第二章非参数统计分析

合集下载

统计学中的非参数统计分析

统计学中的非参数统计分析

统计学中的非参数统计分析统计学作为一门研究数据分析和推断的学科,涉及到各种统计方法和技术。

其中,非参数统计分析是一种常见且重要的方法,它不依赖于数据的特定分布假设,而是利用数据本身的特征进行分析和推断。

本文将介绍非参数统计分析的基本概念、应用场景和常用方法。

非参数统计分析是相对于参数统计分析而言的。

参数统计分析通常需要对数据的分布做出假设,如正态分布、指数分布等,并利用参数估计方法来推断总体参数。

然而,在实际应用中,我们往往无法确定数据的真实分布,或者分布假设不成立。

这时,非参数统计分析就成为一种有力的工具。

非参数统计分析的一个重要应用是在样本比较中。

假设我们想比较两组样本的均值是否有显著差异,但无法确定数据是否符合正态分布。

这时,可以使用非参数的Wilcoxon秩和检验来进行推断。

该方法将两组样本的观测值按大小排序,并计算秩次和。

通过比较秩次和的大小,可以判断两组样本的均值是否有显著差异。

除了样本比较,非参数统计分析还可以用于回归分析。

在传统的线性回归中,我们通常假设自变量和因变量之间的关系是线性的,并利用最小二乘法来估计回归系数。

然而,在实际应用中,变量之间的关系可能是非线性的,或者无法确定具体的函数形式。

这时,非参数的局部回归方法就可以派上用场。

该方法通过在每个数据点附近拟合局部线性模型,来估计变量之间的关系。

这种方法不依赖于具体的函数形式,能够更好地适应数据的特点。

在实际应用中,非参数统计分析还有许多其他的方法,如Kolmogorov-Smirnov 检验、Mann-Whitney U检验等。

这些方法都不依赖于数据的分布假设,能够更加灵活地适应不同的数据类型和场景。

尽管非参数统计分析在某些方面具有优势,但也存在一些限制。

首先,由于不依赖于分布假设,非参数方法通常需要更多的样本来获得可靠的推断结果。

其次,非参数方法往往比参数方法计算量更大,需要更多的计算资源和时间。

此外,非参数方法对异常值和缺失值的鲁棒性较差,需要进行适当的数据处理。

王静龙《非参数统计分析》章教案

王静龙《非参数统计分析》章教案

.引言一般统计分析分为参数分析与非参数分析,参数分析是指,知道总体分布,但其中几个参数的值未知,用统计量来估计参数值,但大部分情况,总体是未知的,这时候就不能用参数分析,如果强行用可能会出现错误的结果。

例如:分析下面的供应商的产品是否合格?合格产品的标准长度为(8.5±0.1),随即抽取n=100件零件,数据如下:表1.18.503 8.508 8.498 8.347 8.494 8.500 8.498 8.500 8.502 8.501 8.491 8.504 8.502 8.503 8.501 8.505 8.492 8.497 8.150 8.496 8.501 8.489 8.506 8.497 8.505 8.501 8.500 8.499 8.490 8.493 8.501 8.497 8.501 8.498 8.503 8.505 8.510 8.499 8.489 8.496 8.500 8.503 8.497 8.504 8.503 8.506 8.497 8.507 8.346 8.310 8.489 8.499 8.492 8.497 8.506 8.502 8.505 8.489 8.503 8.492 8.501 8.499 8.804 8.505 8.504 8.499 8.506 8.499 8.493 8.494 8.490 8.505 8.511 8.502 8.505 8.503 8.782 8.502 8.509 8.499 8.498 8.493 8.897 8.504 8.493 8.494 7.780 8.509 8.499 8.503 8.494 8.511 8.501 8.497 8.493 8.501 8.495 8.461 8.504 8.691经计算,平均长度为cm x 4958.8=,非常接近中心位置8.5cm ,样本标准差为()1047.0112=--=∑=ni in x x s cm.一般产品的质量服从正态分布,),(~2δμN X 。

chapter2非参数统计详解

chapter2非参数统计详解

将样本显示的特点作为对总体的猜想,并优先选作 备择假设,零假设是相对于备择假设而出现的.
(2) 检验的 p 值和显著性水平的作用 p 值:在一个假设检验中拒绝零假设的最小显著水平. 判断法则:
(3) 两类错误 第一类错误(弃真错误): H0为真,拒绝H0 一般由检验显著性水平控制 第二类错误(取伪错误): H0为假,接受H0 两类错误相互制衡,不能同时都减到很小. 检验的势

