月考试题卷

合集下载

湖南省名校联考2024-2025学年高三上学期10月月考 化学试题(含答案)

湖南省名校联考2024-2025学年高三上学期10月月考 化学试题(含答案)

2024年高三10月联考试卷化学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

可能用到的相对原子质量:H ∶1 C ∶12 N ∶14 O ∶16 Na ∶23 S ∶32 Cl ∶35.5 K ∶39第Ⅰ卷(选择题)一、单选题(每题3分,共42分)1.中华文化源远流长,化学与文化传承密不可分。

下列叙述错误的是( )A .江西博物馆中“《论语》竹简”中竹简的主要成分是纤维素B .安徽古代科学家方以智在其《物理小识》“有硇水者,剪银块投之,则旋而为水”,其中的“硇水”指醋酸C .甘肃出土的春秋早期秦国的铜柄铁剑中,铁元素有化合态和游离态两种存在形式D .广西壮锦的主要原料是蚕丝等,蚕丝属于有机高分子化合物2.反应可用于制备火箭推进剂的燃料,下列说法正确的是( )A .N 2H 4分子中没有非极性键B .NaClO 的电子式为C .H 2O 、NH 3的模型一致D .食盐的分子式为NaCl 3.下列装置可以实现对应实验目的的是( )32422NH NaClO N H NaCl H O +=++24N H VSEPRA .验证吸氧腐蚀B .分离乙醇和C .制备D .测量体积4.下列有关阿伏伽德罗常数()的叙述中正确的是( )A .18g 液态水中含有氢键的数目为2B .10g 质量分数为46%的乙醇溶液中含有O-H 键的数目为0.1C .常温下2.7g Al 加至足量的浓硝酸中,转移的电子数为0.3D .25℃时,1L pH=2的溶液中,的数目为0.015.下列反应的离子方程式表述不正确的是( )A .氯化铁溶液腐蚀铜板:B .铝溶于NaOH 溶液中:C .将少量通入NaClO 溶液:D .用纯碱溶液除去水垢中的:6.下列有关物质结构与性质的说法正确的是( )A .雪花是天空中的水汽经凝华而来的一种晶体,其六角形形状与氢键的方向性有关B .某基态原子的价层电子排布为4d25s 2,该原子N 层上有3个空轨道C .C=C 键的键能比C—C 键的大,所以碳碳双键的化学性质比碳碳单键稳定D .碘易溶于浓碘化钾溶液,甲烷难溶于水都可用“相似相溶”原理解释()3424Cu NH SO H O ⎡⎤⋅⎣⎦3NH 2NO A N AN AN AN 3CH COOH H +AN 3222Fe Cu 2Fe Cu ++++=+()2242Al 2OH 6H O 2Al OH 3H --⎡⎤++=+↑⎣⎦2SO 2223SO H O 2ClO SO 2HClO --++=+4CaSO7.现有M 、Q 、R 、T 、W 、X 、Y 七种前四周期常见元素,原子序数依次递增。

