:先求-2的平方42().-2=4=212、-23≤y≤2【解析】先根据a=-1判断出抛物线的开口向下,故有最大值,可知对称轴x=-3,再根据-4≤x≤2,可知当x=-3时y最大,把x=2时y最小代入即可得出结论.【详解】解:∵a=-1,∴抛物线的开口向下,故有最大值,∵对称轴x=-3,∴当x=-3时y最大为2,当x=2时y最小为-23,∴函数y的取值范围为-23≤y≤2,故答案为:-23≤y≤2.【点睛】本题考查二次函数的性质,掌握抛物线的开口方向、对称轴以及增减性是解题关键.13、1【解析】找到立方等于27的数即可.解:∵11=27,∴27的立方根是1,故答案为1.考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算14、1【解析】利用△ACD∽△CBD,对应线段成比例就可以求出.【详解】∵CD⊥AB,∠ACB=90°,∴△ACD∽△CBD,∴CD BD AD CD=,∴49CDCD=,∴CD=1.【点睛】本题考查了相似三角形的性质和判定,熟练掌握相似三角形的判定方法是关键.15、1【解析】试题解析:如图,∵a∥b,∠3=40°,∴∠4=∠3=40°.∵∠1=∠2+∠4=110°,∴∠2=110°-∠4=110°-40°=1°.故答案为:1.16、62【解析】根据折叠的性质得出∠2=∠ABD,利用平角的定义解答即可.【详解】解:如图所示:由折叠可得:∠2=∠ABD,∵∠DBC=56°,∴∠2+∠ABD+56°=180°,解得:∠2=62°,∵AE//BC,∴∠1=∠2=62°,故答案为62.【点睛】本题考查了折叠变换的知识以及平行线的性质的运用,根据折叠的性质得出∠2=∠ABD是关键.17、59.【解析】根据题意,画出树状图,然后根据树状图和概率公式求概率即可.【详解】解:画树状图得:共有9种等可能的结果,至少有一辆汽车向左转的有5种情况,∴至少有一辆汽车向左转的概率是:59.故答案为:59.【点睛】此题考查的是求概率问题,掌握树状图的画法和概率公式是解决此题的关键.三、解答题(共7小题,满分69分)18、(1)a=6,b=8;(2)()28001064160(10)x xyx x⎧≤≤=⎨+>⎩;(3)A团有20人,B团有30人.【解析】(1)根据函数图像,用购票款数除以定价的款数,计算即可求得a的值;用11人到20人的购票款数除以定价的款数,计算即可解得b的值;(2)分0≤x≤10与x>10,利用待定系数法确定函数关系式求得y2的函数关系式即可;(3)设A团有n人,表示出B团的人数为(50-n),然后分0≤x≤10与x>10两种情况,根据(2)中的函数关系式列出方程求解即可.【详解】(1)由y1图像上点(10,480),得到10人的费用为480元,∴a=480106 800⨯=;由y2图像上点(10,480)和(20,1440),得到20人中后10人的费用为640元,∴b=640108 800⨯=;(2)0≤x≤10时,设y2=k2x,把(10, 800)代入得10k2=800, 解得k2=80,∴y2=80x,x>10,设y2=kx+b,把(10, 800)和(20,1440)代入得10800201440k b k b +=⎧⎨+=⎩解得64160k b =⎧⎨=⎩∴y 2=64x+160∴()28001064160(10)x x y x x ⎧≤≤=⎨+>⎩(3)设B 团有n 人,则A 团的人数为(50-n )当0≤n≤10时80n+48(50-n )=3040,解得n=20(不符合题意舍去)当n >10时801064n 104850n 3040⨯+-+-=()(),解得n=30.则50-n=20人,则A 团有20人,B 团有30人.【点睛】此题主要考查一次函数的综合运用,解题的关键是熟知待定系数法确定函数关系式.19、(1)证明见解析;(2)四边形BCDE 是菱形,理由见解析.【解析】(1)证明△ADC ≌△ABC 后利用全等三角形的对应角相等证得结论.(2)首先判定四边形BCDE 是平行四边形,然后利用对角线垂直的平行四边形是菱形判定菱形即可.【详解】解:(1)证明:∵在△ADC 和△ABC 中,∴△ADC ≌△ABC (SSS ).∴∠1=∠2.(2)四边形BCDE 是菱形,理由如下:如答图,∵∠1=∠2,DC=BC ,∴AC 垂直平分BD.∵OE=OC ,∴四边形DEBC 是平行四边形.∵AC ⊥BD ,∴四边形DEBC 是菱形.【点睛】考点:1.全等三角形的判定和性质;2. 线段垂直平分线的性质;3.菱形的判定.20、(1)40;(2)144°;(3)作图见解析;(4)游戏规则不公平.【解析】(1)根据统计图可以求出这次调查的n的值;(2)根据统计图可以求得扇形统计图中D部分扇形所对应的圆心角的度数;(3)根据题意可以求得调查为D的人数,从而可以将条形统计图补充完整;(4)根据题意可以写出树状图,从而可以解答本题.【详解】解:(1)n%=1﹣10%﹣15%﹣35%=40%,故答案为40;(2)扇形统计图中D部分扇形所对应的圆心角是:360°×40%=144°,故答案为144°;(3)调查的结果为D等级的人数为:400×40%=160,故补全的条形统计图如右图所示,(4)由题意可得,树状图如右图所示,P(奇数)82, 123 ==P(偶数)41, 123 ==故游戏规则不公平.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.键21、(1)5;(2)(a+3);(3)第三次变化后中间小桶中有2个小球.【解析】(1)(2)根据材料中的变化方法解答;(3)设原来每个捅中各有a个小球,根据第三次变化方法列出方程并解答.【详解】解:(1)依题意得:(3+2)÷(3﹣2)=5故答案是:5;(2)依题意得:a+2+1=a+3;故答案是:(a+3)(3)设原来每个捅中各有a个小球,第三次从中间桶拿出x个球,依题意得:a﹣1+x=2ax=a+1所以a+3﹣x=a+3﹣(a+1)=2答:第三次变化后中间小桶中有2个小球.【点睛】考查了一元一次方程的应用和列代数式,解题的关键是找到描述语,列出等量关系,得到方程并解答.22、(1)证明见解析;(2)15.【解析】(1)先连接OD,根据圆周角定理求出∠ADB=90°,根据直角三角形斜边上中线性质求出DE=BE,推出∠EDB=∠EBD,∠ODB=∠OBD,即可求出∠ODE=90°,根据切线的判定推出即可.(2)首先证明AC=2DE=20,在Rt△ADC中,DC=12,设BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2-202,可得x2+122=(x+16)2-202,解方程即可解决问题.【详解】(1)证明:连结OD,∵∠ACB=90°,∴∠A+∠B=90°,又∵OD=OB,∴∠B=∠BDO,∵∠ADE=∠A,∴∠ADE+∠BDO=90°,∴∠ODE=90°.∴DE是⊙O的切线;(2)连结CD,∵∠ADE=∠A,∴AE=DE.∵BC是⊙O的直径,∠ACB=90°.∴EC是⊙O的切线.∴DE=EC.∴AE=EC,又∵DE=10,∴AC=2DE=20,在Rt△ADC中,22201612-=设BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2﹣202,∴x2+122=(x+16)2﹣202,解得x=9,∴22+=.12915【点睛】考查切线的性质、勾股定理、等腰三角形的判定和性质等知识,解题的关键是灵活综合运用所学知识解决问题. 