中考数学总复习第二编中档专项训练篇中档题型训练(七)统计与概率试题

合集下载

中考数学复习《统计与概率》专项提升训练题-附答案

中考数学复习《统计与概率》专项提升训练题-附答案

中考数学复习《统计与概率》专项提升训练题-附答案学校:班级:姓名:考号:说明:共三大题,23小题,满分120分,作答时间120分钟.中考对接点统计常考频数分布图(表)、条形统计图、扇形统计图、折线统计图,利用各种统计量分析数据,样本估计总体;概率常考利用画树状图或列表的方法计算随机事件的概率,用频率估计概率一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请把正确答案的代号填在下表中)题号12345678910答案1.下列事件中适合采用抽样调查的是A.对乘坐飞机的乘客进行安检B.学校招聘教师,对应聘人员进行面试C.对神舟十四号太空飞船各零部件质量情况的检查D.对市面上某品牌奶粉质量情况的调查2.下列事件是必然事件的是A.小明中考模拟考时,数学成绩都是110分以上,则中考时,他的数学成绩必定在110分以上B.明天不会出太阳C.367人中至少有2人生日相同D.随意抛掷两枚质地均匀的骰子,两次朝上的数字之和等于13.某市教委高度重视安全教育,要求各级各类学校从认识安全警告标志入手开展安全教育活动.某数学兴趣小组准备了4张印有安全图标的卡片,正面图案如图所示,它们除此之外完全相同,把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片的正面图案中有一张是轴对称图形的概率是A.12B.13C.14D.164.数学老师在江西智慧作业中布置了8道题目,根据“作业归集”中学生的答题情况制作了如下统计表:答对题目数量/道5678人数419189根据表中数据,全班同学答对题目数量(单位:道)的中位数和众数分别是A.6, 6B.6, 7C.7, 7D.7, 65.关于事件与概率,下面表述不正确的是A.若P(A)=0,则A为不可能事件B.若A为不可能事件,则P(A)=0C.若A为必然事件,则P(A)=1D.若A为随件事件,则0≤P(A)≤16.小明在调查全班同学喜爱的电视节目时,若喜爱体育节目的同学占全班同学的30%,那么在制作扇形统计图时,“体育”节目对应扇形的圆心角的度数为A.30°B.108°C.54°D.120°7.如图,在6×6正方形网格中,任选一个白色的小正方形并涂黑,恰好能使图中黑色部分为轴对称图形的概率是A.533B.433C.111D.2338.已知在一个样本中,50个数据分别落在5个小组内,第一,二,三,五组数据分别为2,6,7,15,则第四小组的频数和频率分别为A.25,50%B.20,50%C.20,40%D.25,40%9.教育部规定,初中生每天的睡眠时间应为9个小时.小红同学记录了她一周的睡眠时间.并将统计结果绘制成如图所示的折线统计图,则小红这一周每天睡眠时间在9个小时以上(含9个小时)的有A.4天B.3天C.2天D.1天10.国庆期间,数学研究小组对游客前往山西凤凰山生态植物园的出行方式进行了随机抽样调查,将结果整理后绘制了如下两幅统计图(尚不完整).根据图中的信息,下列结论中错误的是A.本次抽样调查的样本容量是2000B.扇形统计图中的m为5C.若国庆期间去该地观光的游客有1万人,则选择自驾方式出行的大约有4500人D.样本中选择自驾方式出行的有1000人二、填空题(本大题共5个小题,每小题3分,共15分)11.如图,一个游戏盘中,红、黄、蓝三个扇形的圆心角度数分别为45°,120°,195°,让转盘自由转动,指针停止后(指针指向分界线时重新转)在黄色区域的概率是.12.某鞋厂调查了商场一个月内不同尺码男鞋的销量,在平均数、中位数、众数和方差这几个统计量中,该鞋厂最关注的是.13.小明、小华两人进行飞镖比赛,已知他们每人十次投得的成绩如图所示,那么两人中成绩更稳定的是.14.垃圾分类利国利民.某校宣传小组就“空矿泉水瓶应投放到哪种颜色的垃圾收集桶内”进行统计活动,他们随机采访100名学生并作好记录.以下是排乱的统计步骤:①从扇形统计图中分析出本校学生对空矿泉水瓶投放的正确率;①绘制扇形统计图来表示空矿泉水瓶投放各收集桶所占的百分比;①整理采访记录并绘制空矿泉水瓶投放频数分布表.正确统计步骤的顺序应该是.15.如图,这是某旅游景区某周当日最高气温的折线统计图,则这7天的日最高气温的平均数为℃.三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(本题共2小题,每小题5分,共10分)(1)已知数据3, 4, 5, 8, x的平均数为5,求这组数据的众数.(2)将2023,-22与π, 3.14159和√4, sin 60°六个数字分别写在六张卡片上,这些卡片除了数字外其他都相同,洗匀7后背面朝上放在桌面上,任取一张卡片,求卡片上面写的数字恰是无理数的概率.17.(本题8分)小明和小亮用如图所示的两个转盘(每个转盘被平均分成面积相等的扇形)做游戏:同时转动两个转盘(指针指向分界线时重新转),停止转动后,若指针所指两个区域的数字之差的绝对值为奇数,则小明胜;若指针所指两个区域的数字之差的绝对值为偶数,则小亮胜.这个游戏对双方公平吗?请你用列表法或树状图说明理由.18.(本题7分)甲、乙两位同学参加数学综合素质测试,各项成绩(单位:分)如下表:数与代数空间与图形统计与概率综合与实践学生甲93938990学生乙94929486(1)甲成绩的众数是;乙成绩的中位数是.(2)如果数与代数、空间与图形、统计与概率、综合与实践的成绩按4①3①1①2计算,那么甲、乙的数学综合素质成绩分别为多少分?19.(本题8分)某校九年级两个班各选派6名学生参加“垃圾分类知识竞赛”,各参赛选手的成绩如下(满分150分):九(1)班: 86, 91, 92, 92, 94, 96.九(2)班: 83, 89, 90, 90, 91, 97.(1)九(1)班参赛选手成绩的中位数是分,众数是分.(2)求九(2)班参赛选手成绩的方差.20.(本题8分)某商场国庆期间为促销特举办抽奖活动,规则如下:在不透明的袋子中有2个红球和3个黑球,这些球除颜色外都相同,顾客每次摸出一个球,若摸到红球,则获得1份奖品,若摸到黑球,则没有奖品.(1)如果小颖只有一次摸球机会,那么小颖获得奖品的概率为.(2)如果小颖有两次摸球机会(摸出后不放回),求小颖获得2份奖品的概率.(请用“画树状图”或“列表”的方法写出分析过程)21.(本题8分)某校在七年级新生中举行了全员“防溺水”安全知识竞赛,竞赛题目共10题,每题10分.现从三个班中各随机抽取10名同学的成绩(单位:分).收集数据:1班: 90, 70, 80, 80, 80, 90, 80, 90, 80, 1002班: 60, 80, 80, 90, 90, 90, 60, 90, 100, 1003班: 80, 90, 60, 80, 80, 90, 80, 100, 100, 80整理、分析数据:班级平均数中位数众数1班m80802班84n903班848080根据以上信息回答下列问题:(1)填空:表格中m=,n=.(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩最好?请说明理由.(3)为了让学生重视安全知识的学习,学校将给竞赛成绩满分的同学颁发奖状,已知该校七年级新生共630人,试估计需要准备多少张奖状.22.(本题13分)为了加强对食堂的监控,有效保证饮食质量,某学校随机抽取部分学生开展满意度问卷调查,学生根据实际情况给食堂评分,并将本次调查结果制成如下统计表:评分/分45678910人数6183646a284比率3%9%18%23%31%b2%(1)本次问卷调查,学生所评分数的众数是分.(2)根据本次调查结果,若从本校随机抽选一名学生给食堂评分,估计他的评分不低于8分的概率是多少?(3)学校决定:本次调查综合得分8~10分为“满意”,给予食堂通报表扬; 6~8分为“比较满意”,提醒食堂进行改善; 0~6分为“不满意”,责令食堂限时整改.根据本次调查结果,判断学校可能对食堂采取何种措施,说明理由.(这里的0~6表示大于等于0同时小于6)23.(本题13分)某校文学社为了解学生课外阅读情况,对本校七年级的学生进行了课外阅读知识水平检测.为了解情况,从七年级学生中随机抽取部分女生和男生的测试成绩,这些学生的成绩记为x(0≤x≤100),将所得数据分为5组:A组: x<60.B组: 60≤x<70.C组: 70≤x<80.D组: 80≤x<90.E组: 90≤x≤100.学校对数据进行分析后,提供了如下信息:女生成绩在70≤x<80这一组的数据:70,72,72,72.男生成绩在60≤x<80这一组的数据:72,68,62,68,70.抽取的男生和女生测试成绩的平均数、中位数、众数如表所示:平均数中位数众数男生76a68女生7672b请根据以上信息解答下列问题:(1)a=, b=.(2)通过以上的数据分析,你认为(填“男”或“女”)学生的课外阅读整体水平较高,请说明理由:.(写出一条理由即可)(3)现在打算从得分为D组的学生中随机选出2名学生调查他们课外阅读的时间,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.参考答案1.D2.C3.A4.D5.D6.B7.B8.C9.C 10.D 提示:样本容量是700÷35%=2000,故A 正确; m %=1-45%-35%-15%=5% ①m=5,故B 正确;10000×45%=4500(人),故C 正确; 2000×45%=900(人),故D 错误.11.1312.众数 13.小明 14.①①① 15.20 16.解:(1)由题意,得3+4+5+8+x=5×5,解得x=5.所以数据3, 4, 5, 8, 5的众数是5. ......................................................................................................................... 5分 (2)①六个数字2023,-227,π, 3.14159,√4, sin 60°中,无理数只有π和sin 60°两个①P (卡片上面写的数字恰是无理数)=26=13. ........................................................................................................... 5分 17.解:这个游戏对双方公平. .................................................................................................................................. 2分 理由:画树状图如下:共有12种等可能的结果,其中指针所指两个区域的数字之差的绝对值为奇数的结果有6种,指针所指两个区域的数字之差的绝对值为偶数的结果有6种,①小明胜的概率=612=12,小亮胜的概率=612=12 ①小明胜的概率=小亮胜的概率①这个游戏对双方公平. ......................................................................................................................................... 8分 18.解:(1)93;93. ........................................................................................................................................................ 1分 (2)甲的数学综合素质成绩为93×4+93×3+89×1+90×24+3+1+2=92(分), (4)分 乙的数学综合素质成绩为94×4+92×3+94×1+86×24+3+1+2=91.8(分). ................................................................................ 7分19.解:(1)92; 92. ....................................................................................................................................................... 3分 (2)平均数为83+89+90×2+91+976=90(分),方差s 2=16[(83-90)2+(89-90)2+2×(90-90)2+(91-90)2+(97-90)2]=503. (8)分20.解:(1)25. ................................................................................................................................................................ 2分(2)列表如下:红1红2 黑1 黑2 黑3 红1(红1,红2)(红1,黑1) (红1,黑2) (红1,黑3) 红2 (红2,红1)(红2,黑1)(红2,黑2) (红2,黑3) 黑1 (黑1,红1) (黑1,红2)(黑1,黑2)(黑1,黑3) 黑2 (黑2,红1) (黑2,红2) (黑2,黑1)(黑2,黑3)黑3(黑3,红1)(黑3,红2)(黑3,黑1)(黑3,黑2)................................................................................................................................................................................. 6分 由上表可知,共有20种等可能的结果,其中两次摸到红球的结果数为2①P (两次获得奖品)=220=110. .................................................................................................................................... 8分 21.解:(1)84;90. ........................................................................................................................................................ 2分 (2)2班成绩最好.理由如下: 从平均数上看,三个班都一样;从中位数上看, 1班和3班都是80分, 2班是90分; 从众数上看, 1班和3班都是80分, 2班是90分.综上所述, 2班的成绩最好. ................................................................................................................................... 5分 (3)630×530=105(张).答:估计需要准备105张奖状. ............................................................................................................................... 8分 22.解:(1)8. ............................................................................................................................................................... 3分 (2)6÷3%=200a=200-6-18-36-46-28-4=62. ①由表格知评分不低于8分的频率是62+28+4200×100%=47% (或1-3%-9%-18%-23%=47%) ............................................................................................................................... 7分 ①评分不低于8分的概率是47%. ......................................................................................................................... 8分 (3)方法一:x =4×6+5×18+6×36+7×46+8×62+9×28+10×4200=7.2(分). ........................................................................... 11分①6<7.2<8①学校对食堂采取提醒改善的措施. ................................................................................................................... 13分方法二: b=28200×100%=14%.x =4×3%+5×9%+6×18%+7×23%+8×31%+9×14%+10×2%=7.2(分). ........................................................... 11分 ①6<7.2<8①学校对食堂采取提醒改善的措施. ................................................................................................................... 13分 23.解:(1)71;72. ........................................................................................................................................................ 4分 提示:本次调查人数为(2+4)÷30%=20(名)B 组的人数为20×25%=5(人), B 组中的女生有5-3=2(名) 调查人数中,女生有1+2+4+1+2=10(人),男生有20-10=10(人)抽查人数中,10名男生成绩处在中间位置的两个数的平均数为71分,因此中位数是71,即a=71 在10名女生成绩中,出现次数最多的是72,因此众数是72,即b=72.(2)女; ....................................................................................................................................................................... 6分 女生成绩的中位数、众数均比男生的高. ............................................................................................................ 8分 (3)根据题意列表如下:男1男2 男3 女 男1男1男2男1男3 男1女 男2 男2男1男2男3男2女 男3 男3男1 男3男2男3女女女男1女男2女男3共有12种等可能的结果,其中1男1女的结果有6种所以恰好是1男1女的概率是612=12. ................................................................................................................... 13分。

