人教版七年级数学上册-数轴教案

合集下载

人教版七年级上册数学数轴教案 七年级上册数学数轴教学设计(四篇)

人教版七年级上册数学数轴教案 七年级上册数学数轴教学设计(四篇)

人教版七年级上册数学数轴教案七年级上册数学数轴教学设计(四篇)人教版七年级上册数学数轴教案七年级上册数学数轴教学设计篇一【学习目标】1.通过与温度计的类比,认识数轴,会用数轴上的点表示有理数.2.借助数轴了解相反数的概念,认识互为相反数的一对数在数轴上的位置关系,能用数轴比较有理数的大小.【基础知识精讲】1.数轴三要素及数轴画法(1)数轴三要素:原点、单位长度、正方向.其中可以选取某一长度作为单位长度,规定直线上向右的方向为正方向.(2)取一直线,直线上具备了数轴的三要素,那么它就可以称为数轴了. 2.数轴与有理数的关系任何一个有理数都可以用数轴上的点来表示.(反之则不成立.因为数轴上的点不仅可以表示有理数,还有一些点表示的数不在有理数的范围内)3.利用数轴比较两个有理数的大小(1)数轴上两个点表示的数,右边的总比左边的大.图2—1(2)正数大于0,负数小于0,正数大于负数.图2—2 由于数轴上正数在0的右边,0在负数的右边,所以正数>0,0>负数,正数>负数.如:+7>-10(正数大于负数)0>-3(0大于负数),0<+2(0小于正数)4.相反数的有关知识(1)定义:如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数.如:-3和3,11和-,-3.2和+3.2…… 77(2)在数轴上,表示互为相反数的两个点位于原点的两侧,并且与原点的距离相等.图2—3 如:-3和+3是一对互为相反数,它们在原点的左右两侧,且它们到原点的距离都是3个单位长度.(3)相反数是它本身的数是0.说明:数轴是数学中数与图形结合的典范.理解数轴及和数轴有关的知识都可以从几何和代数两方面入手.【学习方法指导】[例1]画一个数轴,并在数轴上表示出下列各数,并用“<”号连接起来.111,-3,-1,0,2 23点拨:①画数轴应必须具备数轴三要素:原点、单位长度、正方向.②用“<”号连接这些数,需要将这些数从小到大排列.而在数轴上右边的数总是大于左边的数,所以只要将数轴上的数从左到右用“<”号连接即可.解答:图2—4 -3<-111<0<1<2 32[例2]m,n在数轴上位置如图2—5,则下面结论正确的是…()图2—5 a.m>0,n<0 b.m>0,n>0 c.m<0,n<0 d.m <0,n>0 点拨:在数轴上的数,右边的总比左边的大.对于m和0,m在0的右边,即m>0,而n在0的左边,所以0>n 即n<0.解答:m>0,n<0.选a.[例3]数轴上距离原点3个单位长度的数是_____.点拨:先画出数轴,找到原点.从原点开始向左、向右各数3个单位长度,这两个点到原点的距离相等,且符合题意.记住:类似的题目答案一般会有两个数.解答:+3和-3 [例4]填空:(1)-5的相反数是_____ 2(2)b的相反数是_____(3)-m的相反数是_____ 点拨:不管是数字或是字母,互为相反数的两个数只有符号不同.解答:(1)5(2)-b(3)m 2[例5]数轴上表示互为相反数的两个点a和b,它们两点间的距离是5,则这两个数分别是_____和_____.点拨:画出数轴,表示出a和b.由于它们互为相反数,所以这两个点到原点的距离相等,则每个点距原点2.5个单位长度.在原点左边的点为-2.5,在原点右边则为+2.5.图2—6 解答:+2.5和-2.5.[例6]比较大小(1)0_____-(2)-1_____-(3)7_____-10 2点拨:若正数、负数、0互相比较,则用“正数>0>负数”进行比较.若两负数进行比较,将它们标注在数轴上,右边的数大于左边的数.解答:(1)>(0大于负数)(2)>(数轴上,-1所对应的点在-2所对应点的右侧)2图2—7(3)>(正数大于负数)【拓展训练】求下列各数的相反数.(1)-(+7)(2)+(-m)点拨:由于互为相反数的两个数只有一个符号不同:一个为正,一个为负.因为在此题中将括号里的数看做一个整体,括号外的才是它的符号.找相反数时,只要改变括号外的符号即可.解答:(1)-(+7)的相反数是+(+7)(2)+(-m)的相反数是-(-m)人教版七年级上册数学数轴教案七年级上册数学数轴教学设计篇二人教版七年级数学上册数轴说课稿一:教材分析:本节课主要是在学生学习了有理数概念的基础上,从标有刻度的温度计表示温度高低这一事例出发,引出数轴的画法和用数轴上的点表示数的方法,初步向学生渗透数形结合的数学思想,以使学生借助直观的图形来理解有理数的有关问题。