23、(1)y=﹣2x+80(20≤x≤28);(2)每本纪念册的销售单价是25元;(3)该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.【解析】(1)待定系数法列方程组求一次函数解析式.(2)列一元二次方程求解.(3)总利润=单件利润⨯销售量:w=(x-20)(-2x+80),得到二次函数,先配方,在定义域上求最值.【详解】(1)设y与x的函数关系式为y=kx+b.把(22,36)与(24,32)代入,得22362432.k b k b +=⎧⎨+=⎩解得280.k b =-⎧⎨=⎩ ∴y =-2x +80(20≤x≤28).(2)设当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是x 元,根据题意,得 (x -20)y =150,即(x -20)(-2x +80)=150.解得x 1=25,x 2=35(舍去).答:每本纪念册的销售单价是25元.(3)由题意,可得w =(x -20)(-2x +80)=-2(x -30)2+200.∵售价不低于20元且不高于28元,当x <30时,y 随x 的增大而增大,∴当x =28时,w 最大=-2×(28-30)2+200=192(元).答:该纪念册销售单价定为28元时,能使文具店销售该纪念册所获利润最大,最大利润是192元.24、(1)第一次购进40吨,第二次购进160吨;(2)为获得最大利润,精加工数量应为150吨,最大利润是1.【解析】(1)设第一批购进蒜薹a 吨,第二批购进蒜薹b 吨.构建方程组即可解决问题.(2)设精加工x 吨,利润为w 元,则粗加工(100-x )吨.利润w=800x+400(200﹣x )=400x+80000,再由x≤3(100-x ),解得x≤150,即可解决问题.【详解】(1)设第一次购进a 吨,第二次购进b 吨,2002000500160000a b a b +=⎧⎨+=⎩, 解得40160a b =⎧⎨=⎩, 答:第一次购进40吨,第二次购进160吨;(2)设精加工x 吨,利润为w 元,w=800x+400(200﹣x )=400x+80000,∵x≤3(200﹣x ),解得,x≤150,∴当x=150时,w 取得最大值,此时w=1,答:为获得最大利润,精加工数量应为150吨,最大利润是1.【点睛】本题考查了二元一次方程组的应用与一次函数的应用,解题的关键是熟练的掌握二元一次方程组的应用与一次函数的应用.。
2021年初三数学中考模拟试题(附解析)

2021年九年级中考模拟考试数学试题一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。
1.下列各数中,最小的数是()A.3B.﹣2C.﹣D.02.据统计,2021年第一季度全球手机出货量达到3.4亿部,将数据3.4亿用科学记数法表示为()A.3.4×108B.3.4×1010C.0.34×109D.34×1073.下列图形中,不能经过折叠围成正方体的是()A.B.C.D.4.下列计算正确的是()A.a+b=ab B.3a2+2a2=5a4C.(﹣a3b)2=a6b2D.a2b3c÷(﹣ab2)=﹣ab5.下列说法中,错误的是()A.明天会下雨是随机事件B.某发行量较大的彩票中奖概率是,那么购买1001张彩票一定会中奖C.要了解某市初中生每天的睡眠时间,应该采用抽样调查的方式进行D.乘客乘坐飞机前的安检应采取全面调查的方式进行6.已知y是x的一次函数,下表给出5组自变量x及其对应的函数y的值.x…﹣2﹣1012…y…﹣3﹣1136…其中只有1个函数值计算有误,则这个错误的函数值是()A.﹣1B.1C.3D.67.如图,点A、C在∠FBD的两条边BF、BD上,BE平分∠FBD,CE平分∠ACD,连接AE,若∠BEC=35°,则∠FAE的度数为()A.35°B.45°C.55°D.65°8.如图,一次函数y=﹣x+2的图象与坐标轴的交点为A和B,下列说法中正确的是()A.点(2,﹣1)在直线AB上B.y随x的增大而增大C.当x>0时,y<2D.△AOB的面积是29.如图,菱形OABC的边OA在x轴上,点B坐标为(9,3),分别以点B、C为圆心,以大于BC 的长为半径画弧,两弧交于点D、E,作直线DE,交x轴于点F,则点F的坐标是()A.(7.5,0)B.(6.5,0)C.(7,0)D.(8,0)10.如图,矩形ABCD中,AB=8cm,BC=4cm,动点E和F同时从点A出发,点E以每秒2cm的速度沿A→D的方向运动,到达点D时停止,点F以每秒4cm的速度沿A→B→C→D的方向运动,到达点D时停止.设点F运动x(秒)时,△AEF的面积为y(cm2),则y关于x的函数的图象大致为()A.B.C.D.二、填空题(每小题3分,共15分)11.写出一个比﹣3大且比2小的负无理数.12.有4张全新的扑克牌,其中黑桃、红桃各2张,它们的背面都一样,将它们洗匀后,背面朝上放到桌面上,从中任意摸出2张牌,摸出的花色不一样的概率是.13.已知关于x的一元二次方程mx2+x﹣3=0有两个不相等的实数根,则m的取值范围是.14.如图,半圆O的直径AB=4cm,=,点C是上的一个动点(不与点B,G重合),CD ⊥OG于点D,CE⊥OB于点E,点E与点F关于点O中心对称,连接DE、DF,则△DEF面积的最大值为cm2.15.如图,正方形ABCD的边长为3,点G在边AD上,GD=1,GH⊥BC于点H,点E是边AB 上一动点(不与点A,B重合),EF⊥CD于点F,交GH于点Q,点O、P分别是EH和GQ的中点,连接OP,则线段OP的长度为.三、解答题(本大题共8个小题,满分75分)16.(1)化简:(a﹣2)2﹣(a+1)(a﹣6);(2)计算:2sin45°﹣20210﹣+|﹣1|.17.为了解某校七年级男生的身高情况,某数学活动小组进行了抽样和分析,过程如下:[收集数据]随机抽取了七年级若干名男生,测得他们的身高(单位:cm),记录如下:152 153 154 155 155 155 156 156 157 157 158 160 160 160161 161 162 162 162 163 163 163 163 164 164 164 165 165165 166 167 168 169 169 170 170 172 172 175 175[整理数据]整理以上数据,得到如下尚不完整的频数分布表和直方图:调查结果频数分布表组别身高(单位:cm)频数频率A150≤x<155a0.075B155≤x<16080.2C160≤x<165150.375D165≤x<1700.2E170≤x<17560.15 [分析数据]根据以上频数分布表和直方图,即可对数据进行针对性的分析.根据以上信息解答下列问题:(1)此次抽样调查的样本容量是,统计表中a=.(2)所抽取的样本中,男生身高的中位数所在的组别是.(3)请把频数分布直方图补充完整.(4)若该校七年级有男生400人,根据调查数据估计身高不低于165cm的大约有多少人?18.