备考2021年中考数学二轮复习:统计与概率_概率_概率公式,综合题专训及答案

备考2021年中考数学二轮复习:统计与概率_概率_概率公式,综合题专训及答案

备考2021年中考数学二轮复习:统计与概率_概率_概率公式,综合题专训及答案备考2021中考数学二轮复习:统计与概率_概率_概率公式,综合题专训1、(2019巴彦淖尔.中考真卷) 某校为了解九年级学生的体育达标情况,随机抽取名九年级学生进行体育达标项目测试,测试成绩如下表,请根据表中的信息,解答下列问题:(1)该校九年级有名学生,估计体育测试成绩为分的学生人数;(2)该校体育老师要对本次抽测成绩为分的甲、乙、丙、丁名学生进行分组强化训练,要求两人一组,求甲和乙恰好分在同一组的概率.(用列表或树状图方法解答)2、(2020通辽.中考模拟) 如图,有四张背面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A、B、C、D表示).3、(2019苏州.中考模拟) 小王同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位: )并绘制了样本的频数分布表和频数分布直方图(如图) .月均用水量(单位: )频数百分比24%1224%4 且小于7 ”从月均用水量在 , 这两个范围内的样本家庭中任意抽取中信息解答下列问题:1;请你根据以上信息,回答下列问题:(1)统计表中m的值为,统计图中n的值为,A类对应扇形的圆心角为度;(2)该校共有1500名学生,根据调查结果,估计该校最喜爱体育节目的学生人数;(3)样本数据中最喜爱戏曲节目的有4人,其中仅有1名男生.从这4人中任选2名同学去观赏戏曲表演,请用树状图或列表求所选2名同学中有男生的概率.7、(2020温州.中考模拟) 随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次统计共抽查了名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为;(2)将条形统计图补充完整;(3)该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名?(4)某天甲、乙两名同学都想从“微信”、“QQ”、“电话”三种沟通方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰好选中同一种沟通方式的概率.8、(2019桐乡.中考模拟) 2017年9月,我国中小学生迎来了新版“教育部统编义务教育语文教科书”,本次“统编本”教材最引人关注的变化之一是强调对传统文化经典著作的阅读,某校对A《三国演义》、B《红楼梦》、C《西游记》、D《水浒》四大名著开展“最受欢迎的传统文化经典著作”调查,随机调查了若干名学生(每名学生必选且只能选这四大名著中的一部)并将得到的信息绘制了下面两幅不完整的统计图:(1)本次一共调查了名学生;(2)请将条形统计图补充完整;(3)某班语文老师想从这四大名著中随机选取两部作为学生暑期必读书籍,请用树状图或列表的方法求恰好选中《三国演义》和《红楼梦》的概率.9、(2019云南.中考真卷) 甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x、y表示.若x+y为奇数,则甲获胜;若x+y为偶数,则乙获胜.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(x,y)所有可能出现的结果总数;(2)你认为这个游戏对双方公平吗?请说明理由.10、(2019宁夏回族自治区.中考真卷) 为了创建文明城市,增强学生的环保意识.随机抽取8名学生,对他们的垃圾分类投放情况进行调查,这8名学生分别标记为,其中“√”表示投放正确,“×”表示投放错误,统计情况如下表.学生垃圾类别厨余垃圾√√√√√√√√可回收垃圾√×√××√√√有害垃圾×√×√√××√其他垃圾×√√××√√√(1)求8名学生中至少有三类垃圾投放正确的概率;(2)为进一步了解垃圾分类投放情况,现从8名学生里“有害垃圾”投放错误的学生中随机抽取两人接受采访,试用标记的字母列举所有可能抽取的结果.11、(2020自贡.中考真卷) 某校为了响应市政府号召,在“创文创卫”活动周中,设置了“A:文明礼仪;B:环境保护;C;卫生保洁;D:垃圾分类 ”四个主题,每个学生选一个主题参与;为了解活动开展情况,学校随机抽取了部分学生进行调查,并根据调查结果绘制了如下条形统计图和扇形统计图.(1)本次调查的学生人数是 ________ 人, = ________ ;(2)请补全条形统计图;(3)学校要求每位同学从星期一至星期五选择两天参加活动,如果小张同学随机选择连续两天,其中有一天是星期一的概率是 ________ ;小李同学星期五要参加市演讲比赛,他在其余四天中随机选择两天,其中一天是星期三的概率是________.12、(2020瑶海.中考模拟) 为调查某市市民上班时最常用的交通工具的情况,随机抽取了部分市民进行调查,要求被调查者从“ :自行车,:家庭汽车,:公交车,:电动车,:其他”五个选项中选择最常用的一项,将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题.(1)本次调查中,一共调查了名市民;扇形统计图中,项对应的扇形圆心角是 .(2)补全条形统计图.(3)若甲上班时从A、B、C三种交通工具中随机选择一种,乙上班时从B、C、D三种交通工具中随机选择一种,请用列表法或画树状图的方法,求出甲、乙两人都不选种交通工具上班的概率.13、(2020赤峰.中考真卷) 如图1,一枚质地均匀的正四面体骰子,它有四个面,并分别标有1,2,3,4四个数字;如图2,等边三角形ABC的三个顶点处各有-个圆圈.丫丫和甲甲想玩跳圈游戏,游戏的规则为:游戏者从圜A起跳,每投掷一次骰子,骰子着地的一面点数是几,就沿着三角形的边逆时针方向连续跳跃几个边长.如:若第一次掷得点数为2,就逆时针连续跳2个边长,落到圈C;若第二次掷得点数为4,就从圈C继续逆时针连续跳4个边长,落到圈A.(1)丫丫随机掷一次骰子,她跳跃后落回到圈A的概率为________;(2)丫丫和甲甲一起玩眺圈游戏: 丫丫随机投掷一次骰子,甲甲随机投掷两次骰子,都以最终落回到圈A为胜者.这个游戏规则公平吗?请说明理由.14、(2020山西.中考真卷) 年国家提出并部署了“新基建”项目,主要包含“特高压,城际高速铁路和城市轨道交通,基站建设,工业互联网,大数据中心,人工智能,新能源汽车充电桩”等.《新基建中高端人才市场就业吸引力报告》重点刻画了“新基建”中五大细分领域(基站建设,工业互联网,大数据中心,人工智能,新能源汽车充电桩)总体的人才与就业机会.下图是其中的一个统计图.请根据图中信息,解答下列问题:(1)填空:图中年“新基建”七大领域预计投资规模的中位数是________亿元;(2)甲,乙两位待业人员,仅根据上面统计图中的数据,从五大细分领域中分别选择了“ 基站建设”和“人工智能”作为自己的就业方向,请简要说明他们选择就业方向的理由各是什么;(3)小勇对“新基建”很感兴趣,他收集到了五大细分领域的图标,依次制成编号为,,,,的五张卡片(除编号和内容外,其余完全相同),将这五张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张.请用列表或画树状图的方法求抽到的两张卡片恰好是编号为(基站建设)和(人工智能)的概率.15、(2020宿州.中考模拟) 某中学准备举办一次演讲比赛,每班限定两人报名,初三(1)班的三位同学(两位女生,一位男生)都想报名参加,班主任李老师设计了一个摸球游戏,利用已学过的概率知识来决定谁去参加比赛,游戏规则如下:在一个不透明的箱子里放3个大小质地完全相同的乒乓球,在这3个乒乓球上分别写上、、(每个字母分别代表一位同学,其中、分别代表两位女生,代表男生),搅匀后,李老师从箱子里随机摸出一个乒乓球,不放回,再次搅匀后随机摸出第二个乒乓球,根据乒乓球上的字母决定谁去参加比赛。

中考数学复习之统计与概率综合训练题(含20大题)

中考数学复习之统计与概率综合训练题(含20大题)