置信区间和假设检验的关系
就单变量位置参数而言,置信区间和双边假设检验有 密切的联系. (1) 检验显著水平 a 和置信水平 1-a 是两个对立事件的概 率 (2) 若水平为 a的拒绝域为 W,则其对立事件是置信水平 为 1-a 的置信区间; (3) 若 H0在1-a的置信区间内则接受 H0,否则拒绝 H0. 置信区间和假设检验的这种关系成为对偶关系. 例:正态总体在方差已知情况下对均值的U检验.
d
又由F ( X i ) 是来自U(0,1)上的iid样本,则有
F ( X1 ).F ( X 2 )...F ( X n ) Wi,Wi U (0,1), iid 样本
i 1 d n
2 n 所以 U1,U2 ,...,Un
为来自(0, 1)上均匀分布的iid样本。
证明
(2)
证明 最大与最小次顺统计量的分布:在上式中分别取r=n和r=1. (3)
这里 s>r。 容量为n的样本最大顺序统计量x(n)与样本最小顺序统计 量x(1)之差称为样本极差,简称极差,常用R=x(n)-x(1)表示。
2.分位数 (1) 样本分位数
(2) 分布分位数
例如标准正态分布
3.分位数的估计
第二章
基本概念
§2.1 非参数统计概念与产生 1.非参数统计的概念

经济统计学中的非参数统计方法与分析

经济统计学中的非参数统计方法与分析

经济统计学中的非参数统计方法与分析经济统计学是研究经济现象的统计学科,它运用统计学的方法和技术,对经济数据进行收集、整理、分析和解释,从而揭示经济规律和发展趋势。