1.2.2数轴(教案,新教材)-七年级数学上册(人教版2024)

1.2.2数轴(教案,新教材)-七年级数学上册(人教版2024)

1.2.2数轴(教案,新教材)【教学目标】1.借助生活中的实例理解数轴的概念;2.会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数;3.感受数与形是可以相互转化的,渗透数形结合的数学思想.【教学重点】理解数轴的概念,数与形的相互转化.【教学难点】会用数轴上的点表示给定的有理数.【教学过程】一、情境导入情境:医生在给病人测量体温时常使用温度计.这是小学里我们学习了在有刻度的直线上表示出0和正数,借助这个图形直观和分析问题。

我们起来看一个实例:活动一:教师创设问题情况,引入课题问题:在一条东西的马路旁,有一个汽车站牌,汽车站牌东侧3 m和7.5 m处分别有一颗柳树和一根交通标志,汽车站牌西侧3m和4.8 m处分别有一颗槐树和一根电线杆,试画图表示这一情境。

学生活动:小组合作,动手操作画出示意图.教师活动:启发学生“画一直线表示马路,从左向右表示从西向东,直线上取一点O表示汽车站牌”,怎样用数简明表示各处的位置?师生活动:师生共同探究,情境中东、西,左、右都具有相反意义,在画的直线中,O点表示基点,取1个单位长度代表1m长,再用0表示点O,用负数表示点O左边的点,用正数表示点O右边的点。

二、合作探究活动二:认识理解数轴前面讲到的温度计可以看作表示正数、0和负数的直线,它和上面同学们所画的图有什么共同点?学生活动:和其他同学交流,注意交流时要发表自己的见解.师生活动:师生共同总结,具有三个条件:原点,正方向,单位长度.抽象出数轴定义,规定是正半轴,负半轴,原点的直线.活动三:强化对数轴的认识例1.下列图形中是数轴的是()A. B.C. D.学生活动:根据自己的认识判断.师生活动:教师给学生的判断进行评价,并总结要判断一条直线是不是数轴,要抓住它的三要素:原点、正方向和单位长度,三者缺一不可.活动四:读出数轴上的点所表示的数例2.如图中所示,指出数轴上的A、B、C、D、E、F各点所表示的数.师生活动:师生共同探讨要确定数轴上的点所表示的数的步骤:(1)确定符号,在原点右边为正数,在原点左边为负数;(2)确定数字,即距离原点是几个单位长度.活动五:有理数在数轴上表示问题:基于以上数据,讨论有理数a如何在数轴上表示?学生活动:当a是正数,负数时,讨论如何在数轴找到相应的点表示数a.教师活动:对学生讨论结果进行评价,并强调如何确定数轴上与原点距离是a的点.例3.画出数轴,并用数轴上的点表示下列各数5---3,4,4,0.5,0,,12学生活动:学生画出数轴,并在数轴上表示以上各数.师生活动:教师评价学生的操作,并关注所画数轴是否具备“三要素”.师生共同总结方法:用数轴上的点表示数时,首先由数的性质符号确定该数应在原点的左边还是右边,然后再根据该数到原点的距离,确定位置.活动六:拓展提升,数轴上两点间的距离问题例4.数轴上的点A表示的数是3,那么与点A相距5个单位长度的点表示的数是() A.2 B.±2 C.8D.8或-2学生活动:讨论与点A相距5个单位长度的点表示的数有2个,分别是8或-2.师生活动:评价学生讨论结果,总结如何求两点间的距离问题,解答此类问题要注意考虑两种情况,即要求的点在已知点的左侧或右侧.三、强化巩固1.学生练习:课本练习题1、3.学生解答,教师评价并给予规范.2. 快递小哥骑车从快递投放点出发,先向东骑行2.5km到达A村,继续向东骑行2km到达B村,然后向西骑行7km到C村,最后回到快递投放点.(1)以快递投放点为原点,以向东方向为正方向,用1cm表示1km,画出数轴,并在该数轴上表示出A、B、C三个村庄的位置;(2)C村离A村有多远?(3)快递小哥一共骑了多少千米?学生讨论解答,教师规范写出解答过程.四、总结拓展学生小组合作对知识总结:1.什么是数轴,数轴三要素:(1)原点,(2)正方向,(3)单位长度.2.数轴上的点与有理数间的关系:原点表示零;原点右边的点表示正数;原点左边的点表示负数.3.数轴上点数a到原点的距离,两点间的距离的求法.学生小组合作对数学思想方法总结:数形结合,分类等数学思想。