重庆市2024-2025学年高一上学期10月月考试题 数学含答案

重庆市2024-2025学年高一上学期10月月考试题 数学含答案

重庆高2027届高一上期月考数学试题卷(答案在最后)注意事项:1.答卷前,考生务必将自己的姓名、准考证号码填写在答题卡上.2.作答时,务必将答案写在答题卡上.写在本试卷及草稿纸上无效.3.考试结束后,将答题卡交回.一、单项选择题.本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}432A B x x =≤=,,则A B = ()A.2163xx ⎧⎫<≤⎨⎬⎩⎭B.{}316x x ≤< C.223xx ⎧⎫<≤⎨⎬⎩⎭D.{}02x x ≤≤2.命题.“230,1x x x ∃<+>”的否定是()A.230,1x x x ∀≥+≤ B.230,1x x x ∀<+≤ C.230,1x x x ∃<+≤ D.230,1x x x ∃≥+≤3.已知函数()2f x +的定义域为()3,4-,则函数()1g x +=的定义域为()A.()4,3- B.()2,5- C.1,33⎛⎫⎪⎝⎭D.1,53⎛⎫ ⎪⎝⎭4.使得“[]21,2,0x x x a ∀∈+-≤”为真命题的一个充分不必要条件是()A.2a ≥ B.2a > C.6a > D.6a ≥5.若正实数,x y 满足3x y +=,且不等式22823m m x y+>-+恒成立,则实数m 的取值范围是()A.{31}m m -<<∣B.{3m m <-∣或1}m >C.{13}m m -<<∣D.{1mm <-∣或3}m >6.函数()()()245,2231,2x a x x f x a x x ⎧-++<⎪=⎨-+≥⎪⎩满足对12,R x x ∀∈且12x x ≠,都有()()()12120f x f x x x --<⎡⎤⎣⎦,则实数a 的取值范围是()A.30,2⎛⎫⎪⎝⎭B.30,2⎡⎫⎪⎢⎣⎭C.()0,1 D.[]0,17.已知,a b 均为正实数,且1a b +=,则下列选项错误的是()A.的B.34aa b++的最小值为7+C.()()11a b ++的最大值为94D.2232a b a b +++的最小值为168.含有有限个元素的数集,定义其“交替和”如下:把集合中的数按从小到大的顺序排列,然后从最大的数开始交替地加减各数,例如{}4,6,9的“交替和”是9647-+=;而{}5的交替和是5,则集合{}Z 54M x x =∈-≤≤∣的所有非空子集的“交替和”的总和为()A.2048B.2024C.1024D.512二、多项选择题.本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知,,a b c ∈R ;则下列不等式一定成立的有()A.若0ab ≠且a b <,则11a b >B.若0a b >>,则20242024b b a a +<+C.若,a b c d >>,则ac bd >D.()221222a b a b ++≥--10.下列说法正确的是()A.若p 是q 的必要不充分条件,p 是r 的充要条件,则q 是r 的充分不必要条件B.若关于x 的不等式2430kx kx k -++≥的解集为R ,则实数k 的取值范围是01k <≤C.若不等式()()30x ax b x c-+≤-的解集为[)[)2,13,∞-⋃+,则不等式2320ax ax b --≥的解集为[]1,4-D.“[]()21,3,2130a ax a x a ∃∈---+-<”为假命题的充要条件为[]51,0,43x ⎡⎤∈-⋃⎢⎥⎣⎦11.已知函数()f x 的定义域为[)0,+∞,且满足当[)0,2x ∈时,()22f x x x =-+,当2x ≥时,恒有()()2f x f x λ=-,且λ为非零常数,则下列说法正确的有()A.()()101320272024f f λ+=B.当12λ=时,反比例函数()1g x x =与()f x 在()0,2024x ∈上的图象有且仅有6个交点C.当0λ<时,()f x 在区间[]2024,2025上单调递减D.当1λ<-时,()f x 在[]()*0,4n n ∈N上的值域为2122,n n λλ--⎡⎤⎣⎦三、填空题.本题共3小题,每小题5分,共15分.12.已知集合{}210A xx =-=∣,则集合A 有__________个子集.13.已知集合[]()(){}1,4,10A B x x a ax ==+-≤∣,若A B B = 且0a ≥,则实数a 的取值范围是__________.14.若正实数x ,y 满足()()332331423x y x y -+-=--,则2346y x x x y++的最小值为__________.四、解答题、本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数()21,122,1x x f x x x ⎧->-⎪=⎨⎪--≤-⎩.(1)若()01f x =,求0x 的值;(2)若()3f a a <+,求实数a 的取值范围.16.已知函数()f x =A ,集合{}321B xx =->∣.(1)求A B ;(2)集合{}321M xa x a =-≤≤-∣,若M ()RA ð,求实数a 的取值范围.17.已知二次函数()f x 的图象过原点()0,0,且对任意x ∈R ,恒有()26231x f x x --≤≤+.(1)求()1f -的值;(2)求函数()f x 的解析式;(3)记函数()g x m x =-,若对任意(]11,6x ∈,均存在[]26,10x ∈,使得()()12f x g x >,求实数m 的取值范围.18.教材中的基本不等式可以推广到n 阶:n 个正数的算数平均数不小于它们的几何平均数.也即:若12,,,0n a a a >,则有*12,2n a a a n n n+++≥∈≥N ,当且仅当12n a a a === 时取等.