中考数学复习之统计与概率综合训练题(含20大题)1.小丹有3张扑克牌,小林有2张扑克牌,扑克牌上的数字如图所示.两人用这些扑克牌做游戏,他们分别从自己的扑克牌中随机抽取一张,比较这两张扑克牌上的数字大小,数字大的一方获胜.请用画树状图(或列表)的方法,求小丹获胜的概率.2.某电视台为了解观众对“谍战”题材电视剧的喜爱情况,随机抽取某社区部分电视观众,进行问卷调查,整理绘制了如下不完整的条形统计图和扇形统计图:请根据以上信息,解答下列问题:(1)在这次接受调查的女观众中,表示“不喜欢”的女观众所占的百分比是多少?(2)求这次调查的男观众人数,并补全条形统计图.(3)若该社区有男观众约1000人,估计该社区男观众喜欢看“谍战”题材电视剧的约有多少人?3.一所中学,为了让学生了解环保知识,增强的环保意识,特地举行了一次“护家乡”的环保知识竞赛,共有900名学生参加这次竞赛.为了解本次竞赛的情况,从中抽取了部分学生的成绩进行统计.分组频数频率50.5~60.540.0860.5~70.580.1670.5~80.5100.2080.5~90.5160.3290.5~100合计请根据上表和图,解答下列问题:(1)填充频率分布表中的空格;(2)补全频率分布直方图;(3)在该问题中,样本容量是;(4)全体参赛学生中,竞赛成绩的中位数落在哪个组内?(5)若成绩在90分以上(不含90分)可以获奖,在全校学生的试卷中任抽取一张,获奖的概率是多大?4.孙明和王军两人去桃园游玩,返回时打算顺便买些新鲜油桃.此时桃园仅三箱油桃,价钱相同,但质量略有区别,分为A1级、A2级、A3级,其中A1级最好,A3级最差.挑选时,三箱油桃不同时拿出,只能一箱一箱的看,也不告知该箱的质量等级.两人采取了不同的选择方案:孙明无论如何总是买第一次拿出来的那箱.王军是先观察再确定,他不买第一箱油桃,而是仔细观察第一箱油桃的状况;如果第二箱油桃的质量比第一箱好,他就买第二箱油桃,如果第二箱的油桃不比第一箱好,他就买第三箱.(1)三箱油桃出现的先后顺序共有哪几种不同的可能?(2)孙明与王军,谁买到A1级的可能性大?为什么?5.“时裳”服装店现有A、B、C三种品牌的衣服和D、E两种品牌的裤子,温馨家现要从服装店选购一种品牌的衣服和一种品牌的裤子.(1)写出所有选购方案(利用树状图或列表方法表示)(2)如果(1)中各种选购方案被选中的可能性相同,那么A品牌衣服被选中的概率是多少?6.校文学社在全校范围内随机抽取一部分读者对社刊中最感兴趣的文学栏目进行了投票.每人一张选票,每张选票只能投给一个栏目,经统计无弃权票,根据投票结果绘制的条形统计图如下:(1)这次参加投票的总人数为.(2)若全校有3000名读者,估计其中对“写作指导”最感兴趣的人数.(3)在全校3000名读者中,若对某个栏目最感兴趣的人数少于300人将会影响社刊的销售,这个栏目就需要被撤换.请通过计算判断,“新书上架”栏目是否需要被撤换.7.如图,有A、B两个转盘,其中转盘A被分成4等份,转盘B被分成3等份,并在每一份内标上数字.现甲、乙两人同时各转动其中一个转盘,转盘停止后(当指针指在边界线上时视为无效,重转),若将A转盘指针指向的数字记为x,B转盘指针指向的数字记为y,从而确定点P的坐标为P(x,y).(1)请用列表或画树状图的方法写出所有可能得到的点P的坐标;(2)计算点P在函数y=6x图象上的概率.8.宣传交通安全知识,争做安全小卫士.某校进行“交通安全知识”宣传培训后进行了一次测试.学生考分按标准划分为不合格、合格、良好、优秀四个等级,为了解全校的考试情况,对在校的学生随机抽样调查,得到图(1)的条形统计图,请结合统计图回答下列问题:(1)该校抽样调查的学生人数为名;抽样中考生分数的中位数所在等级是;(2)抽样中不及格的人数是多少?占被调查人数的百分比是多少?(3)若已知该校九年级有学生500名,图(2)是各年级人数占全校人数百分比的扇形图(图中圆心角被等分),请你估计全校优良(良好与优秀)的人数约有多少人?9.小明和小刚用如图所示的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分;当所转到的数字之积为偶数时,小刚得1分.这个游戏对双方公平吗?若公平,说明理由.若不公平,如何修改规则才能使游戏对双方公平?10.“学生坐校车上学”的安全问题越来越受到社会的关注,某校利用周末假期,随机抽查了本校若干名学生和部分家长对“初中生坐校车上学”现象的看法,统计整理制作了如下的统计图,请回答下列问题:(1)这次抽查的家长总人数为;(2)请补全条形统计图和扇形统计图;(3)从这次接受调查的学生中,随机抽查一个学生恰好抽到持“无所谓”态度的概率是.11.“你记得父母的生日吗?”这是我校在九年级学生中开展主题为“感恩”教育时设置的一个问题,有以下四个选项:A.父母生日都记得;B.只记得母亲生日;C.只记得父亲生日;D.父母生日都不记得.在随机调查了(1)班和(2)班各50名学生后,根据相关数据绘出如图所示的统计图.(1)补全频数分布直方图;(2)据此推算,九年级共900名学生中,“父母生日都不记得”的学生共多少名?(3)若两个班中“只记得母亲生日”的学生占22%,则(2)班“只记得母亲生日”的学生所占百分比是多少?12.某中学开展菜市场菜价调查活动,以锻炼同学们的生活能力.调查一共连续7天,每天调查3次,第一次8:00由各班的A小组调查,第二次13:00由B小组调查,第三次17:00由C小组调查.调查完后分析当天的菜价波动情况,七天调查结束后整理数据,就得出了菜价最便宜的某一时段.下面是同学们的一些调查情况,请你帮忙分析数据:第1天菜价调查情况(单位:元/千克)第2﹣5天平均菜价(单位:元/千克)(1)根据“第2﹣5天平均菜价”图来分析:哪种蔬果价格最便宜?(2)从第一天的调查情况来看,哪种蔬果的价格波动最小?请通过计算说明.(3)计算苹果、白菜、土豆在1﹣5天的平均菜价.(4)根据上面两个图来分析:在3﹣5天中的哪一天的哪一时段购买苹果最省钱?13.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与这个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是多少?14.某班50名同学进行数学测验,将所得成绩(得分取整数,最低分为50分)进行整理后分成五组,并绘成统计图(如图).请结合统计图提供的信息,回答下列问题.(1)请将该统计图补充完整;(2)请你写出从图中获得的三个以上的信息;(3)老师随机抽取一份试卷来分析,抽取到哪一组学生试卷的可能性较大?15.2006年,某校三个年级的初中在校学生共有796名,学生的出生月份统计如下,根据图中数据回答下列问题:(1)出生人数超过60人的月份有哪些?(2)出生人数最多的是几月?(3)在这些学生中至少有两人生日在10月5日是不可能或可能,还是必然的?(4)如果你随机地遇到这些学生中的一位,那么这位学生生日在哪一个月概率最小?16.为了给某区初一新生订做校服,某服装加工厂随机选取部分新生,对其身高情况进行调查,图甲、图乙是由统计结果绘制成的不完整的统计图.根据图中信息解答下列问题:(1)一共调查了名学生;(2)在被调查的学生中,身高在1.55~1.65m的有人,在1.75m及以上的有人;(3)在被调查的学生中,身高在1.65~1.75m的学生占被调查人数的%,在1.75m 及以上的学生占被调查人数的%;(4)如果今年该区初一新生有3200人,请你估计身高在1.65~1.75m的学生有多少人.17.某开发公司现有员工50名,所有员工的月工资情况如下表:员工管理人员普通工作人员人员结构总经理部门经理科研人员销售人员高级技工中级技工勤杂工员工数/名1423223每人月工资/元2100084002025220018001600950请你根据上述内容,解答下列问题:(1)该公司“高级技工”有人;(2)该公司的工资极差是元;(3)小张到这家公司应聘普通工作人员,咨询过程中得到两个答案,你认为用哪个数据向小张介绍员工的月工资实际水平更合理些?(4)去掉最高工资的前五名,再去掉最低工资的后五名,然后算一算余下的40人的平均工资,说说你的看法.18.为了解全校学生上学的交通方式,该校九年级(8)班的5名同学联合设计了一份调查问卷,对该校部分学生进行了随机调查.按A(骑自行车)、B(乘公交车)、C(步行)、D(乘私家车)、E(其他方式)设置选项,要求被调查同学从中单选.并将调查结果绘制成条形统计图1和扇形统计图2,根据以上信息,解答下列问题:(1)本次接受调查的总人数是人,并把条形统计图补充完整;(2)在扇形统计图中,“步行”的人数所占的百分比是,“其他方式”所在扇形的圆心角度数是;(3)已知这5名同学中有2名女同学,要从中选两名同学汇报调查结果.请你用列表法或画树状图的方法,求出恰好选出1名男生和1名女生的概率.19.有三张卡片(形状、大小、质地都相同),正面分别写上整式x+1,x,3.将这三张卡片背面向上洗匀,从中随机抽取一张卡片,再从剩下的卡片中随机抽取另一张、第一次抽取的卡片上的整式作为分子,第二次抽取的卡片上的整式作为分母.(1)请写出抽取两张卡片的所有等可能结果(用树状图或列表法求解);(2)试求抽取的两张卡片结果能组成分式的概率.20.初三学生小丽、小杰为了解本校初二学生每周上网的时间,各自在本校进行了抽样调查.小丽调查了初二电脑爱好者中40名学生每周上网的时间,算得这些学生平均每周上网时间为2.5小时;小杰从全体320名初二学生名单中随机抽取了40名学生,调查了他们每周上网的时间,算得这些学生平均每周上网时间为1.2小时.小丽与小杰整理各自样本数据,如下表所示.时间段(小时/周)小丽抽样人数小杰抽样人数0~16221~210102~31663~482(每组可含最低值,不含最高值)请根据上述信息,回答下列问题:(1)你认为哪位学生抽取的样本具有代表性?答:;估计该校全体初二学生平均每周上网时间为小时;(2)根据具有代表性的样本,把上图中的频数分布直方图补画完整;(3)在具有代表性的样本中,中位数所在的时间段是小时/周;(4)专家建议每周上网2小时以上(含2小时)的同学应适当减少上网的时间,根据具有代表性的样本估计,该校全体初二学生中有多少名同学应适当减少上网的时间?。