人教版初中七年级上册数学数轴教案三篇

人教版初中七年级上册数学数轴教案三篇

【导语】规定了原点,正⽅向和单位长度的直线叫数轴。

其中,原点、正⽅向和单位长度称为数轴的三要素。

⽆忧考准备了以下内容,供⼤家参考!篇⼀ ⼀、教学⽬标 【知识与技能】 了解数轴的概念,能⽤数轴上的点准确地表⽰有理数。

【过程与⽅法】 通过观察与实际操作,理解有理数与数轴上的点的对应关系,体会数形结合的思想。

【情感、态度与价值观】 在数与形结合的过程中,体会数学学习的乐趣。

⼆、教学重难点 【教学重点】 数轴的三要素,⽤数轴上的点表⽰有理数。

【教学难点】 数形结合的思想⽅法。

三、教学过程 (⼀)引⼊新课 提出问题:通过实例温度计上数字的意义,引出数学中也有像温度计⼀样可以⽤来表⽰数的轴,它就是我们今天学习的数轴。

(⼆)探索新知 学⽣活动:⼩组讨论,⽤画图的形式表⽰东西向马路上杨树,柳树,汽车站牌三者之间的关系: 提问1:上⾯的问题中,“东”与“西”、“左”与“右”都具有相反意义。

我们知道,正数和负数可以表⽰具有相反意义的量,那么,如何⽤数表⽰这些树、电线杆与汽车站牌的相对位置呢? 学⽣活动:画图表⽰后提问。

提问2:“0”代表什么?数的符号的实际意义是什么?对照体温计进⾏解答。

教师给出定义:在数学中,可以⽤⼀条直线上的点表⽰数,这条直线叫做数轴,它满⾜:任取⼀个点表⽰数0,代表原点;通常规定直线上向右(或上)为正⽅向,从原点向左(或下)为负⽅向;选取合适的长度为单位长度。

提问3:你是如何理解数轴三要素的? 师⽣共同总结:“原点”是数轴的“基准”,表⽰0,是表⽰正数和负数的分界点,正⽅向是⼈为规定的,要依据实际问题选取合适的单位长度。

(三)课堂练习 如图,写出数轴上点A,B,C,D,E表⽰的数。

(四)⼩结作业 提问:今天有什么收获? 引导学⽣回顾:数轴的三要素,⽤数轴表⽰数。

课后作业: 课后练习题第⼆题;思考:到原点距离相等的两个点有什么特点?篇⼆ ⼀、教学内容分析1.2有理数1.2.2数轴。

人教版七年级数学上册:第一章有理数1.2.2数轴(教案)

人教版七年级数学上册:第一章有理数1.2.2数轴(教案)
2.教学难点
-理解数轴上的对称性,尤其是关于原点的对称。
-掌握数轴上两点间距离的计算方法。
-理解数轴上的相反数和绝对值概念。
-解决与数轴相关的复杂问题。
举例:难点在于让学生理解数轴上对称性的概念,如-3和3在数轴上是关于原点对称的。同时,解释数轴上两点间距离的计算,如点A表示数-2,点B表示数5,点A和点B之间的距离是7个单位长度。此外,帮助学生理解一个数的相反数在数轴上的位置关系,以及绝对值表示的几何意义。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解数轴的基本概念。数轴是一个直线,用来表示有理数,它有三个要素:原点、正方向和单位长度。数轴是数学中非常重要的工具,它帮助我们直观地理解数的大小和相对位置。
2.案例分析:接下来,我们来看一个具体的案例。比如,气温的变化可以用数轴来表示,零上温度在原点右侧,零下温度在原点左侧,这样我们可以清楚地看到温度的升降。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。比如,用尺子在教室内创建一个数轴,并标出不同的有理数位置。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“数轴在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
学生小组讨论的环节,让我看到了学生们思维的火花。他们能够从不同的角度看待问题,提出各种有趣的见解。但我也意识到,我需要更好地引导他们,将讨论聚焦于数轴的核心概念和应用上,避免讨论偏离主题。
总的来说,今天的课堂让我认识到,教学过程中需要关注每一个学生的个体差异,因材施教,充分调动他们的学习积极性。在今后的教学中,我将不断总结经验,努力提高教学效果,让数学课堂变得更加生动有趣。