利用此结论解决下列问题:(1)若,,0x y z >,求24y z xx y z++的最小值;(2)若10,2x ⎛⎫∈ ⎪⎝⎭,求()312x x -的最大值,并求取得最大值时的x 的值;(3)对任意*k ∈N ,判断11kk ⎛⎫+ ⎪⎝⎭与1111k k +⎛⎫+ ⎪+⎝⎭的大小关系并加以严格证明.19.已知定义在11,,22⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭上的函数()f x 同时满足下列四个条件:①512f ⎛⎫=-⎪⎝⎭;②对任意12x >,恒有()()0f x f x -+=;③对任意32x >,恒有()0f x <;④对任意,0a b >,恒有111222f a f b f ab ⎛⎫⎛⎫⎛⎫+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)求32f ⎛⎫-⎪⎝⎭的值;(2)判断()f x 在1,2⎛⎫+∞⎪⎝⎭上的单调性,并用定义法证明;(3)若对任意[]1,1t ∈-,恒有()()21232f t k t k -+-+≤,求实数k 的取值范围.重庆高2027届高一上期月考数学试题卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号码填写在答题卡上.2.作答时,务必将答案写在答题卡上.写在本试卷及草稿纸上无效.3.考试结束后,将答题卡交回.一、单项选择题.本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}432A B x x =≤=,,则A B = ()A.2163xx ⎧⎫<≤⎨⎬⎩⎭B.{}316x x ≤< C.223xx ⎧⎫<≤⎨⎬⎩⎭D.{}02x x ≤≤【答案】A 【解析】【分析】根据集合的交集运算法则运算即可.【详解】因为{}{}4016A x x =≤=≤≤,{}2323B x x x x ⎧⎫==>⎨⎩⎭,所以A B = 2163x x ⎧⎫<≤⎨⎬⎩⎭.故选:A .2.命题.“230,1x x x ∃<+>”的否定是()A.230,1x x x ∀≥+≤B.230,1x x x ∀<+≤ C.230,1x x x ∃<+≤ D.230,1x x x ∃≥+≤【答案】B 【解析】【分析】利用特称命题的否定形式回答即可.【详解】根据特称命题的否定形式可知命题.“230,1x x x ∃<+>”的否定是“230,1x x x ∀<+≤”.故选:B3.已知函数()2f x +的定义域为()3,4-,则函数()1g x +=的定义域为()A.()4,3- B.()2,5- C.1,33⎛⎫ ⎪⎝⎭D.1,53⎛⎫ ⎪⎝⎭【答案】D 【解析】【分析】根据抽象函数及具体函数的定义域求解即可.【详解】因为函数()2f x +的定义域为()3,4-,所以函数()f x 的定义域为()1,6-,则对于函数()1g x +=,需满足116310x x -<+<⎧⎨->⎩,解得153x <<,即函数()1g x +=的定义域为1,53⎛⎫⎪⎝⎭.故选:D.4.使得“[]21,2,0x x x a ∀∈+-≤”为真命题的一个充分不必要条件是()A.2a ≥B.2a >C.6a > D.6a ≥【答案】C 【解析】【分析】对于全称量词命题2[1,2],0x x x a ∀∈+-≤,我们需要先求出使得该命题为真时a 的取值范围,然后再根据充分不必要条件的定义来判断选项.【详解】令2()f x x x =+,[1,2]x ∈.对于二次函数2y ax bx c =++,其对称轴为122b x a =-=-.因为10a =>,所以函数()f x 在[1,2]上单调递增.那么()f x 在[1,2]上的最大值为2max ()(2)226f x f ==+=.因为2[1,2],0x x x a ∀∈+-≤为真命题,即2a x x ≥+在[1,2]上恒成立,所以max ()6a f x ≥=.A 是B 的充分而不必要条件,即值A B ⇒,B A ¿.当6a >时,一定满足6a ≥,所以6a >是6a ≥的充分不必要条件.而2a >时,不能保证一定满足6a ≥,2a ≥时,也不能保证一定满足6a ≥.故选:C.5.若正实数,x y 满足3x y +=,且不等式22823m m x y+>-+恒成立,则实数m 的取值范围是()A.{31}mm -<<∣ B.{3m m <-∣或1}m > C.{13}m m -<<∣ D.{1mm <-∣或3}m >【答案】C 【解析】【分析】利用基本不等式和常值代换法求得28x y+的最小值,依题得到不等式2236m m -+<,解之即得.【详解】因3x y +=,由28128()()3x y x y x y+=++1281(10)(10633y x x y =++≥+=,当且仅当28y x x y =时取等号,即当1,2x y ==时,28x y+取得最小值6.因不等式22823m m x y+>-+恒成立,故2236m m -+<,即2230m m --<,解得13m -<<.故选:C.6.函数()()()245,2231,2x a x x f x a x x ⎧-++<⎪=⎨-+≥⎪⎩满足对12,R x x ∀∈且12x x ≠,都有()()()12120f x f x x x --<⎡⎤⎣⎦,则实数a 的取值范围是()A.30,2⎛⎫ ⎪⎝⎭B.30,2⎡⎫⎪⎢⎣⎭C.()0,1 D.[]0,1【答案】D 【解析】【分析】根据题意,得到()f x 在定义域R 上为单调递减函数,结合分段函数的单调性的判定方法,列出不等式组,即可求解.【详解】由函数()()()245,2231,2x a x x f x a x x ⎧-++<⎪=⎨-+≥⎪⎩因为函数()y f x =任意12,R x x ∀∈且12x x ≠,都有()()()12120f x f x x x --<⎡⎤⎣⎦,所以函数()f x 在定义域R 上为单调递减函数,则满足()()242223024252321a a a a +⎧≥⎪⎪-<⎨⎪-+⨯+≥-⨯+⎪⎩,即0321a a a ≥⎧⎪⎪<⎨⎪≤⎪⎩,解得01a ≤≤,所以实数a 的取值范围是[]0,1.故选:D.7.已知,a b 均为正实数,且1a b +=,则下列选项错误的是()A.B.34a a b++的最小值为7+C.