非参数统计方法是经济统计学中的一种重要工具,它与参数统计方法相对应,主要用于处理那些无法用参数模型刻画的经济现象。

本文将介绍非参数统计方法的基本原理和应用,并探讨其在经济统计学中的意义和局限。

一、非参数统计方法的基本原理非参数统计方法是一种不依赖于总体分布形态的统计分析方法。

与参数统计方法相比,非参数统计方法不对总体的概率分布进行任何假设,而是通过对样本数据的排序、秩次变换等非参数化处理,来进行统计推断。

其基本原理是利用样本数据的内在结构和顺序信息,从而获得总体的分布特征和统计性质。

二、非参数统计方法的应用领域非参数统计方法在经济统计学中有广泛的应用。

首先,它可以用于经济数据的描述和总结。

例如,通过计算样本数据的中位数、分位数等非参数统计量,可以更准确地描述和解释经济现象的分布特征和变异程度。

其次,非参数统计方法可以用于经济数据的比较和推断。

例如,通过非参数的秩次检验方法,可以判断两个总体是否存在显著差异,从而进行经济政策的评估和决策。

此外,非参数统计方法还可以用于经济模型的估计和验证。

例如,通过非参数的核密度估计方法,可以对经济模型的参数进行非线性估计和模型检验,从而提高经济模型的拟合度和预测能力。

三、非参数统计方法的意义和局限非参数统计方法在经济统计学中具有重要的意义和价值。

首先,它能够更好地应对数据的非正态性和异方差性等问题,从而提高统计推断的效果和准确性。

其次,非参数统计方法能够更好地适应不完全信息和有限样本的情况,从而减少模型假设和参数估计的不确定性。

然而,非参数统计方法也存在一些局限性。

首先,由于非参数统计方法不假设总体的分布形态,因此通常需要更大的样本量才能获得稳健的统计推断结果。

其次,非参数统计方法在处理高维数据和复杂模型时,计算复杂度较高,需要更多的计算资源和时间。

非参数统计分析

非参数统计分析

非参数统计分析是指不需要任何假设的情况下,对数据进行分析和处理的方法。

相对于参数统计分析,更加灵活和适用于更广泛的数据集。

在中,我们通常使用基于排列和重抽样方法的统计分析,这些方法在处理离散和连续的数据集时都十分有效。

如何进行1. 非参数检验非参数检验方法不要求数据满足特定的分布,通常分为两类:①秩和检验秩和检验是比较两组数据的中位数是否相等。

对于小样本来说,一般采用Wilcoxon签名检验。

而对于大样本,通常会使用Mann Whitney U检验。

②秩相关检验秩相关检验是比较两个或多个变量的相关性关系。

这种类型的检验最常用的是Spearman秩相关系数和Kendall Tau秩相关测试。

2. 非参数估计器由于非参数统计方法不依赖于任何先验假设,因此非参数估计器在数据少或均值和方差无法准确估计的情况下较为常用。

在非参数估计器中,常用的方法有:①核密度估计核密度估计通常是数据分析和可视化的首选。

它能够获得不同分布的概率密度函数的非参数估计器。

②基于距离的方法基于距离的方法通常使用K近邻算法或半径最邻近算法来估计密度。

这种方法特别适合于计算高维数据的密度估计。

3. 非参数回归非参数回归是一种灵活的模型,他用于数据挖掘过程中的最复杂部分。

与标准回归技术不同,非参数回归方法不需要数据满足任何特定分布。

在非参数回归中,主要的方法有:①核回归在核密度估计和非参数回归中使用的是相同的核函数。

相对于线性回归方法,核回归更加灵活,适用于非线性分布的数据。

②局部回归局部回归的本质是计算小范围或子集内的平均值,并在这些平均值上拟合局部模型。

这种方法特别适用于非线性回归和数据样本集的大小不规则的情况。

非参数统计优势非参数统计方法的最大优势在于能够在没有特定假设下应用于任何样本集,这使得无需预先了解数据的分布和性质。

此外,非参数统计方法还有其他的优势,如:1. 不受异常数据的影响:统计方法通常受异常数据的影响较大,但非参数统计方法不会使结果发生显著的变化。

非参数统计分析课件

非参数统计分析课件
广泛的应用领域
SPSS广泛应用于社会科学、医学、经济学等领域,具有很高的实 用价值。
SAS软件
01
强大的数据处理能 力
SAS具有强大的数据处理和数据 管理功能,能够进行复杂的数据 清洗、转换和整合。
02
03
灵活的编程语言
企业级应用
SAS使用强大的SAS语言进行编 程,可以进行定制化的数据处理 和分析。
定义与特点
定义
非参数统计分析是一种统计方法,它不依赖于任何关于数据 分布的假设,而是基于数据本身的特点进行统计分析。
特点
非参数统计分析具有很大的灵活性,可以处理各种类型的数 据,并且对数据的分布特征没有严格的要求。它通常用于探 索数据的基本特征,如数据的集中趋势、离散程度和形状等 。
与参数统计学的区别
总结词
发现商品之间的关联关系、提高销售量
详细描述
通过关联性分析方法,如Apriori算法、FPGrowth算法等,发现商品之间的关联关系 ,生成推荐列表,提高销售量,提升客户满 意度。
案例三:聚类分析在客户细分中的应用
总结词
将客户划分为不同的群体、制定个性化营销 策略
详细描述
利用聚类分析方法,如K-means聚类、层 次聚类等,将客户划分为不同的群体,针对 不同群体制定个性化营销策略,提高营销效
数据稀疏性
高维数据可能导致数据稀疏,影响统计分析的准确性 。
计算复杂性
高维数据的计算复杂性增加,需要采用高效的算法和 计算技术。
大数据处理技术在非参数统计分析中的应用前景
分布式计算
利用分布式计算技术,可以处理大规模数据集,提高非参数统计 分析的效率。
数据挖掘技术
数据挖掘技术可以用于发现数据中的模式和关系,为非参数统计 分析提供支持。