1.2.2数轴 教案2022-2023学年人教版七年级数学上册

1.2.2数轴 教案2022-2023学年人教版七年级数学上册

1.2.2 数轴教案2022-2023学年人教版七年级数学上册教学目标通过本课的学习,学生应该能够: 1. 理解数轴的概念及其作用; 2. 掌握在数轴上表示数的方法; 3. 能够将实际问题转化为数轴上的表示; 4. 能够使用数轴进行简单的数学运算; 5. 培养学生的逻辑思维和空间想象能力。

教学重点1.数轴的概念及其作用;2.数轴上的数的表示方法;3.数轴上的数的运算。

教学准备•教师准备:–教师课件;–数轴模型;–计算器。

•学生准备:–课本;–笔记本。

教学过程一、导入新知1.引导学生回忆上一节课学习的内容,复习数的定义和数的表示方法。

2.引出本节课的主题:数轴。

二、概念讲解1.教师通过数轴模型向学生展示数轴的基本结构和表示方法,并解释数轴的作用。

2.引导学生思考:数轴上的点代表什么意思?如何表示正数和负数?三、数轴的表示1.教师通过数轴模型向学生演示数的表示方法,并讲解数轴上数字的排列规律。

2.引导学生进行数的表示练习,例如:在数轴上表示数3、-2、0等。

四、数轴上的运算1.通过实际例子引导学生进行数轴上的加法和减法运算。

2.引导学生进行练习,例如:计算数轴上的两个数之间的距离,或者计算数轴上两个数的和、差等。

五、拓展应用1.给学生提供更复杂的问题,引导他们运用数轴解决实际问题,如:小明从家里出发,沿着数轴上的正方向走了5步,再往反方向走了3步,最后停在了哪个位置?2.鼓励学生思考、探究和解决问题,并展示解题思路和答案。