()()11a b ++的最大值为94D.2232a b a b +++的最小值为16【答案】B 【解析】【分析】利用基本不等式可判断AC 的正误,利用“1”的代换可判断B 的正误,利用换元法结合常数代换可判断D 的正误.【详解】选项A:2112,1a b a b +=+≤++===时取等,+A 对;选项B:3433443577a a b a b a b aa b a b a b+++++=+=++≥+,当且仅当35,22a b -==时取等,故34a a b ++的最小值为7+,故B 错选项C :()()2119111,242a b a b a b +++⎛⎫++≤=== ⎪⎝⎭时取等,故()()11a b ++的最大值为94,故C 对;选项D :换元,令3,2x a y b =+=+,则6x y +=,故()()222232941032x y a b x y a b x y x y--+=+=+-++++94194251413446666x y y x x y x y ⎛⎫⎛⎫+=+⋅-=++-≥-= ⎪ ⎪⎝⎭⎝⎭,当且仅当1812,55x y ==取等号,故2232a b a b +++的最小值为16,故D 正确;故选:B.8.含有有限个元素的数集,定义其“交替和”如下:把集合中的数按从小到大的顺序排列,然后从最大的数开始交替地加减各数,例如{}4,6,9的“交替和”是9647-+=;而{}5的交替和是5,则集合{}Z 54M x x =∈-≤≤∣的所有非空子集的“交替和”的总和为()A.2048B.2024C.1024D.512【答案】A 【解析】【分析】将集合M 的子集两两配对(),A B :使4,4A B ∈∉且{}4B A ⋃=,从而有集合A 与集合B 的交替和之和为4,再利用符合条件的集合对有92个,即可求解.【详解】由题知{}5,4,3,2,1,0,1,2,3,4M =-----,将集合M 的子集两两配对(),A B :使4,4A B ∈∉且{}4B A ⋃=,则符合条件的集合对有92个,又由题设定义有集合A 与集合B 的交替和之和为4,所以交替和的总和为9114222048⨯==.故选:A.二、多项选择题.本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知,,a b c ∈R ;则下列不等式一定成立的有()A.若0ab ≠且a b <,则11a b >B.若0a b >>,则20242024b b a a +<+C.若,a b c d >>,则ac bd >D.()221222a b a b ++≥--【答案】BD 【解析】【分析】利用特殊值验证AC 是错误的,利用作差法判断B 的真假,利用配方法证明D 是正确的.【详解】对A :令1a =-,1b =,则0ab ≠且a b <,但11a b>不成立,故A 错误;对B :当0a b >>时,()()()20242024202420242024b a a b b b a a a a +-++-=++()()202402024b a a a -=<+,所以20242024b b a a +<+成立,故B 正确;对C :令3a =-,4b =-,0c =,1d =-,则,a b c d >>,但ac bd >不成立,故C 错误;对D :因为()()()222212222144a b a b a b a b ++----++++=()()22120a b =-++≥,所以()221222a b a b ++≥--成立,故D 正确.故选:BD10.下列说法正确的是()A.若p 是q 的必要不充分条件,p 是r 的充要条件,则q 是r 的充分不必要条件B.若关于x 的不等式2430kx kx k -++≥的解集为R ,则实数k 的取值范围是01k <≤C.若不等式()()30x ax b x c-+≤-的解集为[)[)2,13,∞-⋃+,则不等式2320ax ax b --≥的解集为[]1,4-D.“[]()21,3,2130a ax a x a ∃∈---+-<”为假命题的充要条件为[]51,0,43x ⎡⎤∈-⋃⎢⎥⎣⎦【答案】ACD 【解析】【分析】根据充分条件、必要条件的概念判断A ,分类讨论求出k 的范围判断B ,根据数轴穿根法及不等式的解集求出ba及0a <解不等式判断C ,由命题的否定转化为不等式恒成立,看作关于a 的不等式恒成立即可判断D.【详解】对A ,若p 是q 的必要不充分条件,p 是r 的充要条件,则q p r ⇒⇔,但是p 不能推出q ,所以q r ⇒,但是r 不能推出q ,所以q 是r 的充分不必要条件,故A 正确;对B ,当0k =时,原不等式为03≥,恒成立满足题意,当0k ≠时,由题意需满足()2Δ16430k k k k >⎧⎨=-⋅+≤⎩,解得01k <≤,综上,实数k 的取值范围是01k ≤≤,故B 错误;对C ,由不等式()()30x ax b x c-+≤-的解集为[)[)2,13,∞-⋃+,结合数轴穿根法知,1,2bc a==,且0a <,所以不等式2320ax ax b --≥可化为2340x x --≤,解得14x -≤≤,故C 正确;对D ,由题意知[]()21,3,2130a ax a x a ∀∈---+-≥为真命题,则()22130a x x x --++≥在[]1,3a ∈-时恒成立,令()2()213g a a x x x =--++,只需()()2213403350g x x g x x ⎧-=-++≥⎪⎨=-≥⎪⎩,则14503x x x -≤≤⎧⎪⎨≥≤⎪⎩或,解得[]51,0,43x ⎡⎤∈-⋃⎢⎥⎣⎦,故D 正确.故选:ACD11.已知函数()f x 的定义域为[)0,+∞,且满足当[)0,2x ∈时,()22f x x x =-+,当2x ≥时,恒有()()2f x f x λ=-,且λ为非零常数,则下列说法正确的有()A.()()101320272024f f λ+=B.当12λ=时,反比例函数()1g x x =与()f x 在()0,2024x ∈上的图象有且仅有6个交点C.