非参数统计分析方法讲解

合集下载

统计学中的非参数统计分析

统计学中的非参数统计分析

统计学中的非参数统计分析统计学作为一门研究数据分析和推断的学科,涉及到各种统计方法和技术。

其中,非参数统计分析是一种常见且重要的方法,它不依赖于数据的特定分布假设,而是利用数据本身的特征进行分析和推断。

本文将介绍非参数统计分析的基本概念、应用场景和常用方法。

非参数统计分析是相对于参数统计分析而言的。

参数统计分析通常需要对数据的分布做出假设,如正态分布、指数分布等,并利用参数估计方法来推断总体参数。

然而,在实际应用中,我们往往无法确定数据的真实分布,或者分布假设不成立。

这时,非参数统计分析就成为一种有力的工具。

非参数统计分析的一个重要应用是在样本比较中。

假设我们想比较两组样本的均值是否有显著差异,但无法确定数据是否符合正态分布。

这时,可以使用非参数的Wilcoxon秩和检验来进行推断。

该方法将两组样本的观测值按大小排序,并计算秩次和。

通过比较秩次和的大小,可以判断两组样本的均值是否有显著差异。

除了样本比较,非参数统计分析还可以用于回归分析。

在传统的线性回归中,我们通常假设自变量和因变量之间的关系是线性的,并利用最小二乘法来估计回归系数。

然而,在实际应用中,变量之间的关系可能是非线性的,或者无法确定具体的函数形式。

这时,非参数的局部回归方法就可以派上用场。

该方法通过在每个数据点附近拟合局部线性模型,来估计变量之间的关系。

这种方法不依赖于具体的函数形式,能够更好地适应数据的特点。

在实际应用中,非参数统计分析还有许多其他的方法,如Kolmogorov-Smirnov 检验、Mann-Whitney U检验等。

这些方法都不依赖于数据的分布假设,能够更加灵活地适应不同的数据类型和场景。

尽管非参数统计分析在某些方面具有优势,但也存在一些限制。

首先,由于不依赖于分布假设,非参数方法通常需要更多的样本来获得可靠的推断结果。

其次,非参数方法往往比参数方法计算量更大,需要更多的计算资源和时间。

此外,非参数方法对异常值和缺失值的鲁棒性较差,需要进行适当的数据处理。

非参数统计方法概览

非参数统计方法概览

非参数统计方法概览非参数统计方法是一种不依赖于总体分布形态的统计方法,它不对总体分布做出任何假设,而是通过对样本数据的排序、计数和排名等操作,来进行统计推断和假设检验。

非参数统计方法在实际应用中具有广泛的适用性和灵活性,能够处理各种类型的数据,包括连续型数据、离散型数据和顺序型数据等。

本文将对非参数统计方法进行概览,介绍其基本原理和常用方法。

一、基本原理非参数统计方法的基本原理是通过对样本数据的排序和计算,来推断总体的统计特征。

与参数统计方法相比,非参数统计方法不需要对总体分布形态做出任何假设,因此更加灵活和适用于各种情况。

非参数统计方法主要基于样本的秩次信息,通过比较和计算秩次差异来进行统计推断和假设检验。

二、常用方法1. Wilcoxon符号秩检验Wilcoxon符号秩检验是一种非参数的假设检验方法,用于比较两个相关样本的差异。

它基于样本的秩次信息,通过计算秩次差异的总和来判断两个样本是否存在显著差异。

Wilcoxon符号秩检验适用于小样本和非正态分布的情况。

2. Mann-Whitney U检验Mann-Whitney U检验是一种非参数的假设检验方法,用于比较两个独立样本的差异。

它基于样本的秩次信息,通过计算秩次和来判断两个样本是否存在显著差异。

Mann-Whitney U检验适用于小样本和非正态分布的情况。

3. Kruskal-Wallis单因素方差分析Kruskal-Wallis单因素方差分析是一种非参数的假设检验方法,用于比较多个独立样本的差异。

它基于样本的秩次信息,通过计算秩次和来判断多个样本是否存在显著差异。

Kruskal-Wallis单因素方差分析适用于小样本和非正态分布的情况。

4. Friedman多因素方差分析Friedman多因素方差分析是一种非参数的假设检验方法,用于比较多个相关样本的差异。

它基于样本的秩次信息,通过计算秩次和来判断多个样本是否存在显著差异。

Friedman多因素方差分析适用于小样本和非正态分布的情况。

非参数统计方法介绍

非参数统计方法介绍

非参数统计方法介绍非参数统计方法是一种不依赖于总体分布形态的统计方法,它不对总体分布做出任何假设,而是直接利用样本数据进行统计推断。

非参数统计方法的优势在于适用范围广,可以处理各种类型的数据,不受总体分布形态的限制。

本文将介绍非参数统计方法的基本原理和常用的方法。

一、非参数统计方法的基本原理非参数统计方法是基于样本数据进行统计推断的方法,它不对总体分布形态做出任何假设。

非参数统计方法的基本原理可以概括为以下几点:1. 样本数据的分布形态未知:非参数统计方法不对总体分布形态做出任何假设,因此适用于各种类型的数据,包括连续型数据、离散型数据和顺序型数据等。