某数学兴趣小组进行了一次有趣的数学探究:如图①所示,在钝角∠AOB的边OB上任取一点C,过点C作CE∥OA,以点C为圆心,CO的长为半径画弧,交射线CE于点D,在上任取一点P,作射线OP,交射线CE于点F,当点P在上移动时,点F也随之移动,是否存在某个时刻,∠AOF恰好等于∠AOB呢?经过试验、猜想、推理验证,他们发现:当PF与OC满足某种数量关系时,∠AOF=∠AOB.请你根据以上信息,把如下不完整的“图②”和“已知”补充完整,并写出“证明”过程.已知:如图②,点C在钝角∠AOB的边OB上,CE∥OA,以点C为圆心、CO的长为半径画弧,交射线CE于点D,点P在上,射线OP交CE于点F,(填PF与OC的数量关系).求证:∠AOF=∠AOB.19.钓鱼岛是我国固有领土,2021年4月26日,中华人民共和国自然资源部在其官网上公布《钓鱼岛及其附属岛屿地形地貌调查报告》,报告公布了钓鱼岛及其附属岛屿的高分辨率海岛地形数据.如图所示,点A是岛上最西端“西钓角”,点B是岛上最东端“东钓角”,AB长约3641米,点D是岛上的小黄鱼岛,且A、B、D三点共线.某日中国海监一艘执法船巡航到点C处时,恰好看到正北方的小黄鱼岛D,并测得∠ACD=70°,∠BCD=45°.根据以上数据,请求出此时执法船距离小黄鱼岛D的距离CD的值.(参考数据:tan70°≈2.75,sin70°≈0.94,cos70°≈0.34,结果精确到1米.)20.如图,已知二次函数y=x2﹣2mx﹣2+m2的顶点为P,矩形OABC的边OA落在x轴上,点B的坐标是(6,2).(1)求点P的坐标,并说明随着m值的变化,点P的运动轨迹是什么?(2)若该二次函数的图象与矩形OABC的边恰好有2个交点,请直接写出此时m的取值范围.21.某水果批发店销售粑粑柑和苹果,均按整箱出售,粑粑柑比苹果每箱贵30元.某天粑粑柑销售额为1800元,苹果销售额为3600元,该日苹果销售量恰好是粑粑柑销售量的3倍.(1)求粑粑柑、苹果每箱各是多少元?(2)某单位决定去该水果批发店购买粑粑柑、苹果共30箱,恰逢批发店对售价进行调整,苹果单价提高了5%,粑粑柑按九折销售,本次购买预算总费用不超过2100元,那么可最多购买多少箱粑粑柑?22.研究函数y=+3的图象和性质,可以通过列表、描点、连线画出函数图象,然后结合函数图象进行分析.探究过程如下:(1)函数y=+3的自变量x的取值范围是.(2)y与x的几组对应值如表:x…﹣3﹣2﹣101 1.5 2.534567…y… 2.8 2.75m 2.52154 3.5n 3.25 3.2…根据表格中的数据,在同一平面直角坐标系中描点,并用平滑的曲线进行连线,画出图象的另外一支,并写出m+n﹣2=.(3)观察图象可知,函数图象既是中心对称图形,又是轴对称图形,它的对称中心的坐标是,它的对称轴的解析式是.(4)当x满足时,y随x的增大而减小.(5)结合函数图象填空:当关于x的方程+3=k(x﹣2)+3有两个不相等的实数根时,实数k的取值范围是;关于x的方程+3=k(x﹣2)+3无实数根时,实数k的取值范围是.23.已知点M是矩形ABCD的边AB上一个动点,过点M作MG⊥CD于点G,交对角线AC于点E,连接BE,过点E作EF⊥BE,交射线DC于点F.(1)如图1,若AB=AD,则FG与DG的数量关系是;(2)如图2.若AB=4,AD=3,①当点M在边AB上移动时,FG与DG的数量关系是否保持不变?若不变,请仅就图2求出它们之间的数量关系;若变化,请说明理由.②当时,请直接写出AM的最大值和最小值.参考答案一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。
2021年中考一模考试《数学卷》附答案解析

中考全真模拟测试数学试卷一、选择题:1. 我市南水北调配套工程建设进展顺利,工程运行调度有序.截止2015年12月底,已累计接收南水北调来水812000000立方米.使1100余万市民喝上了南水;通过“存水”增加了约550公顷水面,密云水库蓄水量稳定在10亿立方米左右,有效减缓了地下水位下降速率.将812000000用科学记数法表示应为A. 812×106B. 81.2×107C. 8.12×108D. 8.12×1092. 下列运算正确的是()A. 3a2+5a2=8a4B. a6•a2=a12C. (a+b)2=a2+b2D. (a2+1)0=13. 如图所示的标志中,是轴对称图形的有( )A. 1个B. 2个C. 3个D. 4个4. 为估计池塘两岸A,B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB间的距离不可能是()A. 15mB. 17mC. 20mD. 28m5. 如图,已知AB∥CD,∠A=40°,∠D=45°,则∠1的度数是( )A. 80°B. 85°C. 90°D. 95°6. 估计7+1的值( ) A. 在1和2之间B. 在2和3之间C. 3和4之间D. 在4和5之间7. 在平面直角坐标系中,点(-1,2)在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限8. 已知一次函数y =kx -k ,y 随x 的增大而减小,则该函数的图像不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限9. 计算8-2的结果是( )A. 6B. 6C. 2D. 210. 一个暗箱里装有10个黑球,8个红球,12个白球,每个球除颜色外都相同,从中任意摸出一球,不是白球的概率是( )A . 415B. 13C. 25D. 35 11. 如图,1l ∥2l ∥3l ,两条直线与这三条平行线分别交于点A 、B 、C 和D 、E 、F .已知32AB BC ,则DE DF 的值为( )A. 32B. 23C. 25D. 3512. 如图,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD 最大面积是( )A. 60 m2B. 63 m2C. 64 m2D. 66 m2二、填空题:13. 分解因式:x3y﹣2x2y+xy=______.14. 函数y=12 -x的自变量x的取值范围是_____.15. 化简221(1)11x x-÷+-的结果是.16. 某直角三角形三条边的平方和为200,则这个直角三角形的斜边长为.17. 如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为.18. 已知⊙O的半径为5,AB是⊙O的直径,D是AB延长线上一点,DC是⊙O的切线,C是切点,连接AC,若∠CAB=30°,则BD的长为____.三、计算题:19. 解方程组:3(1)4(4)05(1)3(5)x yy x---=⎧⎨-=+⎩20. 解不等式组2102323xx x+>⎧⎪-+⎨≥⎪⎩.四、解答题:21. 如图,四边形ABCD中,90,1,3A ABC AD BC︒∠=∠===,E是边CD中点,连接BE并延长与AD的延长线相较于点F.(1)求证:四边形BDFC是平行四边形;(2)若△BCD是等腰三角形,求四边形BDFC的面积.22. 如图,已知△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E作EG⊥AC于G,交BC的延长线于F.(1)求证:AE=BE;(2)求证:FE是⊙O的切线;(3)若FE=4,FC=2,求⊙O的半径及CG的长.23. 