教学反思本节课通过实物模型和实例讲解,帮助学生更直观地理解数轴的概念,并通过练习和拓展应用加深学生对数轴的认识和运用能力。

在教学过程中,学生的思维活动得到了有效激发,课堂氛围较为活跃。

下一堂课可以结合数轴的运用场景,拓展更多的数轴应用。

最新人教版初中七年级上册数学《数轴》教案

最新人教版初中七年级上册数学《数轴》教案

1.2.2数轴【知识与技能】1.掌握数轴三要素,能正确画出数轴.2.能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.【过程与方法】1.使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识.2.结合本节内容,对学生渗透数形结合的重要思想方法.【情感态度】使学生进一步形成数学来源于实践,反过来又服务于实践的辩证唯物主义观点.【教学重点】数轴的概念与应用.【教学难点】从直观认识到理性认识,从而建立数轴概念.一、情境导入,初步认识问题在一条东西向的马路上,有一个汽车站牌,汽车站牌东3m和西7.5m处分别有一棵柳树和一棵杨树,汽车站牌西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.(学生画图)师:对照大家画的图,为了使表达更清楚,我们把0左右两边的数分别用负数和正数来表示,即用一直线上的点把正数、负数、0都表示出来.也就是本节内容——数轴.【教学说明】(1)引导学生学会画数轴.第一步:画直线定原点;第二步:规定从原点向右的方向为正(左边为负方向);第三步:选择适当的长度为单位长度(据情况而定);第四步:拿出教学温度计,由学生观察温度计的结构和数轴的结构是否有共同之处,并让学生对比思考:原点相当于什么;正方向与什么一致;单位长度又是什么?(2)有了以上基础,我们可以来试着定义数轴:规定了原点、正方向和单位长度的直线叫数轴.做一做学生自己练习画出数轴.二、思考探究,获取新知思考1你能利用你自己画的数轴上的点来表示数1,-0.5,-2,-7/2,0吗?思考2若a是一个正数,则数轴上表示数a的点在原点的什么位置上?与原点相距多少个单位长度?表示-a的点在原点的什么位置上?与原点又相距了多少个单位长度?小结:整数在数轴上都能找到点吗?分数呢?教师总结.试一试教材第9页练习.三、典例精析,掌握新知例1下列所画数轴对不对?如果不对,指出错在哪里.【答案】①错,没有原点②错,没有正方向③正确④错,没有单位长度⑤错,单位长度不统一⑥正确⑦错,正方向标错例2用你画的数轴上的点表示4,1.5,-3,-7/3,0.【答案】图中A点表示4,B点表示1.5,C点表示-3,D点表示-73,E点表示0.【教学说明】教师应向学生强调,所有的有理数都可以在数轴上找个点与它对应,原点右边的点表示正数,原点左边的点表示负数.数与数轴上的点结合,这是一种数形结合的重要数学思想.例3(1)与原点的距离为2.5个单位的点有个,它们分别表示有理数和.(2)一个蜗牛从原点开始,先向左爬了4个单位,再向右爬了7个单位到达终点,那么终点表示的数是.【答案】(1)两2.5-2.5(2)+3【教学说明】这类题的解答可借助数轴上点的移动来找到结果.例4在数轴上表示-212和213,并根据数轴指出所有大于-212而小于213的整数.【答案】-2,-1,0,1【教学说明】教师要向学生评讲并指出本题反映了数形结合的思想方法.例5数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若在这个数轴上随意画出一条长2000cm的线段AB,则线段AB盖住的整点个数是()A.1998或1999B.1999或2000C.2000或2001D.2001或2002【分析】分两种情况分析:(1)当线段AB的起点是整点时,终点也落在整点上,那就盖住2001个整点;(2)当线段AB的起点不是整点时,终点也不落在整点上,那么线段AB盖住了2000个整点,所以选C.【教学说明】本题解答时要特别注意对题意的理解,不能忽略了分类讨论.四、运用新知,深化理解1.把数轴上表示2的点移动5个单位后,所得的对应点表示的数是()A.7B.-3C.7或-3D.不能确定2.数轴上表示5和-5的点离开原点的距离是,但它们分别.3. 是最小的正整数,是最小的非负数,是最大的非正数.4.与原点距离为3.5个单位长度的点有个,它们分别是和.5.在数轴上,离原点距离等于3的数是.6.在数轴上与-1相距3个单位长度的点有个,为;长为3个单位长度的木条放在数轴上,最多能覆盖个整数点.7.一条直线的流水线上,依次有5个卡通人,它们站立的位置在数轴上依次用点M1、M2、M3、M4、M5表示,如图:(1)点M4和M2所表示的有理数是什么?(2)点M3和M5两点间的距离为多少?(3)怎样将点M3移动,使它先达到M2,再达到M5,请用文字说明;(4)若原点是一休息游乐所,那5个卡通人到休息游乐所的总路程为多少?【教学说明】本栏目1~6题较为简单,可让学生独立完成,教师再让学生回答,第7题较为新颖,教师可适当引导后仍由学生自主完成.【答案】1.C2.5在原点的两边3.1 0 04.2 3.5 -3.55.3或-36.2 -4或2 47.(1)M4表示2,M2表示-3;(2)相距7个单位长度;(3)先向左移动1个单位长度,再向右移动8个单位长度;(4)17个单位长度.五、师生互动,课堂小结数轴是非常重要的工具,它使数和直线上的点建立了对应关系.它揭示了数和形的内在联系,为今后进一步研究问题提供了新方法和新思想.应让学生掌握数轴的三要素,正确画出数轴.提醒学生,所有的有理数都可以用数轴上的相关点来表示,但反过来并不成立,即数轴上的点并不都表示有理数.1.布置作业::从教材习题1.2中选取.2.完成练习册中本课时的练习.数轴是数形结合的基本知识,是学生难以理解的难点,教学过程应从贴近学生的实际出发,学生才易于接受和体验,让学生通过观察、思考和动手操作、经历数轴的形成过程,加深对数轴概念的理解,同时可培养抽象概括能力.教学过程可突出“情境——抽象——概括”的主线,体现从特殊到一般研究问题的方法,注意从学生已有经验出发,发挥学生主体作用,会达到事半功倍的效果.作者留言:非常感谢!您浏览到此文档。