2. 依赖于样本数据的排序:非参数统计方法通常基于样本数据的排序进行推断,而不是依赖于总体分布的参数估计。

3. 适用范围广:非参数统计方法不受总体分布形态的限制,适用于各种类型的数据和各种统计问题,如参数估计、假设检验和置信区间等。

二、常用的非参数统计方法非参数统计方法包括了许多不同的方法,下面将介绍其中常用的几种方法。

1. 秩和检验:秩和检验是一种用于比较两个独立样本的非参数方法。

它基于样本数据的排序,通过比较两个样本的秩和来判断两个样本是否来自于同一总体。

2. 秩相关系数:秩相关系数是一种用于衡量两个变量之间相关性的非参数方法。

它基于样本数据的排序,通过计算秩次之间的差异来衡量两个变量之间的相关性。

3. Kruskal-Wallis检验:Kruskal-Wallis检验是一种用于比较多个独立样本的非参数方法。

它基于样本数据的排序,通过比较各个样本的秩和来判断多个样本是否来自于同一总体。

4. Wilcoxon符号秩检验:Wilcoxon符号秩检验是一种用于比较两个相关样本的非参数方法。

它基于样本数据的排序,通过比较两个样本的秩和来判断两个样本是否来自于同一总体。

5. Mann-Whitney U检验:Mann-Whitney U检验是一种用于比较两个独立样本的非参数方法。

非参数统计分析方法总结

非参数统计分析方法总结

非参数统计分析方法一单样本问题1,二项式检验:检验样本参数是否与整体参数有什么关系。

样本量为n,给定一个实数M0(代表题目给出的分位点数),和分位点∏(0.25,0.5,0.75)。

用S-记做样本中比M0小的数的个数,S+记做样本中比M0大的数的个数。

如果原假设H0成立那么S-与n的比之应为∏。

H0:M=M0H1:M≠MO或者M>M0或者M<M0.Spss步骤:分析—非参数检验—二项式检验。

可以得出统计量为K=min(S-,S+)和统计量Z和p值当p值小于0.05时拒绝原假设,没有充足理由证明M=M0.,2,Wilcoxon符号秩序检验Wilcoxon检验的目的和二项式检验是一样的,Spss步骤:分析—非参数检验—两个相关样本得出统计量Z和p值当p值小于0.05时拒绝原假设,没有充足理由证明M=M03,随机性游程检验给出一组数据看次数据出现的情况是不是随机的。

列如:00011011110001110100001110H0:是随机的H1:不是随机的(混合倾向,游程多,长度短)(成群倾向,游程少,长度长)Spss步骤:分析—非参数检验—游程得出统计量R和p值当p值小于0.05时拒绝原假设,没有充足理由证明该数据出现是随机的二,两个样本位置问题1,Brown—Mood中位数检验给出两个样本比较两个样本的中位数或者四分位数等是否相等或者有一定关系,设一个中值为M1,一个为M2H0:M1=M2.H1:M1≠M2或者M1>M2或者M1<M2Spss步骤:分析—非参数检验—k个独立样本得出统计量Z和p值当p值小于0.05时拒绝原假设,没有充足理由证明M1=M2.2,Wilcoxon(Mann—Whitniey)秩和检验该检验和Brown—Mood检验的原理是一样的,但是该检验利用了更多的样本信息,从而比Brown—Mood检验更有说服力。

Spss步骤:分析—非参数检验—2个独立样本得到Z统计量和p值,当p值小于0.05时拒绝原假设,没有充足理由证明M1=M2.3,成对样本Wilcoxon秩和检验用M1代表开始时的数据某一特征值,用M2代表结束后的数据某一特征值,比较前后关系。