为了更好的治理西流湖水质,保护环境,市治污公司决定购买10 台污水处理设备.现有A、B 两种型号的设备,其中每台的价格,月处理污水量如下表:A 型B 型价格(万元/台) a b处理污水量(吨/月)240 200经调查:购买一台A 型设备比购买一台B 型设备多2 万元,购买2 台A 型设备比购买3 台B 型设备少6 万元.(1)求a,b 值;(2)经预算:市治污公司购买污水处理设备的资金不超过105 万元,你认为该公司有哪几种购买方案;(3)在(2)问的条件下,若每月要求处理西流湖的污水量不低于2040 吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.24. 对于某一函数给出如下定义:若存在实数p,当其自变量值为p时,其函数值等于p,则称p为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q为零.例如:下图中的函数有0,1两个不变值,其不变长度q等于1.(1)分别判断函数y=x-1,y=x-1,y=x2有没有不变值?如果有,直接写出其不变长度;(2)函数y=2x2-bx.①若其不变长度为零,求b的值;②若1≤b≤3,求其不变长度q的取值范围;(3) 记函数y=x2-2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2,函数G的图象由G1和G2两部分组成,若其不变长度q满足0≤q≤3,则m的取值范围为 .答案与解析一、选择题:1. 我市南水北调配套工程建设进展顺利,工程运行调度有序.截止2015年12月底,已累计接收南水北调来水812000000立方米.使1100余万市民喝上了南水;通过“存水”增加了约550公顷水面,密云水库蓄水量稳定在10亿立方米左右,有效减缓了地下水位下降速率.将812000000用科学记数法表示应为A. 812×106B. 81.2×107C. 8.12×108D. 8.12×109【答案】C【解析】试题解析:将812000000用科学记数法表示为:8.12×108.故选C.考点:科学记数法—表示较大的数.2. 下列运算正确的是()A. 3a2+5a2=8a4B. a6•a2=a12C. (a+b)2=a2+b2D. (a2+1)0=1【答案】D【解析】试题分析:A、原式合并同类项得到结果,即可做出判断;B、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;C、原式利用完全平方公式展开得到结果,即可做出判断;D、原式利用零指数幂法则计算得到结果,即可做出判断.解:A、原式=8a2,故A选项错误;B、原式=a8,故B选项错误;C、原式=a2+b2+2ab,故C选项错误;D、原式=1,故D选项正确.故选D.点评:此题考查了完全平方公式,合并同类项,同底数幂的乘法,以及零指数幂,熟练掌握公式及法则是解本题的关键.3. 如图所示的标志中,是轴对称图形的有( )A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【详解】试题分析:四个标志中是轴对称图形的有:,所以共有3个.故应选C.考点:轴对称图形4. 为估计池塘两岸A,B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB间的距离不可能是()A. 15mB. 17mC. 20mD. 28m【答案】D【解析】试题分析:根据三角形的三边关系定理:三角形两边之和大于第三边,三角形的两边差小于第三边可得16﹣12<AB<16+12,再解即可.解:根据三角形的三边关系可得:16﹣12<AB<16+12,即4<AB<28,故选D.考点:三角形三边关系.5. 如图,已知AB∥CD,∠A=40°,∠D=45°,则∠1的度数是( )A. 80°B. 85°C. 90°D. 95°【答案】B【解析】试题分析:∵AB∥CD,∴∠A=∠C=40°,∵∠1=∠D+∠C,∵∠D=45°,∴∠1=∠D+∠C=45°+40°=85°,故选B.考点:平行线的性质.6. 7+1的值()A. 在1和2之间B. 在2和3之间C. 在3和4之间D. 在4和5之间【答案】C【解析】∵7,∴7,7在在3和4之间.故选C.7. 在平面直角坐标系中,点(-1,2)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【分析】根据各象限内点的坐标特征解答即可.【详解】∵点(-1,2)的横坐标为负数,纵坐标为正数,∴点(-1,2)在第二象限.故选B.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8. 已知一次函数y=kx-k,y随x的增大而减小,则该函数的图像不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】解:∵一次函数y=kx﹣k的图象y随x的增大而减小,∴k<0.即该函数图象经过第二、四象限,∵k<0,∴﹣k>0,即该函数图象与y轴交于正半轴.综上所述:该函数图象经过第一、二、四象限,不经过第三象限.故选C.点睛:本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b 所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.9. 的结果是( )A. 6 C. 2【答案】D【解析】-==D.考点:二次根式的加减法.10. 一个暗箱里装有10个黑球,8个红球,12个白球,每个球除颜色外都相同,从中任意摸出一球,不是白球的概率是()A.415B.13C.25D.35【答案】D【解析】1231305-=,故选D.11. 如图,1l∥2l∥3l,两条直线与这三条平行线分别交于点A、B、C和D、E、F.已知32ABBC=,则DEDF的值为()A. 32B.23C.25D.35【答案】D 【解析】试题分析:∵1l∥2l∥3l,32ABBC=,∴DEDF=ABAC=332+=35,故选D.考点:平行线分线段成比例.12. 如图,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD最大面积是()A. 60 m2B. 63 m2C. 64 m2D. 66 m2【答案】C【解析】试题分析:设BC=xm,表示出AB,矩形面积为ym2,表示出y与x的关系式为y=(16﹣x)x=﹣x2+16x=﹣(x﹣8)2+64,,利用二次函数性质即可求出求当x=8m时,y max=64m2,即所围成矩形ABCD的最大面积是64m2.故答案选C.考点:二次函数的应用.二、填空题:13. 分解因式:x3y﹣2x2y+xy=______.【答案】xy(x﹣1)2【解析】【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】解:原式=xy(x2-2x+1)=xy(x-1)2.故答案为:xy (x-1)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 14. 函数y=12-x x 的自变量x 的取值范围是_____. 【答案】x≤12且x≠0 【解析】【详解】根据题意得x≠0且1﹣2x≥0,所以12x ≤且0x ≠. 