中考数学高频考点《统计与概率》专题训练-带答案

中考数学高频考点《统计与概率》专题训练-带答案

中考数学高频考点《统计与概率》专题训练-带答案一.选择题(共15小题)1.(2024•新华区二模)已知三个数﹣3、5、7,若添加一个数组成一组新数据,且这组新数据唯一的众数与中位数相等,则这个新数据为( )A .3B .4C .5D .72.(2024•新华区二模)某校八年级学生参加每分钟跳绳的测试,并随机抽取部分学生的成绩制成了频数分布直方图(如图),若取每组的组中值作为本小组的均值,则抽取的部分学生每分钟跳绳次数的平均数(结果取整数)为( )A .87次B .110次C .112次D .120次3.(2024•长安区二模)班主任邀请甲、乙、丙三位同学参加圆桌会议.如图,班主任坐在D 座位,三位同学随机坐在A 、B 、C 三个座位,则甲、乙两位同学座位相邻的概率是( )A .23B .13C .14D .12 4.(2024•桥西区二模)如图,某十字路口有交通信号灯,在东西方向上,红灯开启27秒后,紧接着绿灯开启30秒,再紧接着黄灯开启3秒,然后接着又是红灯开启27秒…按这样的规律循环下去,在不考虑其他因素的前提下,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是( )A .920B .1019C .13D .12 5.(2024•裕华区二模)为深入开展全民禁毒宣传教育,某校举行了禁毒知识竞赛,嘉嘉说:“我们班100分的同学最多,一半同学成绩在96分以上”,嘉嘉的描述所反映的统计量分别是( )A .众数和中位数B .平均数和中位数C .众数和方差D .众数和平均数6.(2024•裕华区二模)某班开展了两次跳绳比赛,从班级里随机抽取了20名学生两次跳绳的成绩(单位:个/分钟),并对数据进行整理、描述和分析.如图是这些学生第一次和第二次比赛成绩情况统计图,设每名学生两次跳绳的平均成绩是x 个/分钟,落在130<x ⩽140的范围内的数据有( )A .6个B .5个C .4个D .3个7.(2024•石家庄二模)一个不透明盒子里,共装有10个白球,5个红球,5个黄球,这些球仅颜色不同.小明从中任取一球,下列说法错误的是( )A .摸到白球的可能性最大B .摸到红球和黄球的可能性相同C .摸到白球的可能性为12D .摸到白球、红球、黄球的可能性都为13 8.(2024•藁城区二模)从分别写有“大”“美”“江”“汉”汉字的四张卡片中,随机抽出两张,抽出的卡片上的汉字能组成“江汉”的概率是( )A .18B .16C .14D .12 9.(2024•新华区二模)2024年河北省初中学业水平体育与健康科目考试的抽考项目包含①②③④共四项,由各市教育行政部门抽签决定.某市教育行政部门从四个项目中随机抽取一项,抽到项目①的概率为( )A .12B .13C .14D .15 10.(2024•新乐市二模)在一次体育课上,小明随机调查了30名同学投篮20次投中的次数,数据如表所示:投篮20次投中的次数67 9 12人数 6 7 10 7 则投篮20次投中的次数的中位数和众数分别是( )A .8,9B .10,9C .7,12D .9,911.(2024•裕华区二模)七位评委对参加普通话比赛的选手评分,比赛规则规定要去掉一个最高分和一个最低分,然后计算剩下了5个分数的平均分作为选手的比赛分数,规则“去掉一个最高分和一个最低分”一定不会影响这组数据的( )A .平均数B .中位数C .极差D .众数12.(2024•新华区二模)掷两枚质地均匀的骰子,下列事件是随机事件的是( )A .点数的和为1B .点数的和为6C .点数的和大于12D .点数的和小于1313.(2024•新华区二模)如图,桌面上有3张卡片,1张正面朝上.任意将其中1张卡片正反面对调一次后,这3张卡片中出现2张正面朝上的概率是( )A .1B .23C .13D .19 14.(2024•桥西区二模)有数字4,5,6的三张卡片,将这三张卡片任意摆成一个三位数,摆出的三位数是5的倍数的概率是( )A .16B .14C .13D .12 15.(2024•石家庄二模)下列说法正确的是( )A .了解一批灯泡的使用寿命,应采用抽样调查的方式B .如果某彩票的中奖概率是1%,那么一次购买100张这种彩票一定会中奖C .若甲、乙两组数据的平均数相同,S 甲2=2.5,S 乙2=8.7,则乙组数据较稳定D .“任意掷一枚质地均匀的骰子,掷出的点数是7”是必然事件二.填空题(共2小题)16.(2024•平山县二模)已知一个不透明的袋子中装有4个只有颜色不同的小球,其中1个白球,3个红球.(1)从袋子中随机摸出1个小球是红球的概率是 ;(2)若在原袋子中再放入m 个白球和m 个红球(m >1),搅拌均匀后,使得随机从袋子中摸出1个小球是白球的概率为25,则m 的值为 . 17.(2024•石家庄二模)经过某T 字路口的汽车,可能向左转或向右转,如果两种可能性大小相同,则两辆汽车经过这个T 字路口时,“行驶方向相同”的概率是 .三.解答题(共14小题)18.(2024•石家庄二模)为了解甲、乙两个茶园种植的“龙井”茶叶的品质,现从两个茶园里分别随机抽取了20份茶叶样本,对它们的品质进行评分(满分100分,分数越高代表品质越好)评分用x 表示,共分为四组,A 组:60≤x <70,B 组:70≤x <80,C 组:80≤x <90,D 组:90≤x ≤100.甲茶园20份茶叶的评分从小到大分别为:65,68,72,75,78,80,82,85,85,88,90,90,90,92,95,95,95,95,98,100;乙茶园20份茶叶中有3份的评分为100分,评分在C 组中的数据是:85,88,80,85,82,83. 甲、乙两茶园随机抽取的茶叶评分数据统计分析如下表所示,乙茶园抽取的茶叶评分扇形统计图如图所示:甲茶园 乙茶园 平均数 85.9 87.6中位数89 b众数a95根据以上信息解答下列问题:(1)直接写出统计表中a,b的值;(2)若甲、乙两茶园的茶叶总共有2400份,请估计甲、乙两茶园评分在D组的茶叶共有多少份;(3)本次抽取的40份茶叶样本中,评分为100分的视为“精品茶叶”.茶农要在“精品茶叶”中任选两份参加茶叶展销会,用列表法(或画树状图)求这两份茶叶全部来自乙茶园的概率.19.(2024•裕华区二模)某中学为了解初三同学的体育中考准备情况,随机抽取该年级某班学生进行体育模拟测试(满分30分),根据测试成绩(单位:分)绘制成两幅不完整的统计图(如图1和图2),已知图2中得28分的人数所对圆心角为90°,回答下列问题:(1)条形统计图有一部分污损了,求得分27分的人数;直接写出所调查学生测试成绩中位数和众数.(2)一同学因病错过考试,补测后与之前成绩汇总,发现中位数变大了,求该名同学的补测成绩.(3)已知体育测试的选考项目有:①足球运球绕杆:②篮球运球绕杆;③排球正面双手垫球,求小明和小亮选择同一项目的概率.20.(2024•石家庄二模)某班组织开展课外体育活动,在规定时间内,进行定点投篮,对投篮命中数量进行了统计,并制成下面的统计表和如图不完整的折线统计图(不含投篮命中个数为0的数据).投篮命中数量/个 1 2 3 4 5 6学生人数 1 2 3 7 6 1 根据以上信息,解决下面的问题:(1)在本次投篮活动中,投篮命中的学生共有人,并求投篮命中数量的众数和平均数;(2)补全折线统计图;(3)嘉淇在统计投篮命中数量的中位数时,把统计表中相邻两个投篮命中的数量m,n错看成了n,m (m<n)进行计算,结果错误数据的中位数与原数据的中位数相比发生了改变,求m,n的值.21.(2024•新华区二模)“惜餐为荣,敛物为耻.”为了解落实“光盘行动”的情况,某校调研了七、八年级部分班级某一天的厨余垃圾质量,并作出如下统计分析.【收集数据】七、八年级各随机抽取10个班厨余垃圾质量的数据(单位:kg).【整理数据】进行整理和分析(厨余垃圾质量用x表示,共分为四个等级:A.x<1;B.1≤x<1.5;C.1.5≤x<2;D.x≥2).【描述数据】下面给出了部分信息,绘制如下统计图:七年级10个班厨余垃圾质量:0.6,0.7,0.7,0.7,1.3,1.3,1.6,1.7,2,2.4.八年级10个班厨余垃圾质量中B等级包含的所有数据为:1.1,1.1,1.1,1.3.【分析数据】七、八年级抽取的班级厨余垃圾质量统计表如下:年级平均数中位数众数方差A等级所占百分比七年级 1.3 1.3 a0.352 40%八年级 1.3 b 1.1 0.24 m%根据以上信息,解答下列问题:(1)填空:a=,b=,m=;(2)该校八年级共有30个班,估计八年级这一天厨余垃圾质量符合A等级的班级数;(3)根据以上信息,请你任选一个统计量,分析在此次“光盘行动”中,该校七、八年级的哪个年级落实得更好?并说明理由.22.(2024•桥西区二模)小亮所在的学校共有900名初中学生,小亮同学想了解本校全体初中学生的年龄构成情况、他从全校学生中随机选取了部分学生,调查了他们的年龄(单位:岁),绘制出如图所示的学生年龄扇形统计图.(1)直接写出m的值,并求全校学生中年龄不低于15岁的学生大约有多少人;(2)利用该扇形统计图,你能求出样本的平均数、众数和中位数中的哪些统计量?请直接写出相应的结果;(3)小红认为无法利用该扇形统计图求出样本的方差.你认同她的看法吗?若认同,请说明理由;若不认同,请求出方差.23.(2024•裕华区二模)2024年3月20日,天都一号、二号通导技术试验星由长征八号遥三运载火箭在中国文昌航天发射场成功发射升空,卫星作为深空探测实验室的首发星,将为月球通导技术提供先期验证!临邑县某中学为了解学生对航天知识的掌握情况,学校随机抽取了部分学生进行问卷调查,并将调查结果绘制成了下列两幅统计图(不完整),请根据图中信息,解答下列问题:(1)本次调查一共抽取了名学生,扇形统计图中“比较了解”所对应的圆心角度数是.(2)请你将条形统计图补充完整;(3)若该学校共有1200名学生,根据抽样调查的结果,请问该学校选择“不了解”项目的学生约有多少名?(4)在本次调查中,张老师随机抽取了4名学生进行感悟交流,其中“非常了解”的1人,“比较了解”的2人,“了解”的1人.若从这4人中随机抽取2人,请用画树状图或列表法,求抽取的2人全是“比较了解”的概率.24.(2024•正定县二模)某市教育局以“学习强国”学习平台知识内容为依托,要求市直辖学校利用“豫事办”手机客户端开展“回顾二十大”全民知识竞赛活动,市教育局随机抽取了两所学校各10名教师进行测试(满分10分),并对相关数据进行了如下整理:收集数据:一中抽取的10名教师测试成绩:9.1,7.8,8.5,7.5,7.2,8.4,7.9,7.2,6.9,9.5二中抽取的10名教师测试成绩:9.2,8.0,7.6,8.4,8.0,7.2,8.5,7.4,7.5,8.2分析数据:两组数据的相关统计量如下(规定9.0分及其以上为优秀):平均数中位数方差优秀率一中8.0 7.85 0.666 c二中8.0 b0.33 10%问题解决:根据以上信息,解答下列问题:(1)若绘制分数段频数分布表,则一中分数段0≤x<8.0的频数a=;(2)填空:b=,c=;(3)若一中共有教师280人,二中共有教师350人,估计这两个学校竞赛成绩达到优秀的教师总人数为多少人?(4)根据以上数据,请你对一、二中教师的竞赛成绩做出分析评价.(写出两条即可)25.(2024•新华区二模)在“书香进校园”读书活动中,为了解学生课外读物的阅读情况,随机调查了部分学生的课外阅读量.绘制成不完整的扇形统计图(图1)和条形统计图(图2),其中条形统计图被墨汁污染了一部分.(1)条形统计图中被墨汁污染的人数为人.“8本”所在扇形的圆心角度数为°;(2)求被抽查到的学生课外阅读量的平均数和中位数;(3)随后又补查了m名学生,若已知他们在本学期阅读量都是10本,将这些数据和之前的数据合并后,发现阅读量的众数没改变,求m的最大值.26.(2024•平山县二模)某班进行中考体育适应性练习,球类运动可以在篮球、足球、排球中选择一种.该班体委将测试成绩进行统计后,发现选择足球的同学测试成绩均为7分、8分、9分、10分中的一种(满分为10分),并依据统计数据绘制了如下不完整的扇形统计图(如图1)和条形统计图(如图2).(1)该班选择足球的同学共有人,其中得8分的有人;(2)若小宇的足球测试成绩超过了参加足球测试的同学半数人的成绩,则他的成绩是否超过了所有足球测试成绩的平均分?通过计算说明理由.27.(2024•裕华区二模)为了保护学生视力,防止学生沉迷网络和游戏,促进学生身心健康发展,某学校团委组织了“我与手机说再见”为主题的演讲比赛,根据参赛同学的得分情况绘制了如图所示的两幅不完整的统计图(其中A表示“一等奖”,B表示“二等奖”,C表示“三等奖”,D表示“优秀奖”).请你根据统计图中所提供的信息解答下列问题:(1)获奖总人数为人,m=,A所对的圆心角度数是°;(2)学校将从获得一等奖的4名同学(其中有一名男生,三名女生)中随机抽取两名参加全市的比赛,请利用树状图或列表法求抽取同学中恰有一名男生和一名女生的概率.28.(2024•藁城区二模)甲、乙两个不透明的袋子中,分别装有大小材质完全相同的小球,其中甲口袋中小球编号分别是1、2、3、4,乙口袋中小球编号分别是2、3、4,先从甲口袋中任意摸出一个小球,记下编号为m,再从乙袋中摸出一个小球,记下编号为n.(1)请用画树状图或列表的方法表示(m,n)所有可能情况;(2)规定:若m、n都是方程x2﹣5x+6=0的解时,小明获胜;m、n都不是方程x2﹣5x+6=0的解时,小刚获胜,请说明此游戏规则是否公平?29.(2024•新华区二模)如图,A,B两个带指针的转盘分别被分成三个面积相等的扇形,转盘A上的数字分别是﹣6,﹣1,5,转盘B上的数字分别是6,﹣7,4(两个转盘除表面数字不同外,其他完全相同).小聪和小明同时转动A,B两个转盘,使之旋转(规定:指针恰好停留在分界线上,则重新转一次).(1)转动转盘,转盘A指针指向正数的概率是;(2)若同时转动两个转盘,转盘A指针所指的数字记为a,转盘B指针所指的数字记为b,若a+b>0,则小聪获胜;若a+b<0,则小明获胜;请用列表法或树状图法说明这个游戏是否公平.30.(2024•新乐市二模)打造书香文化,培养阅读习惯.崇德中学计划在各班建图书角,开展“我最喜欢的书籍”为主题的调查活动,学生根据自己的爱好选择一类书籍(A:科技类,B:文学类,C:政史类,D:艺术类,E:其他类).张老师组织数学兴趣小组对学校部分学生进行了问卷调查,根据收集到的数据,绘制了两幅不完整的统计图(如图所示).根据图中信息,请回答下列问题;(1)条形图中的m=,n=,文学类书籍对应扇形圆心角等于度;(2)若该校有2000名学生,请你估计最喜欢阅读政史类书籍的学生人数;(3)甲同学从A,B,C三类书籍中随机选择一种,乙同学从B,C,D三类书籍中随机选择一种,请用画树状图或者列表法求甲乙两位同学选择相同类别书籍的概率.31.(2024•桥西区二模)为加强体育锻炼,某校体育兴趣小组,随机抽取部分学生,对他们在一周内体育锻炼的情况进行问卷调查,根据问卷结果,绘制成如下统计图.请根据相关信息,解答下列问题:某校学生一周体育锻炼调查问卷以下问题均为单选题,请根据实际情况填写(其中0~4表示大于等于0同时小于4)问题:你平均每周体育锻炼的时间大约是A.0~4小时B.4~6小时C.6~8小时D.8小时及以上问题2:你体育锻炼的动力是_____E.家长要求F.学校要求G.自己主动H.其他(1)参与本次调查的学生共有人,选择“自己主动”体育锻炼的学生有人;(2)已知该校有2600名学生,若每周体育锻炼8小时以上(含8小时)可评为“运动之星”,请估计全校可评为“运动之星”的人数;(3)请写出一条你对同学体育锻炼的建议.参考答案与试题解析一.选择题(共15小题)1.(2024•新华区二模)已知三个数﹣3、5、7,若添加一个数组成一组新数据,且这组新数据唯一的众数与中位数相等,则这个新数据为()A.3 B.4 C.5 D.7【解答】解:∵﹣3<5<7∴若添加一个数组成一组新数据,且这组新数据唯一的众数与中位数相等,则这个新数据为5.故选:C.2.(2024•新华区二模)某校八年级学生参加每分钟跳绳的测试,并随机抽取部分学生的成绩制成了频数分布直方图(如图),若取每组的组中值作为本小组的均值,则抽取的部分学生每分钟跳绳次数的平均数(结果取整数)为()A .87次B .110次C .112次D .120次【解答】解:x =62×2+87×8+112×12+137×6+162×22+8+12+6+2≈110次 故选:B .3.(2024•长安区二模)班主任邀请甲、乙、丙三位同学参加圆桌会议.如图,班主任坐在D 座位,三位同学随机坐在A 、B 、C 三个座位,则甲、乙两位同学座位相邻的概率是( )A .23B .13C .14D .12【解答】解:画树状图如下:共有6种等可能的结果,其中甲、乙两位同学座位相邻的结果有4种,即AB 、BA 、BC 、CB ∴甲、乙两位同学座位相邻的概率为46=23故选:A .4.(2024•桥西区二模)如图,某十字路口有交通信号灯,在东西方向上,红灯开启27秒后,紧接着绿灯开启30秒,再紧接着黄灯开启3秒,然后接着又是红灯开启27秒…按这样的规律循环下去,在不考虑其他因素的前提下,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是()A.920B.1019C.13D.12【解答】解:由题意得,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是3027+30+3= 12.故选:D.5.(2024•裕华区二模)为深入开展全民禁毒宣传教育,某校举行了禁毒知识竞赛,嘉嘉说:“我们班100分的同学最多,一半同学成绩在96分以上”,嘉嘉的描述所反映的统计量分别是()A.众数和中位数B.平均数和中位数C.众数和方差D.众数和平均数【解答】解:在一组数据中出现次数最多的数是这组数据的众数,中位数即位于中间位置的数故选:A.6.(2024•裕华区二模)某班开展了两次跳绳比赛,从班级里随机抽取了20名学生两次跳绳的成绩(单位:个/分钟),并对数据进行整理、描述和分析.如图是这些学生第一次和第二次比赛成绩情况统计图,设每名学生两次跳绳的平均成绩是x个/分钟,落在130<x⩽140的范围内的数据有()A .6个B .5个C .4个D .3个【解答】解:观察统计图,可以发现两次活动平均成绩在130<x ⩽140的范围内的数据有5个 故选:B .7.(2024•石家庄二模)一个不透明盒子里,共装有10个白球,5个红球,5个黄球,这些球仅颜色不同.小明从中任取一球,下列说法错误的是( ) A .摸到白球的可能性最大 B .摸到红球和黄球的可能性相同 C .摸到白球的可能性为12D .摸到白球、红球、黄球的可能性都为13【解答】解:∵一个不透明盒子里,共装有10个白球,5个红球,5个黄球 ∴共有20个球 ∴摸到白球的概率为1020=12,摸到红球的概率为520=14,摸到黄球的概率为520=14∵12>14∴摸到白球的可能性最大,摸到红球和黄球的可能性相同,摸到白球的可能性为12故选:D .8.(2024•藁城区二模)从分别写有“大”“美”“江”“汉”汉字的四张卡片中,随机抽出两张,抽出的卡片上的汉字能组成“江汉”的概率是( ) A .18B .16C .14D .12【解答】解:列表如下:大 美 江 汉 大 美大 江大 汉大 美 大美 江美 汉美 江 大江 美江 汉江 汉大汉美汉江汉由表知,共有12种等可能结果,其中抽出的卡片上的汉字能组成“江汉”的有2种结果 所以抽出的卡片上的汉字能组成“江汉”的概率为212=16故选:B .9.(2024•新华区二模)2024年河北省初中学业水平体育与健康科目考试的抽考项目包含①②③④共四项,由各市教育行政部门抽签决定.某市教育行政部门从四个项目中随机抽取一项,抽到项目①的概率为( ) A .12B .13C .14D .15【解答】解:∵市教育行政部门从四个项目中随机抽取一项的可能结果共有4种,抽到项目①的可能结果只有1种∴抽到项目①的概率为14.故选:C .10.(2024•新乐市二模)在一次体育课上,小明随机调查了30名同学投篮20次投中的次数,数据如表所示:投篮20次投中的次数 679 12人数67 10 7 则投篮20次投中的次数的中位数和众数分别是( ) A .8,9B .10,9C .7,12D .9,9【解答】解:将这30人投篮20次投中的次数从小到大排列后,处在之间位置的两个数的平均数为9+92=9(次),因此中位数是9次这30人投篮20次投中的次数是9次的出现的次数最多,共有10人,因此众数是9次 综上所述,中位数是9,众数是9故选:D .11.(2024•裕华区二模)七位评委对参加普通话比赛的选手评分,比赛规则规定要去掉一个最高分和一个最低分,然后计算剩下了5个分数的平均分作为选手的比赛分数,规则“去掉一个最高分和一个最低分”一定不会影响这组数据的( ) A .平均数B .中位数C .极差D .众数【解答】解:去掉一个最高分和一个最低分一定会影响到平均数、极差,可能会影响到众数 一定不会影响到中位数 故选:B .12.(2024•新华区二模)掷两枚质地均匀的骰子,下列事件是随机事件的是( ) A .点数的和为1 B .点数的和为6 C .点数的和大于12D .点数的和小于13【解答】解:A 、两枚骰子的点数的和为1,是不可能事件,故不符合题意;B 、两枚骰子的点数之和为6,是随机事件,故符合题意;C 、点数的和大于12,是不可能事件,故不符合题意;D 、点数的和小于13,是必然事件,故不符合题意;故选:B .13.(2024•新华区二模)如图,桌面上有3张卡片,1张正面朝上.任意将其中1张卡片正反面对调一次后,这3张卡片中出现2张正面朝上的概率是( )A .1B .23C .13D .19【解答】解:∵任意将其中1张卡片正反面对调一次,有3种对调方式,其中只有对调反面朝上的2张卡片才能使3张卡片中出现2张正面朝上 ∴P =23 故选:B .14.(2024•桥西区二模)有数字4,5,6的三张卡片,将这三张卡片任意摆成一个三位数,摆出的三位数是5的倍数的概率是( )A .16B .14C .13D .12【解答】解:三位数有6个,是5的倍数的三位数是:465,645; 三位数是5的倍数的概率为:26=13;故选:C .15.(2024•石家庄二模)下列说法正确的是( ) A .了解一批灯泡的使用寿命,应采用抽样调查的方式B .如果某彩票的中奖概率是1%,那么一次购买100张这种彩票一定会中奖C .若甲、乙两组数据的平均数相同,S 甲2=2.5,S 乙2=8.7,则乙组数据较稳定 D .“任意掷一枚质地均匀的骰子,掷出的点数是7”是必然事件【解答】解:A .了解一批灯泡的使用寿命,应采用抽样调查的方式,是正确的,因此选项A 符合题意;B .如果某彩票的中奖概率是1%,那么一次购买100张这种彩票也不一定会中奖,因此选项B 不符合题意;C .若甲、乙两组数据的平均数相同,S 甲2=2.5,S 乙2=8.7,则甲组数据较稳定,因此选项C 不符合题意;D .“任意掷一枚质地均匀的骰子,掷出的点数是7”是不可能事件,因此选项D 不符合题意;故选:A .二.填空题(共2小题)16.(2024•平山县二模)已知一个不透明的袋子中装有4个只有颜色不同的小球,其中1个白球,3个红球.(1)从袋子中随机摸出1个小球是红球的概率是34;(2)若在原袋子中再放入m 个白球和m 个红球(m >1),搅拌均匀后,使得随机从袋子中摸出1个小球是白球的概率为25,则m 的值为 3 .【解答】解:(1)由题意可得从袋子中随机摸出1个小球是红球的概率是31+3=34故答案为:34;(2)由题意可得1+m 1+m +3+m =25解得m =3 故答案为:3.17.(2024•石家庄二模)经过某T 字路口的汽车,可能向左转或向右转,如果两种可能性大小相同,则两辆汽车经过这个T 字路口时,“行驶方向相同”的概率是 12.【解答】解:画树状图为:共有4种等可能的结果数,其中行驶方向相同的有2种 ∴“行驶方向相同”的概率是 24=12故答案为:12.三.解答题(共14小题)18.(2024•石家庄二模)为了解甲、乙两个茶园种植的“龙井”茶叶的品质,现从两个茶园里分别随机抽取了20份茶叶样本,对它们的品质进行评分(满分100分,分数越高代表品质越好)评分用x 表示,共分为四组,A 组:60≤x <70,B 组:70≤x <80,C 组:80≤x <90,D 组:90≤x ≤100.甲茶园20份茶叶的评分从小到大分别为:65,68,72,75,78,80,82,85,85,88,90,90,90,92,95,95,95,95,98,100;乙茶园20份茶叶中有3份的评分为100分,评分在C 组中的数据是:85,88,80,85,82,83. 甲、乙两茶园随机抽取的茶叶评分数据统计分析如下表所示,乙茶园抽取的茶叶评分扇形统计图如图所示:甲茶园乙茶园平均数85.9 87.6中位数89 b众数a95根据以上信息解答下列问题:(1)直接写出统计表中a,b的值;(2)若甲、乙两茶园的茶叶总共有2400份,请估计甲、乙两茶园评分在D组的茶叶共有多少份;(3)本次抽取的40份茶叶样本中,评分为100分的视为“精品茶叶”.茶农要在“精品茶叶”中任选两份参加茶叶展销会,用列表法(或画树状图)求这两份茶叶全部来自乙茶园的概率.【解答】解:(1)由题意可得,a=95.由扇形统计图可知,乙茶园评分在A组有20×10%=2(份),在B组有20×20%=4(份).将乙茶园评分按照从小到大的顺序排列,排在第10和11的分数为85分和85分∴b=(85+85)÷2=85.(2)乙茶园评分在D组的茶叶有(1﹣10%﹣20%﹣30% )×20=8(份)甲茶园评分在D组的茶叶有10份∴估计甲、乙两茶园评分在D组的茶叶共约有2400×8+1020+20=1080(份).(3)由题意知,甲茶园评分为100分的有1个,乙茶园评分为100分的有3个.将甲茶园“精品茶叶”记为a,乙茶园“精品茶叶”分别记为b,c,d列表如下:a b c da(a,b)(a,c)(a,d)b(b,a)(b,c)(b,d)。