人教版七年级数学上册:1.2.2《数轴》教学设计

人教版七年级数学上册:1.2.2《数轴》教学设计

人教版七年级数学上册:1.2.2《数轴》教学设计一. 教材分析数轴是中学数学中的重要概念,是实数与数轴上的点一一对应的基础。

人教版七年级数学上册1.2.2《数轴》一节,主要让学生了解数轴的定义、特点及数轴上的基本运算。

通过本节课的学习,学生能理解数轴的概念,会画数轴,能在数轴上表示实数,并进行简单的运算。

二. 学情分析七年级的学生已经学习了有理数,对实数有一定的了解,但数轴的概念和运用对他们来说是一个新的挑战。

学生在学习本节课时,需要将已有的实数知识与数轴相结合,形成直观的数形结合思想。

同时,学生需要通过实践活动,掌握数轴的画法和运用。

三. 教学目标1.知识与技能:理解数轴的定义,掌握数轴的特点,能在数轴上表示实数,并进行简单的运算。

2.过程与方法:通过实践活动,培养学生的数形结合思想,提高学生的动手操作能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神。

四. 教学重难点1.数轴的定义和特点。

2.数轴上的基本运算。

五. 教学方法采用问题驱动法、实践活动法和合作学习法。

通过提出问题,引导学生思考;通过实践活动,让学生亲身体验数轴的运用;通过合作学习,培养学生团队合作精神。

六. 教学准备1.教学PPT。

2.数轴图示。

3.练习题。

七. 教学过程1.导入(5分钟)通过提出问题:“什么是数轴?数轴有什么特点?”引导学生思考,激发学生的学习兴趣。

2.呈现(10分钟)利用PPT展示数轴的定义和特点,让学生直观地理解数轴的概念。

3.操练(10分钟)让学生分组进行实践活动,每组画出一个数轴,并在数轴上表示给定的实数。

通过实践活动,让学生掌握数轴的画法。

4.巩固(10分钟)让学生进行小组讨论,总结数轴上的基本运算,如加法、减法、比较大小等。

通过小组讨论,巩固学生对数轴的理解。

5.拓展(5分钟)出示一些有关数轴的拓展问题,让学生独立解答。

如:“已知数轴上两点A、B,求线段AB的长度。

”通过拓展问题,提高学生的运用能力。

七年级数学上册数轴教案人教版

七年级数学上册数轴教案人教版

人教版七年级数学上册数轴教案一、教学目标:1. 让学生理解数轴的概念,掌握数轴的基本性质。

2. 培养学生借助数轴进行有理数的计算和解决问题能力。

3. 渗透数形结合的数学思想,提高学生的逻辑思维能力。

二、教学内容:1. 数轴的定义及表示方法。

2. 数轴上点的特点及坐标表示。

3. 数轴上的距离和方向。

4. 数轴在有理数计算中的应用。

三、教学重点与难点:1. 重点:数轴的概念、性质及应用。

2. 难点:数轴上点的坐标表示,数轴在有理数计算中的应用。

四、教学方法:1. 采用自主学习、合作探究的教学方法,让学生在实践中掌握数轴的知识。

2. 利用多媒体课件,直观展示数轴的特点和应用,提高学生的学习兴趣。

3. 通过例题和练习,巩固所学知识,提高学生的解题能力。

五、教学过程:1. 引入:讲解数轴的定义及表示方法,让学生初步认识数轴。

2. 新课:讲解数轴上点的特点及坐标表示,引导学生掌握数轴的基本性质。

3. 应用:讲解数轴在有理数计算中的应用,让学生学会借助数轴解决问题。

4. 练习:布置练习题,让学生巩固所学知识。

5. 小结:总结本节课的主要内容,强调数轴的概念和应用。

6. 作业:布置课后作业,巩固所学知识。

六、教学策略与方法1. 采用问题驱动的教学方法,引导学生主动探究数轴的性质。

2. 通过小组讨论,培养学生合作学习的意识,提高学生的沟通能力。

3. 利用实物模型或电子课件,直观展示数轴的动态变化,增强学生的空间想象力。

4. 设计具有层次性的练习题,满足不同学生的学习需求,让每个学生都能在实践中提高自己的能力。

七、教学评价1. 课堂表现评价:关注学生在课堂上的参与程度、提问回答、合作交流等情况,了解学生的学习状态。

2. 练习题评价:通过学生完成的练习题,评估学生对数轴知识的掌握程度。

3. 课后作业评价:检查学生课后作业的完成情况,了解学生对数轴知识的巩固程度。

4. 学生自我评价:鼓励学生反思自己的学习过程,发现自身不足,提高自我学习能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2.2数轴
【教学目标】
知识技能
1.通过与温度计的类比,了解数轴的概念,会画数轴。