故答案为12x ≤且0x ≠. 15. 化简221(1)11x x -÷+-的结果是 . 【答案】(x-1)2.【解析】试题解析:原式=11x x -+•(x+1)(x-1) =(x-1)2.考点:分式的混合运算.16. 某直角三角形三条边的平方和为200,则这个直角三角形的斜边长为 .【答案】10.【解析】解:∵一个直角三角形的三边长的平方和为200,∴斜边长的平方为100,则斜边长为:10.故答案为10. 17. 如图,△ABC 中,AB=AC=10,BC=8,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则△CDE 的周长为 .【答案】14.【解析】试题解析:∵AB=AC ,AD 平分∠BAC ,BC=8,∴AD⊥BC,CD=BD=12BC=4,∵点E为AC的中点,∴DE=CE=12AC=5,∴△CDE的周长=CD+DE+CE=4+5+5=14.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质并准确识图是解题的关键.18. 已知⊙O的半径为5,AB是⊙O的直径,D是AB延长线上一点,DC是⊙O的切线,C是切点,连接AC,若∠CAB=30°,则BD的长为____.【答案】5.【解析】解:连接OC,BC.∵AB是圆O的直径,DC是圆O的切线,C是切点,∴∠ACB=∠OCD=90°.∵∠CAB=30°,∴∠COD=2∠A=60°,∴OD=2OC=10,∴BD=OD-OB=10-5=5.故答案为5.三、计算题:19. 解方程组:3(1)4(4)0 5(1)3(5)x yy x---=⎧⎨-=+⎩【答案】x=5,y=7.【解析】试题分析:先把组中的方程化简后,再求方程组的解.试题解析:解:原方程化简得:3413 5320x yy x-=-⎧⎨-=⎩①②①+②,得:y=7,把y=7代入①,得:x=5,所以原方程组的解为:57 xy=⎧⎨=⎩.20. 解不等式组210 23 23xx x+>⎧⎪-+⎨≥⎪⎩.【答案】﹣0.5<x≤0.【解析】【分析】先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【详解】解:2102323xx x+>⎧⎪⎨-+≥⎪⎩①②由①得:x>﹣0.5,由②得:x≤0,则不等式组的解集是﹣0.5<x≤0.【点睛】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.四、解答题:21. 如图,四边形ABCD中,90,1,3A ABC AD BC︒∠=∠===,E是边CD的中点,连接BE并延长与AD的延长线相较于点F.(1)求证:四边形BDFC平行四边形;(2)若△BCD是等腰三角形,求四边形BDFC的面积.【答案】(1)见解析;(2)2或35【解析】【分析】(1)根据平行线的性质和中点的性质证明三角形全等,然后根据对角线互相平分的四边形是平行四边形完成证明;(2)由等腰三角形的性质,分三种情况:①BD=BC,②BD=CD,③BC=CD,分别求四边形的面积.【详解】解:(1)证明:∵∠A=∠ABC=90°∴AF∥BC∴∠CBE=∠DFE,∠BCE=∠FDE∵E是边CD的中点∴CE=DE∴△BCE≌△FDE(AAS)∴BE=EF∴四边形BDFC是平行四边形(2)若△BCD是等腰三角形①若BD=BC=3 在Rt△ABD中,AB=229122BD AD-=-=∴四边形BDFC的面积为S=22×3=62;②若BC=DC=3 过点C作CG⊥AF于G,则四边形AGCB是矩形,所以,AG=BC=3,所以,DG=AG-AD=3-1=2,在Rt△CDG中,由勾股定理得,2222325CG CD DG=-=-=∴四边形BDFC的面积为S=35③BD=CD时,BC边上的中线应该与BC垂直,从而得到BC=2AD=2,矛盾,此时不成立;综上所述,四边形BDFC的面积是2或35【点睛】本题考查了平行四边形的判定与性质,等腰三角形的性质,全等三角形的判定与性质,(1)确定出全等三角形是解题的关键,(2)难点在于分情况讨论.22. 如图,已知△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E作EG⊥AC于G,交BC的延长线于F.(1)求证:AE=BE;(2)求证:FE是⊙O的切线;(3)若FE=4,FC=2,求⊙O的半径及CG的长.【答案】(1)详见解析;(2)详见解析;(3)6 5 .【解析】(1)证明:连接CE,如图1所示:∵BC是直径,∴∠BEC=90°,∴CE⊥AB;又∵AC=BC,∴AE=BE.(2)证明:连接OE,如图2所示:∵BE=AE,OB=OC,∴OE是△ABC的中位线,∴OE∥AC,AC=2OE=6.又∵EG⊥AC,∴FE⊥OE,∴FE是⊙O的切线.(3)解:∵EF是⊙O的切线,∴FE2=FC•FB.设FC=x,则有2FB=16,∴FB=8,∴BC=FB﹣FC=8﹣2=6,∴OB=OC=3,即⊙O的半径为3;∴OE=3.∵OE∥AC,∴△FCG∽△FOE,∴CG FCOE FO=,即2323CG=+,解得:CG=65.点睛:本题利用了等腰三角形三线合一定理,三角形中位线的判定,切割线定理,以及勾股定理,还有平行线分线段成比例定理,切线的判定等知识.23. 为了更好的治理西流湖水质,保护环境,市治污公司决定购买10 台污水处理设备.现有A、B 两种型号的设备,其中每台的价格,月处理污水量如下表:A 型B 型价格(万元/台) a b处理污水量(吨/月)240 200经调查:购买一台A 型设备比购买一台B 型设备多2 万元,购买2 台A 型设备比购买3 台B 型设备少6 万元.(1)求a,b 的值;(2)经预算:市治污公司购买污水处理设备的资金不超过105 万元,你认为该公司有哪几种购买方案;(3)在(2)问的条件下,若每月要求处理西流湖的污水量不低于2040 吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.【答案】(1)1210ab==⎧⎨⎩;(2)①A型设备0台,B型设备10台;②A型设备1台,B型设备9台;③A型设备2台,B型设备8台. ;(3)为了节约资金,应选购A型设备1台,B型设备9台.【解析】【分析】(1)根据“购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元”即可列出方程组,继而进行求解;(2)可设购买污水处理设备A型设备x台,B型设备(10-x)台,则有12x+10(10-x)≤105,解之确定x 的值,即可确定方案;(3)因为每月要求处理流溪河两岸的污水量不低于2040吨,所以有240x+200(10-x)≥2040,解之即可由x的值确定方案,然后进行比较,作出选择.【详解】(1)根据题意得:2326a bb a-=-=⎧⎨⎩,∴1210ab==⎧⎨⎩;(2)设购买污水处理设备A型设备x台,B型设备(10−x)台,则:12x+10(10−x)⩽105,∴x⩽2.5,∵x取非负整数,∴x=0,1,2,∴有三种购买方案:①A型设备0台,B型设备10台;②A型设备1台,B型设备9台;③A型设备2台,B型设备8台.(3)由题意:240x+200(10−x)⩾2040,∴x⩾1,又∵x⩽2.5,x取非负整数,∴x为1,2.