中考数学总复习《概率》专项测试卷带答案

中考数学总复习《概率》专项测试卷带答案

中考数学总复习《概率》专项测试卷带答案学校:___________班级:___________姓名:___________考号:___________A层·基础过关1.(2024·湖北中考)下列各事件,是必然事件的是( )A.掷一枚正方体骰子,正面朝上恰好是3B.某同学投篮球,一定投不中C.经过红绿灯路口时,一定是红灯D.画一个三角形,其内角和为180°2.(2024·连云港中考)下列说法正确的是( )A.10张票中有1张奖票,10人去摸,先摸的人摸到奖票的概率较大B.从1,2,3,4,5中随机抽取一个数,取得偶数的可能性较大C.小强一次掷出3颗质地均匀的骰子,3颗全是6点朝上是随机事件D.抛一枚质地均匀的硬币,正面朝上的概率为1,连续抛此硬币2次必有1次正面朝2上3.(2024·贵州中考)小星同学通过大量重复的定点投篮练习,用频率估计他投中的概率为0.4,下列说法正确的是( )A.小星定点投篮1次,不一定能投中B.小星定点投篮1次,一定可以投中C.小星定点投篮10次,一定投中4次D.小星定点投篮4次,一定投中1次4.(2024·内江中考)如图所示的电路中,当随机闭合开关S1,S2,S3中的两个时,灯泡能发光的概率为( )A.23B.12C.13D.165.(2024·上海中考)一个袋子中有若干个白球和绿球,它们除了颜色外都相同.随机从中摸一个球,恰好摸到绿球的概率是35,则袋子中至少有个绿球.6.(2024·重庆中考)重庆是一座魔幻都市,有着丰富的旅游资源.甲、乙两人相约来到重庆旅游,两人分别从A,B,C三个景点中随机选择一个景点游览,甲、乙两人同时选择景点B的概率为.7.(2024·临夏州中考)物理变化和化学变化的区别在于是否有新物质的生成.某学习小组在延时课上制作了A,B,C,D四张卡片,四张卡片除图片内容不同外,其他没有区别,放置于暗箱中摇匀.(1)小临从四张卡片中随机抽取一张,抽中C卡片的概率是_________ ;(2)小夏从四张卡片中随机抽取两张,用列表法或画树状图法求小夏抽取两张卡片内容均为化学变化的概率.B层·能力提升8.(2024·深圳中考)二十四节气,它基本概括了一年中四季交替的准确时间以及大自然中一些物候等自然现象发生的规律,二十四个节气分别为:春季(立春、雨水、惊蛰、春分、清明、谷雨),夏季(立夏、小满、芒种、夏至、小暑、大暑),秋季(立秋、处暑、白露、秋分、寒露、霜降),冬季(立冬、小雪、大雪、冬至、小寒、大寒),若从二十四个节气中选一个节气,则抽到的节气在夏季的概率为( )A.12B.112C.16D.149.(2024·福建中考)哥德巴赫提出“每个大于2的偶数都可以表示为两个质数之和”的猜想,我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.在质数2,3,5中,随机选取两个不同的数,其和是偶数的概率是( )A.14B.13C.12D.2310.(2024·聊城东昌府区三模)有4条线段,长度分别是2,8,3,6.从中随机抽取三条,能组成三角形的概率等于.11.(2024·潍坊潍城区二模)小莹一家五口周末乘坐动车组列车出游,小莹在网上给五人购票时,五人的座位恰好位于同一车厢的同一排(如图是动车组列车座位示意图).进入该车厢后,小莹的奶奶先从这五个座位中随机选择一个,然后小莹从剩下的四个座位中随机选择一个坐下,则奶奶和小莹的座位相邻(过道两侧也视为座位相邻)的概率是.C层·素养挑战12.(2024·遂宁中考)遂宁市作为全国旅游城市,有众多著名景点,为了解“五一”假期同学们的出游情况,某实践探究小组对部分同学假期旅游地做了调查,以下是调查报告的部分内容,请完善报告:××小组关于××学校学生“五一”出游情况调查报告数据收集调查方式抽样调查调查对象××学校学生数据的整理与描述景点A:中国死海B:龙凤古镇C:灵泉风景区D:金华山E:未出游F:其他数据分析及运用(1)本次被抽样调查的学生总人数为,扇形统计图中,m=_________ ,“B:龙凤古镇”对应圆心角的度数是_________ ;(2)请补全条形统计图;(3)该学校总人数为1 800人,请你估计该学校学生“五一”假期未出游的人数;(4)未出游中的甲、乙两位同学计划下次假期从A,B,C,D四个景点中任选一个景点旅游,请用树状图或列表的方法求出他们选择同一景点的概率.参考答案A层·基础过关1.(2024·湖北中考)下列各事件,是必然事件的是(D)A.掷一枚正方体骰子,正面朝上恰好是3B.某同学投篮球,一定投不中C.经过红绿灯路口时,一定是红灯D.画一个三角形,其内角和为180°2.(2024·连云港中考)下列说法正确的是(C)A.10张票中有1张奖票,10人去摸,先摸的人摸到奖票的概率较大B.从1,2,3,4,5中随机抽取一个数,取得偶数的可能性较大C.小强一次掷出3颗质地均匀的骰子,3颗全是6点朝上是随机事件D.抛一枚质地均匀的硬币,正面朝上的概率为12,连续抛此硬币2次必有1次正面朝上3.(2024·贵州中考)小星同学通过大量重复的定点投篮练习,用频率估计他投中的概率为0.4,下列说法正确的是(A)A.小星定点投篮1次,不一定能投中B.小星定点投篮1次,一定可以投中C.小星定点投篮10次,一定投中4次D.小星定点投篮4次,一定投中1次4.(2024·内江中考)如图所示的电路中,当随机闭合开关S1,S2,S3中的两个时,灯泡能发光的概率为(A)A.23B.12C.13D.165.(2024·上海中考)一个袋子中有若干个白球和绿球,它们除了颜色外都相同.随机从中摸一个球,恰好摸到绿球的概率是3,则袋子中至少有3个绿球.56.(2024·重庆中考)重庆是一座魔幻都市,有着丰富的旅游资源.甲、乙两人相约来到重庆旅游,两人分别从A,B,C三个景点中随机选择一个景点游览,甲、乙两人同.时选择景点B的概率为197.(2024·临夏州中考)物理变化和化学变化的区别在于是否有新物质的生成.某学习小组在延时课上制作了A,B,C,D四张卡片,四张卡片除图片内容不同外,其他没有区别,放置于暗箱中摇匀.(1)小临从四张卡片中随机抽取一张,抽中C卡片的概率是_________;【解析】(1)由题意知,共有4种等可能的结果,其中抽中C卡片的结果有1种,∴抽中C卡片的概率是1.4答案:14(2)小夏从四张卡片中随机抽取两张,用列表法或画树状图法求小夏抽取两张卡片内容均为化学变化的概率.【解析】(2)四张卡片内容中是化学变化的有A,D画树状图如图所示共有12种等可能的结果,其中小夏抽取两张卡片内容均为化学变化的结果有AD,DA,共2种∴小夏抽取两张卡片内容均为化学变化的概率为212=1 6 .B层·能力提升8.(2024·深圳中考)二十四节气,它基本概括了一年中四季交替的准确时间以及大自然中一些物候等自然现象发生的规律,二十四个节气分别为:春季(立春、雨水、惊蛰、春分、清明、谷雨),夏季(立夏、小满、芒种、夏至、小暑、大暑),秋季(立秋、处暑、白露、秋分、寒露、霜降),冬季(立冬、小雪、大雪、冬至、小寒、大寒),若从二十四个节气中选一个节气,则抽到的节气在夏季的概率为(D)A.12B.112C.16D.149.(2024·福建中考)哥德巴赫提出“每个大于2的偶数都可以表示为两个质数之和”的猜想,我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.在质数2,3,5中,随机选取两个不同的数,其和是偶数的概率是(B)A.14B.13C.12D.2310.(2024·聊城东昌府区三模)有4条线段,长度分别是2,8,3,6.从中随机抽取三条,能组成三角形的概率等于14.11.(2024·潍坊潍城区二模)小莹一家五口周末乘坐动车组列车出游,小莹在网上给五人购票时,五人的座位恰好位于同一车厢的同一排(如图是动车组列车座位示意图).进入该车厢后,小莹的奶奶先从这五个座位中随机选择一个,然后小莹从剩下的四个座位中随机选择一个坐下,则奶奶和小莹的座位相邻(过道两侧也视为座位相邻)的概率是25.C层·素养挑战12.(2024·遂宁中考)遂宁市作为全国旅游城市,有众多著名景点,为了解“五一”假期同学们的出游情况,某实践探究小组对部分同学假期旅游地做了调查,以下是调查报告的部分内容,请完善报告:××小组关于××学校学生“五一”出游情况调查报告数据收集调查方式抽样调查调查对象××学校学生数据的整理与描述景点A:中国死海B:龙凤古镇C:灵泉风景区D:金华山E:未出游F:其他数据分析及运用(1)本次被抽样调查的学生总人数为,扇形统计图中,m=_________,“B:龙凤古镇”对应圆心角的度数是_________;(2)请补全条形统计图;(3)该学校总人数为1 800人,请你估计该学校学生“五一”假期未出游的人数;(4)未出游中的甲、乙两位同学计划下次假期从A,B,C,D四个景点中任选一个景点旅游,请用树状图或列表的方法求出他们选择同一景点的概率.【解析】(1)∵30÷30%=100(人)∴本次被抽样调查的学生总人数为100;∵出游C景点的人数为100-(12+20+20+8+30)=10×100=10;∴m=10100×360°=72°∵20100∴“B:龙凤古镇”对应圆心角的度数是72°.答案:1001072°(2)由(1)知:出游景点C的人数为10补全条形统计图如图所示(3)8100×1 800=144(人)答:估计该学校学生“五一”假期未出游的有144人;(4)画树状图如图所示一共有16种等可能的结果,其中两人选择同一景点有4种可能的结果∴P(选择同一景点)=416=1 4 .。