非参数统计分析

非参数统计分析

非参数统计分析是指不需要任何假设的情况下,对数据进行分析和处理的方法。

相对于参数统计分析,更加灵活和适用于更广泛的数据集。

在中,我们通常使用基于排列和重抽样方法的统计分析,这些方法在处理离散和连续的数据集时都十分有效。

如何进行1. 非参数检验非参数检验方法不要求数据满足特定的分布,通常分为两类:①秩和检验秩和检验是比较两组数据的中位数是否相等。

对于小样本来说,一般采用Wilcoxon签名检验。

而对于大样本,通常会使用Mann Whitney U检验。

②秩相关检验秩相关检验是比较两个或多个变量的相关性关系。

这种类型的检验最常用的是Spearman秩相关系数和Kendall Tau秩相关测试。

2. 非参数估计器由于非参数统计方法不依赖于任何先验假设,因此非参数估计器在数据少或均值和方差无法准确估计的情况下较为常用。

在非参数估计器中,常用的方法有:①核密度估计核密度估计通常是数据分析和可视化的首选。

它能够获得不同分布的概率密度函数的非参数估计器。

②基于距离的方法基于距离的方法通常使用K近邻算法或半径最邻近算法来估计密度。

这种方法特别适合于计算高维数据的密度估计。

3. 非参数回归非参数回归是一种灵活的模型,他用于数据挖掘过程中的最复杂部分。

与标准回归技术不同,非参数回归方法不需要数据满足任何特定分布。

在非参数回归中,主要的方法有:①核回归在核密度估计和非参数回归中使用的是相同的核函数。

相对于线性回归方法,核回归更加灵活,适用于非线性分布的数据。

②局部回归局部回归的本质是计算小范围或子集内的平均值,并在这些平均值上拟合局部模型。

这种方法特别适用于非线性回归和数据样本集的大小不规则的情况。

非参数统计优势非参数统计方法的最大优势在于能够在没有特定假设下应用于任何样本集,这使得无需预先了解数据的分布和性质。

此外,非参数统计方法还有其他的优势,如:1. 不受异常数据的影响:统计方法通常受异常数据的影响较大,但非参数统计方法不会使结果发生显著的变化。

非参数统计讲义通用课件

非参数统计讲义通用课件

假设检验方法
总结词
假设检验方法用于检验一个关于总体 参数的假设是否成立。
详细描述
假设检验方法包括提出假设、构造检 验统计量、确定临界值和做出决策等 步骤。常见的假设检验方法有t检验、 卡方检验、F检验等,用于判断样本数 据是否支持假设。
关联性分析方法
总结词
关联性分析方法用于研究变量之间的相关性。
02
非参数统计方法
描述性统计方法
总结词
描述性统计方法用于收集、整理、描述数据,并从数据中提取有意义的信息。
详细描述
描述性统计方法包括数据的收集、整理、描述和可视化,例如均值、中位数、 众数、标准差等统计量,以及直方图、箱线图等图形化表示。这些方法可以帮 助我们了解数据的分布、中心趋势和离散程度。
非数统计与机器学习算法的结 合将有助于解决复杂的数据分析 问题。
02
与大数据技术的融 合
非参数统计将借助大数据技术处 理海量数据,挖掘数据背后的规 律和模式。
03
与社会科学研究的 互动
非参数统计方法将为社会科学研 究提供更有效的研究工具和方法 。
决策树分析方法
总结词
决策树分析方法是一种基于树形结构的非参 数统计学习方法。
详细描述
决策树分析方法通过递归地将数据集划分为 更小的子集,构建出一棵决策树。决策树的 每个节点表示一个特征属性上的判断条件, 每个分支代表一个可能的属性值,每个叶子 节点表示一个分类结果。决策树分析可以帮 助我们进行分类、预测和特征选择等任务。
非参数统计的发展趋势
多元化发展
非参数统计将不断拓展其应用领域,从传统的医学、生物 、经济领域向金融、环境、社会学等领域延伸。
01
算法优化
随着计算能力的提升,非参数统计的算 法将进一步优化,提高计算效率和准确 性。