当x=1时,购买资金为:12×1+10×9=102(万元),当x=2时,购买资金为:12×2+10×8=104(万元),∴为了节约资金,应选购A型设备1台,B型设备9台.【点睛】此题考查一元一次不等式的应用,二元一次方程组的应用,解题关键在于理解题意列出方程.24. 对于某一函数给出如下定义:若存在实数p,当其自变量的值为p时,其函数值等于p,则称p为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q为零.例如:下图中的函数有0,1两个不变值,其不变长度q等于1.(1)分别判断函数y=x-1,y=x-1,y=x2有没有不变值?如果有,直接写出其不变长度;(2)函数y=2x2-bx.①若其不变长度为零,求b的值;②若1≤b≤3,求其不变长度q取值范围;(3) 记函数y=x2-2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2,函数G的图象由G1和G2两部分组成,若其不变长度q满足0≤q≤3,则m的取值范围为 .【答案】详见解析.【解析】试题分析:(1)根据定义分别求解即可求得答案;(2)①首先由函数y=2x2﹣bx=x,求得x(2x﹣b﹣1)=0,然后由其不变长度为零,求得答案;②由①,利用1≤b≤3,可求得其不变长度q的取值范围;(3)由记函数y=x2﹣2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2,可得函数G的图象关于x=m对称,然后根据定义分别求得函数的不变值,再分类讨论即可求得答案.试题解析:解:(1)∵函数y=x﹣1,令y=x,则x﹣1=x,无解;∴函数y=x﹣1没有不变值;∵y=x-1 =1x,令y=x,则1xx=,解得:x=±1,∴函数1yx=的不变值为±1,q=1﹣(﹣1)=2.∵函数y=x2,令y=x,则x=x2,解得:x1=0,x2=1,∴函数y=x2的不变值为:0或1,q=1﹣0=1;(2)①函数y=2x2﹣bx,令y=x,则x=2x2﹣bx,整理得:x(2x﹣b﹣1)=0.∵q=0,∴x=0且2x﹣b﹣1=0,解得:b=﹣1;②由①知:x(2x﹣b﹣1)=0,∴x=0或2x﹣b﹣1=0,解得:x 1=0,x 2=12b +.∵1≤b ≤3,∴1≤x 2≤2,∴1﹣0≤q ≤2﹣0,∴1≤q ≤2; (3)∵记函数y =x 2﹣2x (x ≥m )的图象为G 1,将G 1沿x =m 翻折后得到的函数图象记为G 2,∴函数G 的图象关于x =m 对称,∴G :y =22)22()(2(2)()m x x x x m m x x m -⎧-≥⎨--<⎩ .∵当x 2﹣2x =x 时,x 3=0,x 4=3; 当(2m ﹣x )2﹣2(2m ﹣x )=x 时,△=1+8m ,当△<0,即m <﹣18时,q =x 4﹣x 3=3;当△≥0,即m ≥﹣18时,x 5x 6 ①当﹣18≤m ≤0时,x 3=0,x 4=3,∴x 6<0,∴x 4﹣x 6>3(不符合题意,舍去); ②∵当x 5=x 4时,m =1,当x 6=x 3时,m =3;当0<m <1时,x 3=0(舍去),x 4=3,此时0<x 5<x 4,x 6<0,q =x 4﹣x 6>3(舍去);当1≤m ≤3时,x 3=0(舍去),x 4=3,此时0<x 5<x 4,x 6>0,q =x 4﹣x 6<3;当m >3时,x 3=0(舍去),x 4=3(舍去),此时x 5>3,x 6<0,q =x 5﹣x 6>3(舍去);综上所述:m 的取值范围为1≤m ≤3或m <﹣18. 点睛:本题属于二次函数的综合题,考查了二次函数、反比例函数、一次函数的性质以及函数的对称性.注意掌握分类讨论思想的应用是解答此题的关键.。
2021年浙江省中考数学试题附解析

2021年浙江省中考数学试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.菱形 ABCD 的对角线 AC = 10,BD= 6,则tan 2A 等于( ) A .45 B .35 C .33434D . 以上都不对 2.一个扇形的半径等于一个圆的半径的 2倍,且面积相等,则这个扇形的圆心角是( )A .45°B .60°C .90°D .180°3.如图,A 是半径为5的⊙O 内的一点,且 OA=3,过点A 且长小于8的弦有( )A .0 条B .1 条C .2 条D .4 条4.△DEF 由△ABC 平移得到的,点A (-1,-4)的对应点为D (1,-l ),则点B (1,1)的对应点E ,点C (-1,4)的对应点F 的坐标分别为( )A .(2,2),(3,4)B .(3,4),(1,7)C .(-2,2),(1,7)D .(3,4),(2,-2)5.把图形(1)进行平移,能得到的图形是( )6.按下面的程序计算,若开始输入的值x 为正数,最后输出的结果为656,则满足条件的x 的不同值最多有 ( )A .2个B .3个C .4个D .5个 7.下列各分式中与11y x +-的值相等的分式是( ) A . 11y x -- B . 11y x --- C . 11y x +-- D . 11y x-+8.下面有一组按规律排列的数:1,2,4,8,16,32,…则第 2007 个数应是( )A .20052B .20062C .20072D .200829.如图足球是由32块黑白相间的牛皮缝制而成的,黑皮可看做正五边形,白皮可看做正六边形,设白皮有x 块,则黑皮有(32-x )块,每块白皮有六条边,共6x 条边,因每块黑皮有三条边和白皮连在一起,故黑皮有3x 条边,要求出白皮黑皮的块数,列出的方程正确的是( )A .3x=32-xB .3x=5(32-x )C .6x=32-xD .5x=3(32-x )二、填空题10.当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小 (填 “相同”、“不一定相同”、“不相同”之一).11.“百城馆”中一滑梯的倾斜角α= 60°,则该滑梯的坡比为 .12.如图,小亮从A 点出发前进10m ,向右转15,再前进10m ,又向右转15,…,这样一直走下去,他第一次回到出发点A 时,一共走了 m .13.在矩形ABCD 中,对角线AC 与BD 所夹的钝角为l20°,AC=8 cm ,则矩形较长的一组对边距离为 ,较长的一组对边长为 .14. 8855x x x x --=--成立,则x 的取值范围是 . 15.已知:25,27a b b c +=-=,则代数式222a ac c ++的值是 .16.指出下列事件是必然事件,不可能事件,还是不确定事件?在 5 张卡片上各写有 0,2,4,6,8 中的一个数,从中抽取一张.(1)为奇数 ;(2)为偶数 ;(3)为 4 的倍数: .17.国家规定存款利息的纳税办法是:利息税=利息×20,银行一年定期储蓄的年利率为 1. 98,今年小刚取出一年到期的本金及利息时,缴纳了 3. 96 元利息税,则小刚一年前存入银行的钱为 .18. 如果将中午12:00记为 0,12:00以后为正,以时为单位,那么上午 8:00应表示为 .19.在数轴上,与表示-1 的点的距离为 2 个单位长度的点有 个,是 .三、解答题20.九年级1班将竞选出正、副班长各1名,现有甲、乙两位男生和丙、丁两位女生参加竞选.