中考数学专题训练统计与概率(含解析)

中考数学专题训练统计与概率(含解析)

中考数学专题训练统计与概率(含解析)专题训练(统计与概率)(120分钟120分)一、选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)1.下列调查中,调查方式选择正确的是( )A.为了了解全市中学生课外阅读情况,选择全面调查B.为了了解全国中学生“母亲节”孝敬母亲的情况,选择全面调查C.为了了解一批手机的使用寿命,选择抽样调查D.旅客上飞机前的安检,选择抽样调查【解析】选C.为了了解全市中学生课外阅读情况,选择抽样调查,A错误;为了了解全国中学生“母亲节”孝敬母亲的情况,选择抽样调查,B错误;为了了解一批手机的使用寿命,选择抽样调查,C正确;旅客上飞机前的安检,选择全面调查,D错误.2.2019年我市近9万多名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是( )A.这1 000名考生是总体的一个样本B.1 000名考生是样本容量C.每位考生的数学成绩是个体D.近9万多名考生是总体【解析】选C.A.1 000名考生的数学成绩是总体的一个样本,故A错误;们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为( ) A. B. C. D.【解析】选C.因为布袋里装有5个红球,2个白球,3个黄球,所以从袋中摸出一个球是黄球的概率是.7.(2019·邵阳中考)“救死扶伤”是我国的传统美德.某媒体就“老人摔倒该不该扶”进行了调查,将得到的数据经统计分析后绘制成如图所示的扇形统计图.根据统计图判断下列说法,其中错误的一项是( )A.认为依情况而定的占27%B.认为该扶的在统计图中所对应的圆心角是234°C.认为不该扶的占8%D.认为该扶的占92%【解析】选D.认为依情况而定的占27%,故A正确;认为该扶的在统计图中所对应的圆心角是65%×360°=234°,故B正确;认为不该扶的占1-27%-65%=8%,故C正确;认为该扶的占65%,故D错误.8.(2019·连云港中考)小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是( )A.方差B.平均数C.众数D.中位数【解析】选A.根据方差的意义,可知方差越小,数据越稳定,因此可知比较两人成绩稳定性的数据为方差.9.(2019·成都中考)学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分) 60 70 80 90 100人数(人) 7 12 10 8 3则得分的众数和中位数分别为( )A.70分,70分B.80分,80分C.70分,80分D.80分,70分【解析】选C.根据表格中的数据,可知70出现的次数最多,可知其众数为70分;把数据按从小到大排列,可知其中间的两个的平均数为80分,故其中位数为80分.10.九年级(1)班和(2)班的第一次模拟考试的数学成绩统计如下表:班级参加人数中位数方差平均分(1)班50 120 103 122(2)班49 121 201 122根据上表分析得出如下结论:①两班学生成绩的平均水平基本一致;②(2)班的两极分化比较严重;③若考试分数≥120分为优秀,则(2)班优秀的人数一定多于(1)班优秀的人数.上述结论正确的( )A.①②③B.①②C.①③D.②③【解析】选B.由两班的平均数可得两班学生成绩的平均水平基本一致,故①正确;(2)班方差大于(1)班,因此(2)班的两极分化比较严重,故②正确;(2)班中位数为121,(2)班比(1)班少1人,无法判断哪个班优秀的人数多,故③错误.11.(2019·南充中考)某校数学兴趣小组在一次数字课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,得到结果如下表所示:成绩/分36 37 38 39 40人数/人 1 2 1 4 2下列说法正确的是( )A.这10名同学体育成绩的中位数为38分B.这10名同学体育成绩的平均数为38分C.这10名同学体育成绩的众数为39分D.这10名同学体育成绩的方差为2【解析】选C.10名学生的体育成绩中39分出现的次数最多,众数为39分; 排序后第5和第6名同学的成绩的平均值为中位数,中位数为=39分; 平均数==38.4分,方差=[(36-38.4)2+2×(37-38.4)2+(38-38.4)2+4×(39-38.4)2+2×(40- 38.4)2]=1.64;所以选项A,B,D错误.12.在“我的中国梦”演讲比赛中,有5名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这5名学生成绩的( )A.中位数B.众数C.平均数D.方差【解析】选A.因为5位进入决赛者的分数肯定是5名参赛选手中最高的,而且5个不同的分数按从小到大排序后,中位数及中位数之前的共有3个数,故只要知道自己的分数和中位数就可以知道是否进入前3名了.13.若将30°,45°,60°的三角函数值填入表中,则从表中任意取一个值,是的概率为( )α30°45°60°sinαcosαtanαA. B. C. D.【解析】选D.∵表中共有9个数,有两个,∴从表中任意取一个值,是的概率为.α30°45°60°sinαcosαtanα 114.小洪根据演讲比赛中九位评委所给的分数制作了如下表格:平均数中位数众数方差8.5 8.3 8.1 0.15如果去掉一个最高分和一个最低分,那么表格中数据一定不发生变化的是A.平均数B.中位数C.众数D.方差【解析】选B.去掉一个最高分和一个最低分对中位数没有影响.15.(2019·金华中考)某校举行以“激情五月,唱响青春”为主题的演讲比赛.决赛阶段只剩下甲,乙,丙,丁四名同学,则甲,乙同学获得前两名的概率是( ) A. B. C. D.【解析】选D.画树状图得:所以一共有12种等可能的结果,甲,乙同学获得前两名的有2种情况,所以甲,乙同学获得前两名的概率是=.16.一个不透明的袋子中装有2个白球和若干个黑球,它们除颜色外完全相同,从袋子中随机摸出一球,记下颜色并放回,重复该实验多次,发现摸到白球的频率稳定在0.4,则可判断袋子中黑球的个数为( )A.2个B.3个C.4个D.5个【解析】选B.∵重复该试验多次,摸到白球的频率稳定在0.4,∴估计摸到白球的概率0.4,设袋子中黑球的个数为x,∴=0.4,解得x=3,∴可判断袋子中黑球的个数为3.17.(2019·眉山中考)下列说法错误的是( )A.给定一组数据,那么这组数据的平均数一定只有一个B.给定一组数据,那么这组数据的中位数一定只有一个C.给定一组数据,那么这组数据的众数一定只有一个D.如果一组数据存在众数,那么该众数一定是这组数据中的某一个【解析】选C.A.给定一组数据,那么这组数据的平均数一定只有一个,正确,不符合题意;B.给定一组数据,那么这组数据的中位数一定只有一个,正确,不符合题意;C.给定一组数据,那么这组数据的众数一定只有一个,错误,符合题意;D.如果一组数据存在众数,那么该众数一定是这组数据中的某一个,正确,不符合题意.18.一家鞋店在一段时间内销售了某种女式鞋子38双,其中各种尺码的鞋的销售量如表所示:鞋的尺码(单位:cm) 22.5 23 23.5 24 24.5销售量(单位:双) 3 6 12 9 8根据统计的数据,鞋店进货时尺寸码为23cm,23.5cm,24cm的鞋双数合理的比是A.1∶2∶4 B.2∶4∶5C.2∶4∶3D.2∶3∶4【解析】选C.鞋店进货时尺寸码为23cm,23.5cm,24cm的鞋双数合理的比为6∶12∶9=2∶4∶3.19.(2019·绍兴中考)下表记录了甲,乙,丙,丁四名射击运动员最近几次选拔赛成绩的平均数和方差:甲乙丙丁平均数(环) 9.14 9.15 9.14 9.15方差 6.6 6.8 6.7 6.6根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择A.甲 B.乙 C.丙 D.丁【解析】选D.比较四名射击运动员成绩的平均数可得,乙和丁的成绩更好,而乙的方差>丁的方差,所以丁的成绩更稳定些.20.学校食堂午餐有10元,12元、15元三种价格的盒饭供选择,若经过统计发现10元、12元、15元的盒饭卖出数量恰好分别占50%,30%,20%,则卖出盒饭价格的中位数是( )A.10元B.11元C.12元D.无法确定【解析】选B.∵10元,12元,15元的盒饭卖出数量恰好分别占50%,30%、20%, ∴最中间的两个数是10元,12元,∴中位数是10和12的平均数,(10+12)÷2=11(元).二、填空题(本大题共4小题,满分12分,只要求填写最后结果,每小题填对得3分)21.(2019·重庆模拟)某班体育委员对本班学生一周锻炼时间(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是________小时.【解析】由统计图可知,一共有6+9+10+8+7=40(人),所以该班这些学生一周锻炼时间的中位数是第20个和第21个学生对应的数据的平均数,所以该班这些学生一周锻炼时间的中位数是11小时.答案:1122.甲乙两地9月上旬的日平均气温如图所示,则甲乙两地这10天日平均气温方差大小关系为______ (填>或<).【解析】观察平均气温统计图可知:乙地的平均气温比较稳定,波动小,则乙地的日平均气温的方差小,故>.答案:>23.(2019·岱岳区模拟)从3,0,-1,-2,-3这五个数中,随机抽取一个数,作为函数y=(5-m2)x和关于x的方程(m+1)x2+mx+1=0中m的值,恰好使所得函数的图象经过第一、三象限,且方程有实数根的概率为________.【解析】因为所得函数的图象经过第一、三象限,所以5-m2>0,所以m2<5,所以3,0,-1,-2,-3中,3和-3均不符合题意,将m=0代入(m+1)x2+mx+1=0中得,x2+1=0,Δ=-4<0,无实数根;将m=-1代入(m+1)x2+mx+1=0中得,-x+1=0,x=1,有实数根;将m=-2代入(m+1)x2+mx+1=0中得,x2+2x-1=0,Δ=4+4=8>0,有实数根.故方程有实数根的概率为.答案:24.(2019·张店区一模)某校射击队从甲,乙,丙,丁四人中选拔一人参加市运会射击比赛.在选拔赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示:甲乙丙丁平均数/环9.7 9.5 9.5 9.7方差 5.1 4.7 4.5 4.5请你根据表中数据选一人参加比赛,最合适的人选是________.【解析】因为=5.1,=4.7,=4.5,=4.5,所以>>=,因为丁的平均数大,所以最合适的人选是丁.答案:丁三、解答题(本大题共5个小题,满分48分.解答应写出必要的文字说明、证明过程或推演步骤)25.(8分)(2019·天津中考)某跳水队为了解运动员的年龄情况,做了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的跳水运动员人数为________,图①中m的值为________.(2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.【解析】(1)4030(2)观察所给的条形统计图,因为==15(岁),所以这组数据的平均数为15岁;因为在这组数据中,16出现了12次,出现的次数最多,所以这组数据的众数为16岁;因为将这组数据按照从小到大的顺序排列,其中处于中间的两个数都是15,有=15(岁),所以这组数据的中位数为15岁.26.(8分)(2019·连云港中考)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C 三类分别装袋投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A类的概率.(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.【解析】(1)一共有3类,所以甲投放的垃圾恰好是A类的概率为.(2)列出树状图如图所示:由图可知,共有18种等可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种.所以,P(乙投放的垃圾恰有一袋与甲投放的垃圾是同类)==.即乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率是.27.(10分)(2019·安徽中考)甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:甲:9,10,8,5,7,8,10,8,8,7;乙:5,7,8,7,8,9,7,9,10,10;丙:7,6,8,5,4,7,6,3,9,5.(1)根据以上数据完成下表:平均数中位数方差甲8 8乙8 8 2.2丙 6 3(2)依据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由.(3)比赛时三人依次出场,顺序由抽签方式决定.求甲、乙相邻出场的概率. 【解析】(1)平均数中位数方差甲 2乙丙 6(2)因为2<2.2<3,所以<<,这说明甲运动员的成绩最稳定.(3)三人的出场顺序有(甲乙丙),(甲丙乙),(乙甲丙),(乙丙甲),(丙甲乙),(丙乙甲)共6种,且每一种结果出现的可能性相等,其中,甲、乙相邻出场的结果有(甲乙丙),(乙甲丙),(丙甲乙),(丙乙甲)共4种,所以甲、乙相邻出场的概率P==. 28.(10分)在“书香八桂,阅读圆梦”读书活动中,某中学设置了书法、国学诵读、演讲、征文四个比赛项目(每人只参加一个项目),九(2)班全班同学都参加了比赛,该班班长为了了解本班同学参加各项比赛的情况,收集整理数据后,绘制以下不完整的折线统计图(图1)和扇形统计图(图2).根据图中的信息解答下列各题:(1)请求出九(2)班全班人数.(2)请把折线统计图补充完整.(3)南南和宁宁参加了比赛,请用“列表法”或“画树状图法”求出他们参加的比赛项目相同的概率.【解析】(1)全班总人数为=48(人).(2)由(1)可知,九(2)班全班人数为48人.从扇形统计图中可以得到国学诵读占总人数的百分比为50%,所以国学诵读的人数为48×50%=24(人).描点、连线,补充完整的折线统计图如图所示:(3)画树状图如图:列表如下:南南书法演讲国学诵读征文宁宁书法√演讲√国学诵读√征文√南南和宁宁参加比赛一共有16种可能的结果,每种结果出现的可能性相等,而他们参加比赛项目相同的情况有4种,记南南和宁宁参加相同比赛项目为事件A,则P(A)==.29.(12分)为全面开展“大课间”活动,某校准备成立“足球”“篮球”“跳绳”“踢毽”四个课外活动小组,学校体工处根据七年级学生的报名情况(每人限报一项)绘制了两幅不完整的统计图.请根据以上信息,完成下列问题:(1)m=________,n=________,并将条形统计图补充完整.(2)试问全校2019人中,大约有多少人报名参加足球活动小组?(3)根据活动需要,从“跳绳”小组的二男二女四名同学中随机选取两人到“踢毽”小组参加训练,请用列表或树状图的方法计算恰好选中一男一女两名同学的概率.【解析】(1)因为样本容量为15÷15%=100,所以“篮球”所占百分比为=25%,所以m=25;因为“跳绳”对应扇形的圆心角为×360°=108°,所以n=108.(2)全校报名参加足球活动小组的人数为2019×=600(人).(3)列表如下:男1 男2 女1 女2男1 ×(男1,男2) (男1,女1) (男1,女2)男2 (男2,男1) ×(男2,女1) (男2,女2)女1 (女1,男1) (女1,男2) ×(女1,女2)女2 (女2,男1) (女2,男2) (女2,女1) ×画树状图如下:因为所有可能出现的结果为12种,其中出现一男一女两名同学的结果为8种, 所以恰好选中一男一女两名同学的概率为=.。