非参数统计方法的介绍

非参数统计方法的介绍

非参数统计方法的介绍统计学是一门研究数据收集、分析和解释的学科,为了更好地理解和解释数据,统计学家们发展了各种各样的统计方法。

其中一类重要的方法就是非参数统计方法。

与参数统计方法相对,非参数统计方法不依赖于对总体分布的假设,更加灵活和广泛适用于各种情况。

一、非参数统计方法的概述非参数统计方法是基于数据的排序和秩次的分析方法,不需要对总体参数进行假设。

它的主要特点是:不依赖于总体的分布形式,适用于任意类型的数据;不需要对总体参数进行估计,不需要检验参数值;能够处理非连续型变量和偏态数据。

二、秩次统计法秩次统计法是非参数统计方法中的一种重要方法,主要用于比较两组数据的差异或相关性检验。

这种方法将原始数据转化成秩次或秩次差来进行统计分析,具有较好的稳健性和非正态分布数据的适应性。

三、Wilcoxon秩和检验Wilcoxon秩和检验是秩次统计法的一种常见应用,常用于比较两个相关样本或配对样本的差异。

它主要通过将配对观测值的差异转化为秩次,来判断两个总体是否存在差异。

四、Mann-Whitney U检验Mann-Whitney U检验是另一种常见的秩次统计方法,主要用于比较两个独立样本的差异。

该方法不依赖于总体分布的假设,适用于非正态分布和偏态数据。

它通过比较两个样本的秩次和来判断两个总体是否存在差异。

五、Kruskal-Wallis检验Kruskal-Wallis检验是一种非参数多样本比较方法,适用于三个以上独立样本的差异性检验。

该方法通过将原始数据转化为秩次和来判断不同样本组之间是否存在显著差异。

六、Friedman检验Friedman检验是非参数的配对多样本差异比较方法,用于比较同一组样本在不同条件下的差异。

该方法是将样本各组的观测值转化为秩次,再计算秩次和进行统计推断。

七、Bootstrap法Bootstrap法是一种利用从原始数据中随机抽样的方差估计方法,适用于样本较小或者未知分布的情况。

它通过有放回的抽样来生成多个样本,从而对样本的分布进行估计,并得出对总体参数的估计值。

统计学中的非参数检验方法介绍

统计学中的非参数检验方法介绍

统计学中的非参数检验方法介绍统计学是一门研究收集、分析和解释数据的科学。

在统计学中,我们经常需要进行假设检验,以确定样本数据是否代表了总体特征。

非参数检验方法是一种不依赖于总体分布假设的统计方法,它在现实世界中的应用非常广泛。

本文将介绍一些常见的非参数检验方法。

一、Wilcoxon符号秩检验(Wilcoxon Signed-Rank Test)Wilcoxon符号秩检验是一种用于比较两个相关样本的非参数检验方法。

它的原理是将两个相关样本的差值按绝对值大小进行排序,并为每个差值分配一个秩次。

然后,通过比较秩次总和与期望总和的差异来判断两个样本是否具有统计学上的显著差异。

二、Mann-Whitney U检验(Mann-Whitney U Test)Mann-Whitney U检验是一种用于比较两个独立样本的非参数检验方法。

它的原理是将两个样本的所有观测值按大小进行排序,并为每个观测值分配一个秩次。

然后,通过比较两个样本的秩次总和来判断它们是否具有统计学上的显著差异。

三、Kruskal-Wallis检验(Kruskal-Wallis Test)Kruskal-Wallis检验是一种用于比较三个或更多独立样本的非参数检验方法。

它的原理是将所有样本的观测值按大小进行排序,并为每个观测值分配一个秩次。

然后,通过比较各组样本的秩次总和来判断它们是否具有统计学上的显著差异。

四、Friedman检验(Friedman Test)Friedman检验是一种用于比较三个或更多相关样本的非参数检验方法。

它的原理类似于Kruskal-Wallis检验,但是对于相关样本,它将每个样本的观测值按照相对大小进行排序,并为每个观测值分配一个秩次。

然后,通过比较各组样本的秩次总和来判断它们是否具有统计学上的显著差异。

五、秩相关系数检验(Rank Correlation Test)秩相关系数检验是一种用于检验两个变量之间相关性的非参数检验方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