当0λ<时,()f x 在区间[]2024,2025上单调递减D.当1λ<-时,()f x 在[]()*0,4n n ∈N 上的值域为2122,n n λλ--⎡⎤⎣⎦【答案】ABD 【解析】【分析】根据所给函数解析式直接求解判断A ,根据()f x 的性质及(),()g x f x 图象判断B ,归纳出()f x 在[]2024,2025上的解析式判断C ,根据规律,归纳值域特点判断D.【详解】选项A :()()()()()210121013101320272025202331f f f f f λλλλλ====== ,()()()()()210111012202420222020200f f f f f λλλλ====== ,则()()101320272024f f λ+=,所以选项A 正确;选项B :由()()122f x f x =-知,()0,2024x ∈时,()()()()()[)()()[)()()[)210112,0,2124,2,42146,4,62120222024,2022,20242x x x x x x f x x x x x x x ⎧-∈⎪⎪--∈⎪⎪⎪=--∈⎨⎪⎪⎪⎪--∈⎪⎩ ,由于()()()()()()1111111,33,553254g f g f g f ===<==<=,但()()()()31011111177,202320237220232g f g f =>==>= ,作,的图象,如图,结合图象可知()0,6x ∈上有2226++=个交点,在[)6,2024x ∈上无交点,故选项B 正确;选项C :[]2024,2025x ∈时,()()()1012120242026f x x x λ=--,故()f x 在[]2024,2025上单增,故C 错误;选项D :因为1λ<-,所以当[]0,4x ∈时,值域为[],1λ;当[]0,8x ∈时,值域为32,λλ⎡⎤⎣⎦;当[]0,12x ∈时,值域为54,λλ⎡⎤⎣⎦;当[]0,16x ∈时,值域为76,λλ⎡⎤⎣⎦;L 当[]0,4x n ∈时,值域为2122,n n λλ--⎡⎤⎣⎦,故D 正确.故选:ABD.【点睛】关键点点睛:根据所给函数解析式,可知函数类似周期特点,图象形状类似,振幅有规律变化,据此可归纳函数的性质是解题的关键所在.三、填空题.本题共3小题,每小题5分,共15分.12.已知集合{}210A xx =-=∣,则集合A 有__________个子集.【答案】4【解析】【分析】求出集合A ,列举出集合A 的子集即可.【详解】因2{10}{1,1}A x x =-==-∣,故集合A 的子集有,{1},{1},{1,1}∅--共4个.故答案为:4.13.已知集合[]()(){}1,4,10A B x x a ax ==+-≤∣,若A B B = 且0a ≥,则实数a 的取值范围是__________.【答案】10,4⎡⎤⎢⎥⎣⎦【解析】【分析】根据集合的包含关系,讨论0a =和0a >两种情况,求集合B ,再比较端点值,即可求解.【详解】因为A B B = ,所以A B ⊆,因为()(){}10B x x a ax =+-≤∣,且0a ≥:1 当0a =时,[)0,B ∞=+,符合题意;2当0a >时,1,B a a ⎡⎤=-⎢⎥⎣⎦,则11404a a ≥⇒<≤,综上,10,4a ⎡⎤∈⎢⎥⎣⎦.故答案为:10,4⎡⎤⎢⎣⎦14.若正实数x ,y 满足()()332331423x y x y -+-=--,则2346y x x x y++的最小值为__________.【答案】【解析】【分析】根据函数的单调性可知243x y =-,代入可得234386y x y xx x y x y++=+,根据基本不等式可得最值.【详解】由题可知()()()()3323231313x x y y -+-=-+-,因为3,y t y t ==在R 上单调递增,所以()3g t t t =+在R 上单增,所以上式可表示为()()2313g x g y -=-,则2313x y -=-,即243x y =-,因此()22433433866x y y x y y x x x x y x y x y -++=++=+≥=当且仅当38243y x x y x y⎧=⎪⎨⎪=-⎩即25x -=,2415y -=时等号成立,故答案为:.四、解答题、本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数()21,122,1x x f x x x ⎧->-⎪=⎨⎪--≤-⎩.(1)若()01f x =,求0x 的值;(2)若()3f a a <+,求实数a 的取值范围.【答案】(1)02x =或3-(2)5,42⎛⎫-⎪⎝⎭【解析】【分析】(1)根据分段函数定义分类列方程求解;(2)根据分段函数定义分类列不等式求解.【小问1详解】由()01f x =可得:1∘>−1−1=1⇒0=20=−2舍去)0000123,,23;21x x x x ≤-⎧⇒=-=-⎨--=⎩ 综上或【小问2详解】由()3f a a <+可得:1∘>−11<+3⇒>−12−2−8<0⇒>−1−2<<4⇒∈−1,4;2∘≤−1−−2<+3⇒≤−1>−52⇒∈−52,−1综上可得5,42a ⎛⎫∈-⎪⎝⎭.16.已知函数()f x =A ,集合{}321B xx =->∣.(1)求A B ;(2)集合{}321M xa x a =-≤≤-∣,若M ()RA ð,求实数a 的取值范围.【答案】(1)3{|4A B x x =≤ 或1}x >(2)3,2⎛⎤-∞ ⎥⎝⎦【解析】【分析】(1)根据条件,先求出集合,A B ,再利用集合的运算,即可求解;(2)由(1)可得R 3,24A ⎛⎤= ⎥⎝⎦ð,再根据条件,分M =∅和M 蛊两种情况讨论,即可求解.【小问1详解】由5402x +≥-,即4302x x -≥-,得到2x >或34x ≤,所以3{|4A x x =≤或2}x >,又由321x ->,得到321x -<-或321x ->,即13x <或1x >,所以1{3B x =<或1}x >,所以3{|4A B x x =≤ 或1}x >.