备考2023年中考数学二轮复习-统计与概率_数据收集与处理_统计表-综合题专训及答案

备考2023年中考数学二轮复习-统计与概率_数据收集与处理_统计表-综合题专训及答案

备考2023年中考数学二轮复习-统计与概率_数据收集与处理_统计表-综合题专训及答案统计表综合题专训1、(2011连云港.中考真卷) 为了解某校“振兴阅读工程”的开展情况,教育部门对该校初中生的阅读情况进行了随机问卷调查,绘制了如下图表:初中生喜爱的文学作品种类调查统计表种类小说散文传记科普军事诗歌其他人数72 8 21 19 15 2 13根据上述图表提供的信息,解答下列问题:(1)喜爱小说的人数占被调查人数的百分比是多少?初中生每天阅读时间的中位数在哪个时间段内?(2)将写读后感、笔记积累、画圈点读等三种方式称为有记忆阅读.请估计该校现有的2000名初中生中,能进行有记忆阅读的人数约是多少?2、(2017泰兴.中考模拟) 近年来,学校对“在初中数学教学时总使用计算器是否直接影响学生计算能力的发展”这一问题密切关注,为此,某校随机调查了n 名学生对此问题的看法(看法分为三种:没有影响,影响不大,影响很大),并将调查结果绘制成如下不完整的统计表和扇形统计图,根据统计图表提供的信息,解答下列问题:n名学生对这一问题的看法人数统计表看法没有影响影响不大影响很大学生人数(人)40 60 m(1)求n的值;(2)统计表中的m=;(3)估计该校1800名学生中认为“影响很大”的学生人数.3、(2018台州.中考真卷) 某市明年的初中毕业升学考试,拟将“引体向上”作为男生体育考试的一个必考项目,满分为10分.有关部分为提前了解明年参加初中毕业升学考试的男生的“引体向上”水平,在全市八年级男生中随机抽取了部分男生,对他们的“引体向上”水平进行测试,并将测试结果绘制成如下统计图表(部分信息未给出):抽取的男生“引体向上”成绩统计表成绩人数0分321分302分243分114分155分及以上请你根据统计图表中的信息,解答下列问题:(1)填空:,;(2)求扇形统计图中组的扇形圆心角的度数;(3)目前该市八年级有男生3600名,请估计其中“引体向上”得零分的人数.4、(2015南平.中考真卷) 近年来,“在初中数学教学中使用计算器是否直接影响学生计算能力的发展”这一问题受到了广泛关注,为此,某校随机调查了若干名学生对此问题的看法(看法分为三种:没有影响,影响不大,影响很大),并将调查结果绘制成如下不完整的统计表和统计图:学生对使用计算器影响计算能力发展的看法统计表看法没有影响影响不大影响很大学生人数100 60 m根据以上图表信息,解答下列问题:(1)统计表中的m= ;(2)统计图中表示“影响不大”的扇形的圆心角度数为度;(3)从这次接受调查的学生中随机调查一人,恰好是持“影响很大”看法的概率是多少?5、(2019和平.中考模拟) 为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类 A B C D E出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有人,其中选择B类的人数有人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.6、(2018武汉.中考真卷) 某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,随机抽取m名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图.学生读书数量统计表阅读量/本学生人数1 152 a3 b4 5(1)直接写出m、a、b的值;(2)估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?7、(2018深圳.中考真卷) 某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:频数频率体育40 0.4科技25艺术0.15其它20 0.2请根据上图完成下面题目:(1)总人数为人,, .(2)请你补全条形统计图.(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?8、(2019河池.中考真卷) 某校计划开设美术、书法、体育、音乐兴趣班,为了解学生报名的意向,随机调查了部分学生,要求被调查的学生必选且只选一项,根兴趣班人数百分比美术10 10%书法30 a体育 b 40%音乐20 c根据统计图表的信息,解答下列问题:(1)直接写出本次调查的样本容量和表中a,b,c的值;(2)将折线图补充完整;(3)该校现有2000名学生,估计该校参加音乐兴趣班的学生有多少人?9、(2014绵阳.中考真卷) 四川省“单独两孩”政策于2014年3月20日正式开始实施,该政策的实施可能给我们的生活带来一些变化,绵阳市人口计生部门抽样调查了部分市民(每个参与调查的市民必须且只能在以下6种变化中选择一项),并将调查结果绘制成如下统计图:种类 A B C D E F变化有利于延缓社会老龄化现象导致人口暴增提升家庭抗风险能力增大社会基本公共服务的压力缓解男女比例不平衡现象促进人口与社会、资源、环境的协调可持续发展根据统计图,回答下列问题:(1)参与调查的市民一共有人;(2)参与调查的市民中选择C的人数是人;(3)∠α=;(4)请补全条形统计图.10、(2019乌鲁木齐.中考模拟) 某校为了调查初三男生和女生周日学习用时情况,随机抽取了初三男生和女生各50人,对他们的周日学习时间进行了统计,分别得到了初三男生的学习时间的频率分布表和女生学习时间的频率分布直方图(学习时间x,单位:小时,0≤x≤6).男生周日学习时间频率表学习时间频率0≤x<1 0.341≤x<2 0.362≤x<3 0.383≤x<4 0.224≤x<5 0.145≤x<6 0.06(1)请你判断该校初三年级周日学习用时较长的是男生还是女生,并说明理由;(2)从这100名学生中周日学习用时在5≤x≤6内的学生中抽取2人,求恰巧抽到一男一女的概率.11、(2020南山.中考模拟) 某社区踊跃为“抗击肺炎”捐款,根据捐款情况(捐款数为正数)制作以下统计图表,但工作人员不小心把墨水滴在统计表上,部分数据看不清楚.捐款人数0~50元51~100元101~150元151~200元 6200元以上 4(1)共有多少人捐款?(2)如果捐款0~50元的人数在扇形统计图中所占的圆心角为72°,那么捐款51~100元的有多少人?12、(2020湘潭.中考真卷) “停课不停学”.突如其来的新冠肺炎疫情让网络学习成为了今年春天一道别样的风景.隔离的是身体,温暖的是人心.“幸得有你,山河无恙”.在钟南山、白衣天使等人众志成城下,战胜了疫情.在春暖花开,万物复苏之际,某校为了解九年级学生居家网络学习情况,以便进行有针对性的教学安排,特对他们的网络学习时长(单位:小时)进行统计.现随机抽取20名学生的数据进行分析:收集数据:4.5,6,5.5,6.5,6.5,5.5,7,6,7.5,8,6.5,8,7.5,5.5,6.5,7,6.5,6,6.5,5整理数据:时长(小时)人数 2 8 4 分析数据:项目平均数中位数众数数据 6.4 6.5 b应用数据:(1)填空:a=________,b=________;(2)补全频数直方图;(3)若九年级共有1000人参与了网络学习,请估计学习时长在小时的人数.13、(2020金华.中考真卷) 某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如下两幅不完整的统计图表,请根据图表信息回答下列问题:抽取的学生最喜爱体育锻炼项目的统计表类别项目人数(人)A 跳舞59B 健身操C 俯卧撑31D 开合跳E 其它22(1)求参与问卷调查的学生总人数.(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?(3)该市共有初中学生约8000人,估算该市初中学生中最喜爱“健身操”的人数.14、(2020无锡.中考模拟) 为了解本校九年级学生期末数学考试情况,小亮在九年级随机抽取了一部分学生的期末数学成绩为样本,分为分)、分)、分)、分)四个等级进行统计,并将统计结果绘制成如下统计图表,请你根据统计图解答以下问题:其中组的期末数学成绩如下(1)请补全条形统计图;(2)这部分学生的期末数学成绩的中位数是________,组的期末数学成绩的众数是________;(3)这个学校九年级共有学生人,若分数为分(含分)以上为优秀,请估计这次九年级学生期末数学考试成绩为优秀的学生人数大约有多少?15、为了有效推进儿童青少年近视防控工作,某校积极落实教育部办公厅等十五部门联合制定《儿童青少年近视防控光明行动工作方案》,决定开设以下四种球类的课外选修课程:篮球、足球、排球、乒乓球,为了解学生需求,该校随机对本校部分学生进行了“你选择哪种球类课程”的调查(要求必须选择且只能选择其中一门课程),并根据调查结果绘制成如下不完整的统计图表.课程人数篮球m足球21排球30兵乓球n(1)求m,n的值;(2)求扇形统计图中“足球”对应扇形圆心角的度数;(3)该校共有1800名学生,请你估计全校选择“乒乓球”课程的学生人数.统计表综合题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:。