秩次 1 2 3 4 5
6
秩和 T界值 6 7 8
概率P
× ×× × × × × × × × ×× × × × × × × ×××
1 20 0.05
0.05 0.05×2=0.10
若 T≤6 , P=0.05 (单侧)
T
min( R1 , R2 ), n1 n2
2018年10月5日
⑴ H0:两样本来自相同总体; H1:两样本来自不同总体(双侧) =0.05 或H1:样本A高于样本B(单侧) ⑵ 编秩:两样本混合编秩次,求得R1、R2、T。 相同观察值(即相同秩,ties),不同组------平均秩次。 ⑶ 确定P值作结论: ①查表法 (n0≤10,n2n1≤10) 查附表9 如果T位于检验界值区间内,P ,不拒绝H0;否则,P ,拒绝H0 本例T =47,取α =0.05,查附表9得双侧检验界值区间(49,87),T位 于区间外,P<0.05,因此在α =0.05的水平上,拒绝H0,接受H1。 ②正态近似法: | T n0 ( N 1) / 2 | u n1n2 ( N 1) / 12 *校正公式(当相同秩次较多时)
Wilcoxon-Mann-Whitney U检验
一般文献上使用的方法:Wilcoxon_Mann_Whitney U 检验 两种方法是独立提出的,检验结果完全等价的; 前者用 T 统计量计算 u 统计量,而后者直接计算 u 值,即:
第六章
非参数统计分析方法
医疗等本科生《医学统计学》
参数统计
(parametric statistics) 已知总体分布类型,对 未知参数(μ、π)进 行统计推断 依赖于特定分布类 型,比较的是参数
非参数统计
(nonparametric statistics) 对总体的分布类 型不作任何要求 不受总体参数的影响, 比较分布或分布位置 适用范围广;可用于任何类型 资料(等级资料,或“>50mg” )
对于符合参数统计分析条件者,采用 非参数统计分析,其检验效能较低 2018年10月5日
秩和检验
秩和检验(rank sum test):一类常用 的非参数统计分析方法;基于数据的秩次与 秩次之和 第一节 第二节 第三节 第四节 两独立样本差别的秩和检验 配对设计资料的秩检验 完全随机设计多组差别的秩和检验 随机单位组设计的秩和检验
若T≤7, P=0.05+0.05 =0.10 (单侧)
9
0.05×3=0.15
2018年10月5日
附表9的来历?
6 设第一组“×” ,n1=3;第二组“∆” ,n2=3 3 20
1
秩 次 2 3 4 5
6
秩和 T界值 12
概率P
若 T≥15 , P=0.05 (单侧) T≥14 , P=0.05+0.05 =0.10 (单侧)
2151
4740 2554.5
717
3634 2161.5
126
编号
82
病情 疗效
12955.5
8780.5
1
2 3 4 … 206 207 208
单纯型
单纯型合并肺气肿 单纯型合并肺气肿 单纯型 … 单纯型 单纯型合并肺气肿 单纯型
控制
显效 有效 控制 … 显效 有效 近控
1 . H0 :两组疗效相同; H1 :两组疗效不同 , 取α =0.05 2.编秩,求各组秩和T;本例T =8780.5 | 8780.5 82(208 1) / 2 | u 0.4986 126 82(208 1) / 12 uc u c 0.5426
本例u 2.205 0.05/ 2 1.96
N3 N ; 3 3 N N (ti ti )
i
uc u c; c
ti为第i个相同秩号的数据个数
2018年10月5日
表6-2 疗效 控制
某药对两种不同病情的支气管炎疗效的秩和检验
单纯型 (1)
65
单纯型合 并肺气肿 (2 )
42
合计(ti) (3)=(1)+(2)
107
秩号范围 (4)
1-107
平均秩次 (5)
54
秩和 单纯型 合并肺气肿 (6)=(1)(5) (7)=(2)(5) 3510 2268
显效
有效 近控
18
30 13
6
23 11
24
53 24
108-131
132-184 185-208
119.5
158 196.5
对于计量数据,如果资料方差相 等,且服从正态分布,就可以用t检 验比较两样本均数。 如果此假定不成立或不能确定是 否成立,就应采用秩和检验来分析 两样本是否来自同一总体。 假定:两组样本的总体分布形状相同
如果两 总体分 布相同
基本思想 两样本来自同一总体
任一组秩和不应太大或太小
T
与平均秩和 n0 (1 N ) / 2 应相差不大 N n1 n2 较小例数组的秩和 , n n 1 2 n min( n , n ) 0 1 2
2083 208 c 2083 208 ((1073 107) (243 24) (533 53) (243 24)) 1.0883
2018年10月5日
附表9的来历? 设第一组“×” ,n1=3;第二组“∆” , 6
n2=3
3 20
× × × × × × ×× ×
0.05×3=0.15

×
× ×× × × ××
Hale Waihona Puke × × × ×1314 15
0.05×2=0.10
0.05
1 20 0.05
对应于单 侧0.05或双 侧0.10, 临界值为
6和15
2018年10月5日
2018年10月5日
第一节 两独立样本差别的秩和检验 Wilcoxon rank sum test
表6-1 两独立样本秩和检验计算表 A样本 观察值 7 14 22 36 40 48 63 98 n1=8 秩号 4 6 10 11 13 14 15 16 秩和 R1=89 B样本 观察值 3 5 6 10 17 18 20 39 n2=8 秩号 1 2 3 5 7 8 9 12 秩和 R2=47
相关文档
最新文档