非参数统计方法ridit分析

非参数统计方法ridit分析
效的统计分析。
适用于有序分类变量
Ridit分析特别适用于处理有序分类变量, 能够有效地比较不同类别之间的有序差异。
可用于生存分析
Ridit分析可以用于生存分析领域,对生存 时间和风险比率进行比较,为临床医学和 生物学研究提供有力支持。
局限性
对数据要求较高
Ridit分析要求数据具有代表 性,且各组间具有可比性, 否则可能导致分析结果不准 确。
04
实例分析
实例一:比较两组生存时间数据
总结词
通过Ridit分析比较两组生存时间数据,可以评估两组生存时间的差异和趋势。
详细描述
在临床研究中,经常需要比较两组患者的生存时间数据,以评估不同治疗或分组的效果。Ridit分析通过计算每个 观察值的Ridit值,将生存时间数据转化为可比较的指标,进而进行统计分析。通过比较两组的Ridit值,可以判 断两组生存时间的差异和趋势。
非参数统计方法Ridit分析
• Ridit分析概述 • Ridit分析的步骤 • Ridit分析的优势与局限性 • 实例分析 • 结论与展望
01
Ridit分析概述
定义与特点
定义
Ridit分析是一种非参数统计方法,用 于比较两组或多组无序分类数据的分 布情况。
特点
Ridit分析不需要假定数据服从特定的 概率分布,也不需要事先对数据进行 参数化处理,因此具有较强的灵活性 和适用性。
根据曲线的解读结果,结 合研究目的和背景知识, 推断出相应的统计结论。
03
Ridit分析的优势与局限性
优势
无需假设数据分布
Ridit分析是一种非参数统计方法,不需要 假设数据服从特定的概率分布,因此具有
更广泛的适用性。
无需样本量足够大

《非参数统计分析》教案

《非参数统计分析》教案

添加标题
添加标题
添加标题
添加标题
案例分析:通过分析具体案例,帮 助学生理解抽象概念和理论
实验操作:通过实验操作,让学生 亲身体验统计方法的应用过程
评价方式
课堂表现:观察学 生的课堂参与度、 回答问题的准确性 和思考问题的深度
作业完成情况:评 估学生对课堂内容 的理解和应用能力
小组讨论:鼓励学 生之间的合作与交 流,培养团队协作 能力
介绍非参数统计分析的基本 方法
介绍非参数统计分析在各个 领域的应用
介绍非参数统计分析的概念 和特点
介绍非参数统计分析的优缺 点和注意事项
导入:介绍非参数统计分 析的概念和背景
教学步骤
定义与概念:讲解非参数 统计分析和相关概念
方法与步骤:详细介绍非 参数统计分析的方法和步 骤
案例分析:通过具体案例 来展示非参数统计分析的 应用
总结与回顾:总结本次课 程的内容,回顾非参数统 计分析的方法和步骤
作业与思考:布置相关作 业和思考题,引导学生深 入思考
教学重点
重点知识点1:非参数统计的 基本概念
重点知识点2:非参数统计与 参数统计的区别
重点知识点3:非参数统计的 优缺点
重点知识点4:非参数统计的 应用场景
教学难点
难点概念:难以理解或掌 握的基本概念或原理
难点应用:将理论知识应 用于实际问题的能力
难点计算:复杂的统计计 算和分析方法
难点理解:对统计原理和 方法的深入理解和掌握
教学方法
案例教学法:通 过具体案例的分 析和讨论,帮助 学生理解和掌握 非参数统计分析 的基本概念和方
法。
互动式教学法: 采用课堂互动、 小组讨论等方式, 鼓励学生积极参 与,提高学生的 学习兴趣和主动
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


0 x 1

2
1 x 2
10
5
Fn
(
x)