【小问2详解】因为3{|4A x x =≤或2}x >,所以R 3,24A ⎛⎤= ⎥⎝⎦ð,①当321a a ->-,即43a <时,此时M =∅()RA ð,所以43a <满足题意,②当43a ≥,即M 蛊时,由题有212334a a -≤⎧⎪⎨->⎪⎩,解得4332a ≤≤,综上,实数a 的取值范围是3,2a ⎛⎤∈-∞ ⎥⎝⎦.17.已知二次函数()f x 的图象过原点()0,0,且对任意x ∈R ,恒有()26231x f x x --≤≤+.(1)求()1f -的值;(2)求函数()f x 的解析式;(3)记函数()g x m x =-,若对任意(]11,6x ∈,均存在[]26,10x ∈,使得()()12f x g x >,求实数m 的取值范围.【答案】(1)4(2)()222f x x x=-(3)(],10-∞【解析】【分析】(1)令1x =-即可求出()1f -.(2)根据条件,先设出二次函数的解析式,再根据()26231x f x x --≤≤+恒成立,可求待定系数.(3)问题转化成()f x 在区间(]1,6的最小值不小于()g x 在[]6,10上的最小值求参数的取值范围.【小问1详解】在不等式()26231x f x x --≤≤+,令()()141414x f f =-⇒≤-≤⇒-=.【小问2详解】因为()f x 为二次函数且图象过原点()0,0,所以可设()()2,0f x ax bx a =+≠,由()1444f a b b a -=⇒-=⇒=-,于是()()24f x ax a x =+-,由题:()()262220,f x x ax a x x ≥--⇔+++≥∈R 恒成立⇔>0Δ≤0⇔>0+22−8=−22≤0⇒=2,=−2⇒=22−2,检验知此时满足()()223110,f x x x x ≤+⇔+≥∈R ,故()222f x x x =-.【小问3详解】函数()222f x x x =-,开口向上,对称轴12x =,所以()222f x x x =-在区间(]1,6上单调递增,因此,(]11,6x ∈时,()()()(11,6f x f f ⎤∈⎦,即()(]10,60f x ∈,而()g x m x =-在[]6,10上单调递减,所以[]26,10x ∈时,()[]210,6g x m m ∈--因为对任意(]11,6x ∈,均存在[]26,10x ∈,使得()()12f x g x >,等价于()()(]110010,10f g m m ∞≥⇒≥-⇒∈-18.教材中的基本不等式可以推广到n 阶:n 个正数的算数平均数不小于它们的几何平均数.也即:若12,,,0n a a a > ,则有*12,2n a a a n n n +++≥∈≥N ,当且仅当12n a a a === 时取等.利用此结论解决下列问题:(1)若,,0x y z >,求24y z x x y z++的最小值;(2)若10,2x ⎛⎫∈ ⎪⎝⎭,求()312x x -的最大值,并求取得最大值时的x 的值;(3)对任意*k ∈N ,判断11kk ⎛⎫+ ⎪⎝⎭与1111k k +⎛⎫+ ⎪+⎝⎭的大小关系并加以严格证明.【答案】(1)6(2)最大值为272048,38x =(3)1*1111,1kk k k k +⎛⎫⎛⎫+<+∈ ⎪ ⎪+⎝⎭⎝⎭N ,证明见解析【解析】【分析】(1)根据三阶基本不等式的内容直接可得解;(2)由()()32722212128333x x xx x x -=⋅⋅⋅⋅-,结合四阶基本不等式可得最值;(3)猜测111111kk k k +⎛⎫⎛⎫+<+ ⎪ ⎪+⎝⎭⎝⎭,*k ∈N 成立,验证1k =不等式成立;结合推广公式证明2k ≥结论成立.【小问1详解】因为,,0x y z >,所以由三阶基本不等式可得:246y z x x y z ++≥,当且仅当24y z xx y z==即2y z x ==时取等号,因此24y z x x y z++的最小值为6;【小问2详解】当10,2x ⎛⎫∈ ⎪⎝⎭时,由四阶基本不等式可得:()()()432221227222272733312128333842048x x x x x x x x x x ⎛⎫+++- ⎪-=⋅⋅⋅⋅-≤= ⎪⎝⎭,当且仅当2123xx =-即310,82x ⎛⎫=∈ ⎪⎝⎭时取等号,因此()312x x -的最大值为272048;【小问3详解】大小关系为111111kk k k +⎛⎫⎛⎫+<+ ⎪ ⎪+⎝⎭⎝⎭,*k ∈N ,证明如下:由条件可知:12,,,0n a a a > 时,*1212,,2nn n a a a a a a n n n +++⎛⎫⋅≤∈≥ ⎪⎝⎭N ,当1k =时,左边11121⎛⎫=+= ⎪⎝⎭,右边219124⎛⎫=+= ⎪⎝⎭,左边<右边,不等式成立;当2k ≥,*k ∈N 时,由1k +阶基本不等式,可知:不等式左边111111111kk k k k ⎛⎫⎛⎫⎛⎫⎛⎫=+=+⋅++⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ()(1)1111111111(11)11()111k k k k k k k k k k k k k ++++⎛⎫⎛⎫⎛⎫⎛⎫++++++++++ ⎪⎪ ⎪⎪⎛⎫++⎝⎭⎝⎭⎝⎭ ⎪≤== ⎪+++ ⎪⎝⎭⎪⎝⎭个个1111k k +⎛⎫=+ ⎪+⎝⎭而111k ⎛⎫+≠ ⎪⎝⎭,因此上式的不等号取不到等号,于是1111111111kk k k k k k ++++⎛⎫⎛⎫⎛⎫+<=+ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭,综上,原不等式得证.19.已知定义在11,,22⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭上的函数()f x 同时满足下列四个条件:①512f ⎛⎫=-⎪⎝⎭;②对任意12x >,恒有()()0f x f x -+=;③对任意32x >,恒有()0f x <;④对任意,0a b >,恒有111222f a f b f ab ⎛⎫⎛⎫⎛⎫+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)求32f ⎛⎫- ⎪⎝⎭的值;(2)判断()f x 在1,2⎛⎫+∞⎪⎝⎭上的单调性,并用定义法证明;(3)若对任意[]1,1t ∈-,恒有()()21232f t k t k -+-+≤,求实数k 的取值范围.