备考2023年中考数学二轮复习-统计与概率_数据分析_中位数-单选题专训及答案

备考2023年中考数学二轮复习-统计与概率_数据分析_中位数-单选题专训及答案

备考2023年中考数学二轮复习-统计与概率_数据分析_中位数-单选题专训及答案中位数单选题专训1、(2020黄冈.中考模拟) 一组数据3,2,4,2,5的中位数和众数分别是()A . 3,2 B . 3,3 C . 4,2 D . 4,32、(2022锡山.中考模拟) 九年级(1)班15名男同学进行引体向上测试,每人只测一次,测试结果统计如下:引体向上数/个0 1 2 3 4 5 6 7 8人数 1 1 2 1 3 3 2 1 1这15名男同学引体向上数的中位数是()A . 2B . 3C . 4D . 53、(2020前锋.中考模拟) (2017九下·永春期中) 在2016年泉州市初中体育中考中,随意抽取某校5位同学一分钟跳绳的次数分别为:158,160,154,158,170,则由这组数据得到的结论错误的是()A . 平均数为160B . 中位数为158C . 众数为158D . 方差为20.34、(2017大连.中考模拟) 为了考察某种小麦的长势,从中抽取了10株麦苗,量得它们的长度如下(单位:cm):16、9、14、11、12、10、16、8、17、16则这组数据的中位数为()A . 9B . 11C . 13D . 165、(2018金华.中考模拟) 本学期,大兴区开展了“恰同学少年,品诗词美韵”中华传统诗词大赛活动小江统计了班级30名同学四月份的诗词背诵数量,具体诗词数量首 4 5 6 7 8 9 10 11人数 3 4 4 5 7 5 1 1那么这30名同学四月份诗词背诵数量的众数和中位数分别是()A . 11,7B . 7,5C . 8,8D . 8,76、(2020无锡.中考模拟) 抢微信红包成为节日期间人们最喜欢的活动之一.对某单位50名员工在春节期间所抢的红包金额进行统计,并绘制成了统计图.根据如图提供的信息,红包金额的众数和中位数分别是()A . 20,20B . 30,20C . 30,30D . 20,307、(2017瑞安.中考模拟) 某学习小组13名学生的一次英语听力测试成绩分布如下成绩(分) 14 15 16 17 18 19 20人数(人) 1 3 2 2 1 2 2这13名学生听力测试成绩的中位数是()A . 16分B . 17分C . 18分D . 19分8、(2017无棣.中考模拟) 今年我市2017年初中毕业生学业考试10门学科整合后科目语文数学英语理化生政史地体育信息技术实验操作满分值120 120 120 150 150 50 20 20请问数据120,120,120,150,150,50,20,20中,众数、中位数分别是()A . 150,120 B . 120,120 C . 130,120 D . 120,1009、(2017威海.中考真卷) 某校排球队10名队员的身高(厘米)如下:195,186,182,188,188,182,186,188,186,188.这组数据的众数和中位数分别是()A . 186,188B . 188,187C . 187,188D . 188,18610、年龄(岁)12 13 14 15学生数(人) 1 23 20 6该班同学年龄的众数和中位数分别是()A . 6,13B . 13,13.5C . 13,14D . 14,1411、(2017武汉.中考模拟) 男子跳高的15名运动员的成绩如下表所示:成绩/m 1.50 1.60 1.65 1.70 1.75 1.80人数 2 3 2 3 4 1根据表中信息可以判断这些运动员成绩的中位数、众数分别为()A . 1.70、1.75B . 1.70、1.80C . 1.65、1.75D . 1.65、1.8012、(2021贺兰.中考模拟) 如图是根据某班40名同学一周的体育锻炼情况绘制的统计图,该班40名同学一周参加体育锻炼时间的中位数,众数分别是( )A . 10.5,16B . 8.5,16C . 8.5,8D . 9,813、(2019中山.中考模拟) 下列说法正确的是()A . 一组数据2,5,5,3,4的众数和中位数都是5B . “掷一次骰子,向上一面的点数是1”是必然事件 C . 掷一枚硬币正面朝上的概率是表示每抛硬币2次就有1次正面朝上 D . 计算甲组和乙组数据,得知= =10,=0.1,=0.2,则甲组数据比乙组数据稳定14、(2017广东.中考模拟) 一组数据:2,5,4,3,2的中位数是()A . 4B . 3.2C . 3D . 215、(2017宝安.中考模拟) 深圳市统计局发布的2016年《深圳市气候数据每日观测记录》显示,2016年12月26—21日这六天的平均相对湿度(百分数)分别是58,50,45,54,64,82.对于这组数据,以下说法正确的是( )A . 平均数是59B . 中位数是56C . 众数是82D . 方差是3716、(2020茂名.中考模拟) 某6人活动小组为了解本组成员的年龄情况,作了一次调查,统计的年龄如下(单位:岁):12,13,14,15,15,15,这组数据中的众数,平均数分别为()A . 12,14B . 12,15C . 15,14D . 15,1317、(2017南宁.中考模拟) 每年的4月23日是“世界读书日”.某中学为了了解八年级学生的读书情况,随机调查了50名学生的册数,统计数据如表所示:册数0 1 2 3 4人数3 13 16 17 1则这50名学生读数册数的众数、中位数是()A . 3,3B . 3,2C . 2,3D . 2,218、(2017玉林.中考真卷) 一组数据:6,3,4,5,7的平均数和中位数分别是()A . 5,5B . 5,6C . 6,5D . 6,619、(2019三亚.中考模拟) 一组数据3,﹣3,0,2,﹣2,3的中位数和众数分别是()A . ﹣1,2B . 0,2C . 1,2D . 1,320、(2018眉山.中考真卷) 某校有35名同学参加眉山市的三苏文化知识竞赛,预赛分数各不相同,取前18名同学参加决赛. 其中一名同学知道自己的分数后,要判断自己能否进入决赛,只需要知道这35名同学分数的()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中档题型训练(七) 统计与概率纵观近5年遵义中考试题,对本内容多以解答题的形式出现,侧重对统计图表的理解和分析.概率知识在中考中以选择题、填空题为主,也常常把概率和统计及其他知识点结合考查.统计知识的应用【例1】(2016遵义十九中一模)在“全民读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图.请根据相关信息,解答下列问题:(直接填写结果)(1)这次调查获取的样本数据的众数是________;(2)这次调查获取的样本数据的中位数是________;(3)若该校共有学生1 000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有________人.【解析】(1)众数就是出现次数最多的数,据此即可判断;(2)中位数就是大小处于中间位置的数,根据定义判断;(3)求得调查的总人数,然后利用 1 000乘以本学期计划购买课外书花费50元的学生所占的比例即可求解.【学生解答】(1)30;(2)50;(3)2501.(2016临夏中考)2016年《政府工作报告》中提出了十大新词汇,为了解同学们对新词汇的关注度,某数学兴趣小组选取其中的A:“互联网+政务服务”,B:“工匠精神”,C:“光网城市”,D:“大众旅游时代”四个热词在全校学生中进行了抽样调查,要求被调查的每位同学只能从中选择一个我最关注的热词.根据调查结果,该小组绘制了如下的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了多少名同学?(2)条形统计图中,m=________,n=________;(3)扇形统计图中,热词B所在扇形的圆心角是多少度?解:(1)105÷35%=300(人).答:一共调查了300名同学;(2)n=300×30%=90(人),m=300-105-90-45=60(人).故答案为:60,90;(3)60300×360°=72°.答:扇形统计图中,热词B所在扇形的圆心角是72°.概率知识的应用【例2】(2016南充中考)在校园文化艺术节中,九年级一班有1名男生和2名女生获得美术奖,另有2名男生和2名女生获得音乐奖.(1)从获得美术奖和音乐奖的7名学生中选取1名参加颁奖大会,求刚好是男生的概率;(2)分别从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会,用列表或树状图求刚好是一男生一女生的概率.【学生解答】解:(1)从获得美术奖和音乐奖的7名学生中选取1名参加颁奖大会,刚好是男生的概率=33+4=37;(2)画树状图为:共有12种等可能的结果数,其中刚好是一男生一女生的结果数为6,所以刚好是一男生一女生的概率=612=12.2.(2016菏泽中考)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用.(使用“求助”一次可以让主持人去掉其中一题的一个错误选项)(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是________.(2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是________.(3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.解:(1)第一道肯定能对,第二道对的概率为14,所以锐锐通关的概率为14;(2)锐锐两次“求助”都在第二道题中使用,则第一道题对的概率为13,第二道题对的概率为12,所以锐锐能通关的概率为12×13=16;(3)锐锐将每道题各用一次“求助”,分别用A ,B 表示剩下的第一道单选题的2个选项,a ,b ,c 表示剩下的第二道单选题的3个选项,树状图如图所示:共有6种等可能的结果,锐锐顺利通关的只有1种情况,∴锐锐顺利通关的概率为16. 3.(2016岳阳中考)已知不等式组⎩⎪⎨⎪⎧3x +4>x ,①43x ≤x +23.② (1)求不等式组的解集,并写出它的所有整数解;(2)在不等式组的所有整数解中任取两个不同的整数相乘,请用画树状图或列表的方法求积为正数的概率. 解:(1)由①得:x>-2,由②得:x≤2,∴不等式组的解集为:-2<x≤2,∴它的所有整数解为:-1,0,1,2;(2)画树状图得:∵共有12种等可能的结果,积为正数的有2种情况,∴积为正数的概率为212=16.统计与概率的综合应用【例3】(2016遵义十一中三模)课前预习是学习数学的重要环节,为了了解所教班级学生完成数学课前预习的具体情况,王老师对本班部分学生进行了为期半个月的跟踪调查,他将调查结果分为四类:A.很好;B.较好;C.一般;D.较差.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)王老师一共调查了多少名同学?(2)C 类女生有________名,D 类男生有________名,并将上面的条形统计图补充完整;(3)为了共同进步,王老师想从被调查的A 类和D 类学生中各随机选取一位同学进行“一帮一”互助学习.请用列表法或画树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.【解析】(1)根据A(或B)类人数以及所占百分比,求总人数;(2)利用总人数以及扇形图求各类别人数,从而得出C 组女生人数和D 组男生人数;(3)利用列表或树状图得到所有可能结果,然后利用概率公式求解.【学生解答】解:(1)∵(6+4)÷50%=20,∴王老师一共调查了20名同学;(2)C 类女生有3名,D 类男生有1名.补充统计图如图所示.(3)画树状图如下:∴所有可能出现的结果共有6种,所选两位同学恰好是一男和一女的结果共有3种.∴P(恰好是一男一女)=36=12.4.(2016十堰中考)为了提高科技创新意识,我市某中学在“2016年科技节”活动中举行科技比赛,包括“航模”“机器人”“环保”“建模”四个类别(每个学生只能参加一个类别的比赛),各类别参赛人数统计如图:请根据以上信息,解答下列问题:(1)全体参赛的学生共有________人,“建模”在扇形统计图中的圆心角是________;(2)将条形统计图补充完整;(3)在比赛结果中,获得“环保”类一等奖的学生为1名男生和2名女生,获得“建模”类一等奖的学生为1名男生和1名女生,现从这两类获得一等奖的学生中各随机选取1名学生参加市级“环保建模”考察活动,问选取的两人中恰为1男生1女生的概率是多少?解:(1)全体参赛的学生有:15÷25%=60(人),“建模”在扇形统计图中的圆心角是(1-25%-30%-25%)×360°=72°;故答案为60,72°;(2)“环保”类人数为:60×25%=15(人),“建模”类人数为:60-15-18-15=12(人),补全条形图如图;(3)画树状图如图:∵共有6种等可能结果,其中两人中恰为1男生1女生的有3种结果,∴选取的两人中恰为1男生1女生的概率是36=12. 5.(2016新疆中考)某校在民族团结宣传活动中,采用了四种宣传形式:A 唱歌,B 舞蹈,C 朗诵,D 器乐.全校的每名学生都选择了一种宣传形式参与了活动,小明对同学们选用的宣传形式,进行了随机抽样调查,根据调查统计结果,绘制了如图两种不完整的统计图表:选项 方式 百分比A 唱歌 35% B舞蹈 a C朗诵 25% D器乐 30%请结合统计图表,回答下列问题:(1)本次调查的学生共________人,a =________,并将条形统计图补充完整;(2)如果该校学生有2 000人,请你估计该校喜欢“唱歌”这种宣传形式的学生约有多少人?(3)学校采用调查方式让每班在A 、B 、C 、D 四种宣传形式中,随机抽取两种进行展示,请用树状图或列表法,求某班抽到的两种形式恰好是“唱歌”和“舞蹈”的概率.解:(1)∵A 类人数105,占35%,∴本次调查的学生共:105÷35%=300(人);a =1-35%-25%-30%=10%;故答案为:300;10%;B 的人数:300×10%=30(人),补全条形图如图;(2)2 000×35%=700(人).答:估计该 A B C DA BA CA DAB AB CB DBC AC BC DCD AD BD CD由表格可知,在A 、B 、C 、D 12种等可能结果,其中恰好是“唱歌”和“舞蹈”的有2种,∴某班抽到的两种形式恰好是“唱歌”和“舞蹈”的概率为212=16. 6.(2016河北中考)如图(1),一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4.如图(2),正方形ABCD 顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.如:若从圈A 起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D ;若第二次掷得2,就从D 开始顺时针连续跳2个边长,落到圈B ;……设游戏者从圈A 起跳.(1)嘉嘉随机掷一次骰子,求落回到圈A 的概率P 1;(2)淇淇随机掷两次骰子,用列表法求最后落回到圈A 的概率P 2,并指出她与嘉嘉落回到圈A 的可能性一样吗?解:(1)∵共有4种等可能的结果,落回到圈A 的只有1种情况,∴落回到圈A 的概率P 1=14;(2)列表得: 1 2 3 41 (1,1) (2,1) (3,1) (4,1)2 (1,2) (2,2) (3,2) (4,2)3 (1,3) (2,3) (3,3) (4,3)4 (1,4) (2,4) (3,4) (4,4)∵共有16A的概率P 2=416=14,∴她与嘉嘉落回到圈A 的可能性一样.。

相关文档
最新文档