(1)男生当选班长的概率是 ;(2)请用列表或画树状图的方法求出两位女生同时..当选正、副班长的概率.21.如图所示,四边形ABCD是平行四边形,E,F分别在AD,CB的延长线上,且DE=BF,连结FE分别交AB,CD于点H,G.写出图中的一对全等三角形(不再添加辅助线)是.并给予证明.(说明:写出证明过程中的重要依据)22.已知 c 为实数,并且方程230+-=一个根,求方x x c-+=一个根的相反数是方程230x x c程230x x c+-=的根和 c的值.23.如图,在△ABC中,AB = AC,∠BAC =28°,分别以AB、,AC为边作等腰直角三角形ABD 和等腰直角三角形 ACE,使∠BAD= ∠CAE =90°.(1)求∠DBC的度数;(2)分别连按BE、CD. 试说明CD=BE.24.如图,△ABC和△DBC都是直角三角形,∠A=∠D=90°,AB=DC.说明:△EBC是等腰三角形.25.如图,CD⊥AB,EF⊥AB,∠1 =∠2,试说明∠AGD =∠ACB.26.有两个可以自由转动的均匀转盘A、B,分别被分成 4等份、3等份,并在每份内均标有数字,如图所示. 小颖和小刚同学用这两个转盘做游戏,游戏规则如下:①分别转动转盘A与B;②两个转盘停止后,将两个指针所指扇形内的数字相加;③如和为0,小颖获胜;否则小刚获胜.(1)用列表(或树状图)法求小颖获胜的概率;(2)你认为这个游戏对双方公平吗?请说明理由.27.如图,在△ABC中,已知∠ABC=66°,∠ACB=54°,BE是AC上的高,CF是AB上的高,H是BE和CF的交点,求∠ABE、∠ACF和∠BHC的度数.28.有一种电动车,只有一个电瓶,充一次电最多只能行驶7 h ,李老师骑此电动车上班,上班途中他把车速固定在40 km /h ,回家途中他把车速固定在30 km /h ,问李老师家离他所在的学校最多有多远,他才能安然返回?(否则电不足)29.计算: (1)2[92(52)]⨯--(精确到 0.01)(2)3243552π-+-(精确到 0.01)30.如图所示,长方形ABCD 与长方形BEFG 等长等宽,如将长方形BEFG 向右平移,距离为EF ,长方形ABCD 向右平移距离为3个BC ,则恰好构成新长方形AEPQ ,若AEPQ 周长为56,求长方形AEPQ 的面积.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.C3.A4.B5.C6.C7.C8.B9.B二、填空题10.相同11.3:112.24013.4 cm,43 cm14.58x<≤15.416.(1)不可能事件;(2)必然事件;(3)不确定事件17.1000元18.-419.2,-3 和+1三、解答题20.解:(1)12;(2)树状图为:所以,两位女生同时当选正、副班长的概率是21126=.(列表方法求解略)21.略22.10x=,23x=-,0c= 23.(1)在△ABC中,AB=AC,∠BAC=28°,∴∠ABC=12×(180°-28°)=76°.∵△ADB为等腰直角三角形,∴AD=AB,∠DBA=45°,∴∠DBC=∠DBA+∠ABC=45°+76°=121°.(2)∵△ABD和△ACE都是等腰直角三角形,AB=AD,AC=AE,∠BAD=∠CAE=90°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠BAE.又∵AB=AC,∴AD=AB=AC=AE,∴△CAD≌△BAE,∴CD=BE.24.说明Rt△ABC≌△Rt△DCF25.∵CD⊥AB,EF⊥AB,∴CD∥EF,∴∠2=∠3.∵∠l=∠2,∴∠1=∠3,∴DG∥BC,∴∠AGD=∠ACB.26.(1)列表略,求得小颖获胜概率为 P=14;(2)这个游戏不公平,因为小颖获胜的概率为 P=14,而小刚获胜的概率为P=34,二者不相等,所以不公平27.∠ABE=30°,∠ACF=30°,∠BHC=120°.28.l2O km29.(1)17.06 (2)6.92在此输入试卷标题,也可以从WORD文件复制粘贴30.192。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学模拟试卷2一、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)(共10题;共29分)1.计算25-3×[32+2×(-3)]+5的结果是( )A. 21B. 30C. 39D. 712.如果用表示1个立方体,用表示两个立方体叠加,用█表示三个立方体叠加,那么下图由6个立方体叠成的几何体的主视图是( )A. B. C. D.3.据报道,2017年11月11日淘宝网一天的销售额为1682亿元,这个数据用科学记数法表示为()A. 1682×108B. 16.82×1010C. 1.682×1010D. 1.682×10114.如下图中的图象(折线ABCDE)描述了一汽车在某一直路上的行驶过程中,汽车离出发地的距离S(千米)和行驶时间t(小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车在途中停留了0.5小时;②汽车行驶3小时后离出发地最远;③汽车共行驶了120千米;④汽车返回时的速度是80千米/小时.其中正确的说法共有( )A. 1个B. 2个C. 3个D. 4个5.下列计算错误的是()A. a2÷a0•a2=a4B. a2÷(a0•a2)=1C. (﹣1.5)8÷(﹣1.5)7=﹣1.5D. ﹣1.58÷(﹣1.5)7=﹣1.56.如果把存入3万元记作+3万元,那么支取2万元记作()A. +2万元B. ﹣2万元C. ﹣3万元D. +3万元7.设S1=1,S2=1+3,S3=1+3+5,…,S n=1+3+5+…+(2n-1),S= + +… (其中n为正整数),当n=20时,S的值为()A. 200B. 210C. 390D. 4008.一个不透明的盒子中装有3个白球、9个红球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的可能性是()A. B. C. D.9.在Rt△ABC中,∠C=90°,BC=a,AC=b,a+b=16,则Rt△ABC的面积S关于边长a的函数关系式为( ).A. B. C. S=a2-16a D. S=a2-16a10.如图,在□ABCD中,点M为CD中点,AM 与BD相交于点N,那么S△DM N∶S□ABCD为()A. 1∶12B. 1∶9C. 1∶8D. 1∶6二、填空题(本大题共6小题,每小题4分,共24分)(共6题;共20分)11.因式分解:________.12.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,2个大齿轮和3个小齿轮配成一套,问,需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?若设需安排x名工人加工大齿轮,y名工人加工小齿轮,则根据题意可得方程组________.13.已知扇形的弧长为4π,半径为8,则此扇形的圆心角为________.14.一次函数的图象过点且与直线平行,那么该函数解析式为________.15.如图,△ABC中.点D在BC边上,BD=AD=AC,E为CD的中点.