【答案】(1)0(2)()f x 在1,2⎛⎫+∞⎪⎝⎭上单调递减,证明见解析(3)3,4⎡⎫+∞⎪⎢⎣⎭【解析】【分析】(1)令1a b ==可得302f ⎛⎫= ⎪⎝⎭,再由()()0f x f x -+=,即可得出答案;(2)由单调性的定义证明即可;(3)由单调性和奇偶性列出不等式,再结合二次函数的性质求解即可.【小问1详解】在111222f a f b f ab ⎛⎫⎛⎫⎛⎫+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭中令333120222a b ff f ⎛⎫⎛⎫⎛⎫==⇒=⇒= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(或令53532,102222a b f f f f ⎛⎫⎛⎫⎛⎫⎛⎫==⇒+=⇒=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭).而()()333000222f x f x f f f ⎛⎫⎛⎫⎛⎫-+=⇒-+=⇒-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.【小问2详解】()f x 在1,2∞⎛⎫+ ⎪⎝⎭上单调递减.下证明:由④知:对任意,0a b >,恒有111222f ab f b f a ⎛⎫⎛⎫⎛⎫+-+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.证一:任取2112x x >>,于是()()22211111111111122112222222x x f x f x f x f x f x x ⎛⎫⎛⎫-- ⎪ ⎪⎛⎫⎛⎫⎛⎫-=⋅-+--+=+⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ⎪ ⎪--⎝⎭⎝⎭因为2112x x >>,所以2111022x x ->->221111132********x x x x --⇒>⇒+>--,而对任意32x >时恒有()0f x <,故211120122x f x ⎛⎫- ⎪+<⎪ ⎪-⎝⎭,即()()210f x f x -<,所以()f x 在1,2∞⎛⎫+⎪⎝⎭上单调递减,证毕;证二:任取2112x x >>,设2111,,1,022x mn x n m n =+=+>>()()21111222f x f x f mn f n f m ⎛⎫⎛⎫⎛⎫-=+-+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因为131.22m m >+>,所以102f m ⎛⎫+< ⎪⎝⎭,即()()21f x f x <,也即()f x 在1,2∞⎛⎫+⎪⎝⎭单调递减,证毕;【小问3详解】在111222f a f b f ab ⎛⎫⎛⎫⎛⎫+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭中:令5599222222a b f f f f ⎛⎫⎛⎫⎛⎫⎛⎫==⇒+=⇒=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,而()()0f x f x -+=,于是922f ⎛⎫-= ⎪⎝⎭令139339,402442242a b f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⇒+==⇒=-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,由(2)知()f x 在1,2∞⎛⎫+ ⎪⎝⎭上单调递减,又()()0f x f x -+=,可得()f x 在1,2∞⎛⎫-- ⎪⎝⎭上也单调递减,如图,可知不等式()()21232f t k t k -+-+≤等价于:对任意[]11t ,∈-,不等式()231234t k t k -+-+≥……①或者()29112322t k t k -≤-+-+<-恒成立,……②法一:令()()[]2123,1,1g t t k t k t =-+-+∈-立,因为()g t 开口向下,由()g t 图像可知:不等式①()()11313204;334144k g k g k ⎧⎧≥-≥⎪⎪⎪⎪⇔⇒⇒≥⎨⎨⎪⎪≥≥⎪⎪⎩⎩对于②,当1t =±时,由()()1391121022919112222k g k g k ∅⎧⎧-≤<-≤-<-⎪⎪⎪⎪⇒⇒∈⎨⎨⎪⎪-≤<--≤<-⎪⎪⎩⎩,即一定不存在k 满足②.综上取并,得3,4k ∞⎡⎫∈+⎪⎢⎣⎭法二:令()()[]()2123,1,1,g t t k t k t g t =-+-+∈-开口向下,对称轴为12t k =-,且()()211152,1,224g k g k g k k k ⎛⎫-=-=-=++ ⎪⎝⎭,1 当112k -<-即32k >时,问题等价于>321≥34或>32−1<−121≥−92,解得32k >;2 当1102k -≤-≤即1322k ≤≤时,等价于()1322314k g ⎧≤≤⎪⎪⎨⎪≥⎪⎩或()13221133,;2242912k g k k g ⎧≤≤⎪⎪⎪⎛⎫⎡⎤-<-⇒∈⎨ ⎪⎢⎥⎝⎭⎣⎦⎪⎪≥-⎪⎩3 当1012k <-≤即1122k -≤<时,问题等价于()1122314k g ⎧-≤<⎪⎪⎨⎪-≥⎪⎩或()11221122912k g k g ⎧-≤<⎪⎪⎪⎛⎫-<-⎨ ⎪⎝⎭⎪⎪-≥-⎪⎩,解得k ∈∅;4 当112k ->即12k <-时,问题等价于()12314k g ⎧<-⎪⎪⎨⎪-≥⎪⎩或()()12112912k g g ⎧<-⎪⎪⎪<-⎨⎪⎪-≥-⎪⎩,解得k ∈∅;综上,3,4k ∞⎡⎫∈+⎪⎢⎣⎭.。