10

6
10
2 x4 4 x5

9
5 x 10
10
1 x 10
12:09
21
总体分布类型的检验
(K-S检验)
【例3】对某汽车配件提供商提供的10个样 本进行检测,得到其长度数据如下(单位:cm)
77.7,76.8,76.6,76.2,74.5,74.3,73.9,71.7,71.2,
67.7,66.7,66.2,65.4,65.3,65.3,65.3,64.6,63.5,
62.7,60.8,58.2,55.5,55.3,55,54.9,52.7,51.8,
49.9,48.2,47.6,46,45.8,45.2,41.9,38.8,37.7,37.
1.83
D
8
5
3
9
1.80
合计
500
500
__
__
5.98
根据显著性水平 ,有 2 (3) 7.82,由于
Q 5.98 2 (3) 7.82
表明5%的显著水平下,不能拒绝原假设,即观测的比率与期望的比
率一12致:09 。
7
如果分布是连续的其检验步骤为:
(1)提出统计假设 H0:Fx F0x
13
【练习1】 盒中有5种球,重复抽取200次(每 次抽1个球)各种球出现的次数见下表。问盒中5 种球的个数是否相等?显著水平α=0.05。
种别
1 2 3Leabharlann 4 5 ∑12:09fi
35 40 43 38 44
200
14
第二节 二项分布检验
二项分布检验(binomial test)是通过考察二分类 变量的每个类别中观察值的频数与特定二项分布下 的期望频数之间是否存在显著差异,来判断抽取样 本所依赖的总体是否服从特定概率为p的二项分布。
12:09
11
卡方检验的窗口。
12:09
12
X
1 2 3 4 T o ta l
Observed N 380 69 43 8 500
Expected N 400.0 60.0 35.0 5.0
Re si du a l -20.0 9.0 8.0 3.0
Test Statistics
Chi-Squarea df
5,36.5, 36.4,32.7,32.7,32.2,29.1,27.8,27.8
12:09
29
Histogram of x
10
8
6
Frequency
4
2
0
20
40
60
80
100
120
12:09
x
30
通常在正态总体分布的假设下,关于总体均值的假设 检验和区间估计是用与t检验有关的方法进行的。然而, 在本例中,总体分布是未知的。为此,首先看该数据的直 方图从图中很难说这是什么分布。假定用总体中位数来表 示中间位置,这意味着样本点,取大于me的概率应该与 取小于me的概率相等。所研究的问题,可以看作是只有 两种可能“成功”或“失败”。
12:09
5
【例1】某金融系统贷款的偿还类型有四种,各种的 预期还率为80%、12%、7%和1%。在一段时间的观察记 录中,A型按时偿还的有380笔、B型偿还有69笔、C型有 43笔、D笔有8笔。问在5%显著性水平上,这些结果与预 期的是否一致。α=0.05。
解:这个问题属于要检验每一类型的出现概率与理论 期望概率是否相等,即检验
12.2 10.8 12.0 11.8 11.9 12.4 11.3 12.2 12.0 12.3
检验该供货商生产的配件长度是否服从正态 分布?(=0.05)
12:09
22
总体分布类型的检验
(SPSS K-S检验)
第1步:选择【Analyze】【Nonparametric Test】【1-Sample K-S】进入主对话
框; 第2步:将待检验的变量选入【Test Variable
List】(本例为“配件长度”); 第3步:点击【Exact】,并在对话框中选择
【Exact】,点击【OK】。
12:09
23
正态分布 均匀分布 波松分布指数分布
12:09
24
SPSS的输出结果
精确双尾概率为0.602>0.05,不拒绝原假 设。没有证据表明该供货商提供的汽车配件长度 不服从正态分布
二项分布检验的原假设是:抽取样本所依赖的 总体与特定的二项分布无显著差异。
如果检验的p值小于0.05,则拒绝原假设。
12:09
15
【例2】 根据以往的生产数据,某种产品 的合格率为90%。现从中随机抽取25个进行检 测,合格品为20个。检验该批产品的合格率是 否为90%?(产品合格率X~B(n,0.9))
H0 : p1 80%, p2 12%, p3 7%, p4 1% H1 : pi pi0
12:09
6
类型
fi
npi (ei )
fi npi
( fi npi )2
( fi npi )2 npi
A
380
400
-20
400
1.00
B
69
60
9
81
1.35
C
43
35
8
64
H0 : 0 : H1 : 0
12:09
32
关于非参数检验统计量需要说明的问题
在非参数检验中,可以得到两个相互等价的统计量, 比如在符号检验中,得负号与得正好的个数,就是一对 等价的统计量,因为S++S-=N。那么我们在检验时应该 用那个呢?
12:09
31
符号检验的思路,记
成功:X-0大于零,即大于中位数M,记为“+”; 失败:X-0小于零,即小于中位数M,记为“-”。 令 S+=得正符号的数目
S-=得负符号得数目 可以知道S+或S— 均服从二项分布B(65,0.5)。则可以 用来作检验的统计量。其假设为:
H0 : 0 : H1 : 0 H0 : 0 : H1 : 0
由统计假设出发,将总体取值范围分为m个互不相
容的小区间:t0,t1 t1,t2
tm1,tm
区间个数以7~14为宜。然后,统计出每个区间 内样本点的数目fi,再用pi表示变量在第i个区间的概 率,
12:09
8
(2)选择适当统计量
m
2
fi npi 2
i 1
12:09
3
第一节 Chi-Square test 卡方检验
卡方检验通常称为拟合优度检验。主要是通 过样本观测值检验总体是否服从某个分布。如果 数据是连续的,需要将连续的分布进行分段,计 算每段的期望概率与观测到的频率之间是否差异 很大。在SPSS中的Chi-Square test ,主要是对 离散的总体进行拟合优度检验。
批产品的合格率为0.9,那么25个产品中合格品
数量小于等于20个的概率为0.098。P>0.05,不拒
绝原假设,没有证据表明该批产品的合格率不是
0.9
12:09
18
【练习2】
某地某一时期内出生40名婴儿,其中女 性12名(定Sex=0),男性28名(定 Sex=1)。问这个地方出生婴儿的性比例与 通常的男女性比例(总体概率约为0.5)是 否不同?
算经验概率 pi,据以计算的值
2