若∠CAE=16°,则∠B为________度.16.如图,已知中,,顶点分别在反比例函数与的图象上,则的值为________.三、解答题(本大题共8小题,共66分)(共8题;共58分)17.如图所示,已知△ABC中,AB=AC,∠BAD=30°,AD=AE,求∠EDC的度数.18.计算:(1﹣)0+|﹣|﹣2cos45°+()﹣119.九(1)数学兴趣小组为了测量河对岸的古塔A、B的距离,他们在河这边沿着与AB平行的直线l上取相距20m的C、D两点,测得∠ACB=15°,∠BCD=120°,∠ADC=30°,如图所示,求古塔A、B的距离.20.学校为了了解我校七年级学生课外阅读的喜好,随机抽取我校七年级的部分学生进行问卷调查(每人只选一种书籍).下图是整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息回答问题:(1)这次活动一共调查了________名学生;(2)补全条形统计图;(3)在扇形统计图中,喜欢漫画的部分所占圆心角是________度;(4)若七年级共有学生2800人,请你估计喜欢“科普常识”的学生人数共有多少名?21.我校为开展研究性学习,准备购买一定数量的两人学习桌和三人学习桌,若购买1张两人学习桌,1张三人学习桌需230元;若购买2张两人学习桌,3张三人学习桌需590元.(1)求两人学习桌和三人学习桌的单价;(2)学校欲投入资金不超过6600元,购买两种学习桌共60张,以至少满足137名学生的需求,有几种购买方案?并求哪种购买方案费用最低?22.如图,公交车行驶在笔直的公路上,这条路上有A,B,C,D四个站点,每相邻两站之间的距离为5千米,从A站开往D站的车称为上行车,从D站开往A站的车称为下行车,第一班上行车、下行车分别从A 站、D站同时发车,相向而行,且以后上行车、下行车每隔10分钟分别在A,D站同时发一班车,乘客只能到站点上、下车(上、下车的时间忽略不计),上行车、下行车的速度均为30千米/小时.(1)问第一班上行车到B站、第一班下行车到C站分别用时多少?(2)若第一班上行车行驶时间为t小时,第一班上行车与第一班下行车之间的距离为s千米,求s与t的函数关系式;(3)一乘客前往A站办事,他在B,C两站间的P处(不含B,C站),刚好遇到上行车,BP=x千米,此时,接到通知,必须在35分钟内赶到,他可选择走到B站或走到C站乘下行车前往A站.若乘客的步行速度是5千米/小时,求x满足的条件.23.如图1,已知抛物线y=﹣x2+mx+m﹣2的顶点为A,且经过点B(3,﹣3).(1)求顶点A的坐标(2)若P是抛物线上且位于直线OB上方的一个动点,求△OPB的面积的最大值及比时点P的坐标;(3)如图2,将原抛物线沿射线OA方向进行平移得到新的抛物线,新抛物线与射线OA交于C,D两点,请问:在抛物线平移的过程中,线段CD的长度是否为定值?若是,请求出这个定值;若不是,请说明理由.24.已知:平行四边形,对角线点P为射线BC上一点,,(点M与点B分别在直线AP的两侧),且联结MD.(1)当点M在内时,如图一,设求关于的函数解析式.(2)请在图二中画出符合题意得示意图,并探究:图中是否存在与相似的三角形?若存在,请写出证明过程,若不存在,请说明理由(3)当为等腰三角形时,求的长.答案解析部分一、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.【解析】【解答】解:25-3×[32+2×(-3)]+5=25-3×(9-6)+5=25-9+5=21.故答案为:A.【分析】按照有理数混合运算的顺序计算出结果,即可得到结论.2.【解析】【解答】解:从正面看,左边两列都只有一个正方体,所以选;中间一列有三个正方体,所以选█;右边一列是一个正方体,所以选,故答案为:B.【分析】根据主视图是从正面看到的图形,数一下每一列从前面看重叠的个数,相应的选择图形即可.3.【解析】【解答】解:科学记数法为将一个数表示为a×10n(1≤<10,n为整数)的形式,∴1682亿=1.682×1011故答案为:D.【分析】根据科学记数法将一个数表示为a×10n(1≤<10,n为整数)的形式,据此求解。
4.【解析】【解答】解:①汽车在途中停留了2-1.5=0.5小时,正确;②汽车行驶3小时后离出发地最远,正确;③汽车共行驶了120+120=240千米,故错误;④汽车返回时的速度是120÷(4.5-3)=80千米/小时,正确.故正确的个数为3,故答案为:C.【分析】根据图象提供的信息解决问题,弄懂坐标系中的横轴与纵轴所代表的实际意义,找出各段图象的关键点的坐标即可一一判断得出答案.5.【解析】【解答】解:∵a2÷a0•a2=a4,∴选项A不符合题意;∵a2÷(a0•a2)=1,∴选项B不符合题意;∵(-1.5)8÷(-1.5)7=-1.5,∴选项C不符合题意;∵-1.58÷(-1.5)7=1.5,∴选项D符合题意.故答案为:D.【分析】A、从左到右依次运算,先按同底数幂的除法法则,再按同底数幂的乘法法则算出结果;B、先按同底数幂的乘法法则算括号内,再按同底数幂的除法法则算出答案;C、同底数幂的除法,底数不变,指数相减算出结果;D、此题先根据乘方的性质,有理数除法的符号法则,确定符号,再按同底数幂的除法,底数不变,指数相减算出结果,根据计算的结果即可判断。
6.【解析】【解答】解:“正”和“负”相对,∵存入3万元记作+3万元,∴支取2万元应记作﹣2万元,故答案为:B.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.7.【解析】【解答】解:∵S1=1,S2=1+3=4,S3=1+3+5=9,…,S n=1+3+5+…+(2n-1)=n2,S= + +…(其中n为正整数),∴当n=20时,S的值为:S= + + +…+ =1+2+3+4+…+20=210,故答案为:B.【分析】由题意可知S1=1,S2=22,S3=32…S n=n2,将n=20代入公式S= + +… ,进行计算可求值。
8.【解析】【解答】解:∵一个不透明的盒子中装有3个白球,9个红球,∴球的总数=3+9=12(个),∴这个盒子中随机摸出一个球,摸到红球的可能性= .故答案为:A.【分析】先求出球的总数,再由概率公式即可得出结论.9.【解析】【解答】解:∵a+b=16,∴AC=b=16-a(0<a<16),又∵BC=a∴Rt△ABC的面积S关于边长a的函数关系式为S==,故答案为:B.【分析】因为△ABC是直角三角形,利用面积公式可表示,S= ,又通过a+b=16,得AC=b=16-a,将BC=a、AC =16-a代入,即可得到,△ABC的面积S与边长a的函数关系式。
10.【解析】【解答】解:∵点M为CD中点,∴DM:DC=1:2,∵四边形ABCD是□ABCD,∴DC∥AB,△DMN∽△BAN,DC=AB,∴DM:AB=1:2,则△DMN和△BAN的高之比为1:2,△DMN与□ABCD的高之比为1:3,∴故答案为:A.【分析】根据中点的定义得出DM:DC=1:2,根据平行四边形的性质得出DC∥AB,DC=AB,根据平行于三角形一边的直线截其它两边,所截的三角形与原三角形相似得出△DMN∽△BAN,根据相似三角形对应高的比等于相似比得出则△DMN和△BAN的高之比为1:2,进而得出△DMN与□ABCD的高之比为1:3,根据三角形的面积计算方法,平行四边形的面积计算方法即可算出答案。