2.知道如何在数轴上表示有理数,能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴上都有唯一的点与之对应。

过程方法
1.从直观认识到理性认识,从而建立数轴概念。

2.通过数轴概念的学习,初步体会对应的思想、数形结合的思想方法。

3.会利用数轴解决有关问题。

情感态度
通过对数轴的学习,体会到数形结合的思想方法,进而初步认识事物之间的联系性。

【教学重点】
1.数轴的概念。

2.能将已知数在数轴上表示出来,说出数轴上已知点所表示的数。

【教学难点】
从直观认识到理性认识,从而建立数轴的概念。

一、情境导入
1.欣欣感冒了,医生用体温计测量了她的体温,并说:“37.8度”.
提出问题:医生为什么通过体温计就可以读出任意一个人的体温?
2.我们再一起去看看中秋节祖国各地的自然风光和温度情况(电脑分别显示嘉峪关、长白山、颐和园三个旅游景点的自然风光,温度分别为-3℃,0℃,20℃)
嘉峪关-3℃长白山0℃颐和园20℃
提出问题:那么要测量这种气温所需要的温度计的刻度应该如何安排?需要用到哪些数?
3.请尝试画出你想像中的温度计,并和其他同学交流,注意交流时要发表自己的见解.提出问题:请找出一支温度计从外观上具有哪些不可缺少的特征?
知识链接
1.回忆正负数的意义并回答以下问题:
在一条东西方向的马路上,有一个学校,学校东50m和西150m处分别有一个书店和一个超市,学校西100m和东200m处分别有一个邮局和医院,以学校为“基准”,并把向东记作“+”,向西记作“-”,用正负数表示书店、超市、邮局、医院的位置.
二、合作探究
探究点一:数轴的概念
下列图形中是数轴的是( )
A. B.
C.
D.
解析:A中的没有单位长度,错误;B中没有正方向,错误;C中满足原点,正方向,单位长度,正确;D中没有原点,错误.故选C.
方法总结:要判断一条直线是不是数轴,要抓住它的三要素:原点、正方向和单位长度,三者缺一不可.
探究点二:有理数与数轴的关系
【类型一】读出数轴上的点所表示的数
指出如图中所表示的数轴上的A、B、C、D、E、F各点所表示的数.
解析:要确定数轴上的点所表示的数可利用以下方法:(1)确定符号,在原点右边为正数,在原点左边为负数;(2)确定数字,即距离原点是几个单位长度.
解:由图可知,A点表示:-4.5;B点表示:4;C点表示:-2;D点表示:5.5;E点表示:0.5;F点表示7.
方法总结:在确定数字时,要认真观察已知点是在原点的左边还是右边,对于A、D这种情况,要注意它们所表示的数是在哪两个数之间.
【类型二】在数轴上表示有理数
画出数轴,并用数轴上的点表示下列各
数:
-5,2.5,3,-52,0,-3,31
2
.
解析:(1)画数轴必须具备“三要素”,三者缺一不可;单位长度必须一致,不能长短
不一;正方向向右;(2)用数轴上的点表示数时,注意数的符号和该数到原点的距离.
解:如图:
方法总结:用数轴上的点表示数时,首先由数的性质符号确定该数应在原点的左边还是右边,然后再根据该数到原点的距离,确定位置.
【类型三】 数轴上两点间的距离问题
F E
D C
B A
7.画出数轴并标出表示下列各数的点.
-3
1
2
,4,2.5,0,1,7,-5.
8.如图所示,在数轴上有A、B、C三个点,请回答:
(1)将A点向右移动3个单位长度,C点向左移动5个单位长度,它们各自表示新的什么数?
(2)移动A、B、C中的两个点,使得三个点表示的数相同,有几种移动方法?
三、板书设计
1.数轴
(1)原点
(2)正方向
(3)单位长度
2.数轴上的点与有理数间的关系
(1)原点表示零
(2)原点右边的点表示正数
(3)原点左边的点表示负数
数轴是数形转化、结合的重要桥梁,教学时的创设问题情境,激发学生的学习热情,发现生活中的数学.让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,学习过程中也体现出了从感性认识到理性认识,再到抽象概括的认识规律.。

相关文档
最新文档