m

fi
npi 2
i1 npi
(5)作结论,若 2 2 m 1 r ,则拒绝原假设,即认 为总体的分布函数不为 F0x;反之,则接受原假设,即认
为总体的分布函数为 F0 x 。
12:09
10
卡方检验的窗口,SPSS的卡方检验主 要用来检验离散随机变量的分布。
SPSS的数据格式
合格品
频数
1
20
0
5
表中的“1”表示合格品;“0”表示不合格品
12:09
16
(SPSS binomial test)
第 1 步 : 指 定 “ 频 数 ” 变 量 : 点 击 【Data】【 Weight-Cases】,将“频数”选入
【Frequency Variable】 【OK】 第2步:选择【Analyze】【Nonparametric
12:09
28
有人说64应该是这种大城市花费指数的中位数,有 人说64顶多是低位数(下四分位数),进行检验。数 据如下:
122.4,109.4,105,104.6,104.1,100.6,100,99.3,9
9.1,98.2,97.5,95.2,92.8,91.8,90.8,90.3,89.5,
89.4,86.4,86.2,85.7,82.6,81,80.9,79.1,77.9,
12:09
19
第三节 总体分布类型的KS检验
单样本的K-S检验(Kolmogorov-Smirnov检验)是用来 检验抽取样本所依赖的总体是否服从某一理论分布。
其方法是将某一变量的累积分布函数与特定的分布 进行比较。设总体的累积分布函数为F(x),已知的理论 分布函数为F0(x) ,则检验的原假设和备择假设为
果12:B09太大或太小,应该拒绝原假设。
27
一、精确中位数的符号检验
精确的符号检验是指检验的p值是由精确的概率给出 的。 我们利用正号和负号的数目,来检验某假设,这是 一种最简单的非参数方法。
【例4】联合国人员在世界上71个大城市的生活花费 指数(上海是44位,数据为63.5)按自小至大的次序排列如 下。
相关文档
最新文档