湖南省长沙市雅礼中学2024-2025学年高三上学期月考(三)政治试题 Word版含解析

湖南省长沙市雅礼中学2024-2025学年高三上学期月考(三)政治试题 Word版含解析

雅礼中学2025届高三月考试卷(三)思想政治本试题卷分为选择题和非选择题两部分,共8页。

时量75分钟,满分100分。

第Ⅰ卷选择题(共48分)一、选择题(本大题共16小题,每小题3分,共48分。

每小题只有一项符合题目要求)1.研读经典,致敬伟人。

对下列两则原文相同点的解读,科学的是()1847年,马克思在《哲学的贫困》中指出:“当文明一开始的时候,生产就开始建立在级别、等级和阶级的对抗上,最后建立在积累的劳动和直接的劳动的对抗上。

没有对抗就没有进步。

这是文明直到今天所遵循的规律。

”1848年,马克思、恩格斯在《共产党宣言》中指出:“资产阶级赖以形成的生产资料和交换手段,是在封建社会里造成的。

在这些生产资料和交换手段发展的一定阶段上……封建的所有制关系,就不再适应已经发展的生产力了……起而代之的是自由竞争以及与自由竞争相适应的社会制度和政治制度、资产阶级的经济统治和政治统治。

”①两者都依据社会基本矛盾运动规律阐释社会形态的更替问题②前者揭示社会形态更替的条件性,后者揭示其更替的必然性③依据两者都能推断资本主义终将被社会主义取代的必然趋势④两者都揭示了人类社会的发展历史就是一部阶级斗争的历史A.①③B.①④C.②③D.②④2.习近平总书记提出:“我们的教育要善于从五千年中华传统文化中汲取优秀的东西,同时也不摒弃西方文明成果,真正把青少年培养成为拥有‘四个自信’的孩子。

”关于“四个自信”,下列说法正确的是()①中国特色社会主义道路是实现社会主义现代化、创造美好生活的必由之路②中国特色社会主义理论体系科学回答了建设社会主义的一系列的基本问题③中国特色社会主义制度是党和人民在长期实践探索中形成的科学制度体系④中国特色社会主义文化是激励全党全国各族人民奋勇前进的强大物质力量A.①②B.①③C.②④D.③④3.中国特色社会主义开创于改革开放时期,但了解其形成和发展的脉络,认识其历史必然性和科学真理性,应该拉长时间尺度,了解社会主义演进的历程。

云南省文山州2024-2025学年高二上学期月考生物试题(含解析)

云南省文山州2024-2025学年高二上学期月考生物试题(含解析)

高二年级生物学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷第1页至第5页,第Ⅱ卷第5页至第8页。

考试结束后,请将本试卷和答题卡一并交回。

满分100分,考试用时75分钟。

第Ⅰ卷(选择题,共48分)注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚。

2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

在试题卷上作答无效。

一、选择题(本大题共16小题,每小题3分,共48分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列关于人体的内环境与稳态的叙述,正确的是()A.血细胞和心肌细胞所需的营养物质都直接来自血浆B.淋巴液和血液中都有淋巴细胞,血钠含量过低出现肌肉抽搐C.呼吸酶存在于细胞内液中,消化酶分布在外界环境中D.神经—激素—免疫调节网络是机体维持稳态的主要调节机制2.体液是指机体内所含有的大量水分以及溶解在这些水中的各种物质的总称,包括细胞内液和细胞外液。

下图是人体体液中的物质交换的示意图,下列叙述正确的是()A.图中a、b、c、d分别为细胞内液、血浆、组织液、淋巴液,b中的蛋白质含量比d高B.口腔上皮细胞生活的内环境是b,毛细淋巴管壁细胞生活的内环境是b、c、dC.人取食酸杨梅时内环境的pH能维持稳态与a中NaHCO3、Na2HPO4相关D.d中含有碱性磷酸酶、乳酸脱氢酶、丙氨酸转移酶、尿素、尿酸等物质3.下列因素中一般不会导致正常机体产生组织水肿的是()A.毛细血管壁的破损B.淋巴循环受阻C.摄入大量蛋白质D.患肾小球肾炎4.焦虑是因过度担心而产生的一种烦躁情绪,很多学生都经历过考前焦虑,考前焦虑可能会让学生感到紧张不安、心跳加速、排尿增加,严重者甚至会出现消化不良、呼吸急促的情况。

下列相关叙述错误的是()A.焦虑导致心跳加快与交感神经活动占优势有关B.副交感神经占优势会抑制胃肠蠕动造成消化不良C.焦虑这一烦躁情绪若持续时间较长会影响正常的生活和学习D.呼吸急促可能是内环境中的CO₂刺激相关感受器,进而通过脑干的呼吸中枢调节呼吸运动所致5.小鼠摄入樱桃味糖精溶液时,糖精溶液会引起小鼠唾液分泌。

湖北省武汉中学2024-2025学年高一10月月考英语试题

湖北省武汉中学2024-2025学年高一10月月考英语试题

湖北省武汉中学2024-2025学年度高一年级10月月考英语试卷本试题卷共8页,四部分,全卷满分150分.考试用时120分钟.★祝考试顺利★第一部分听力(共两节,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。

每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

例:How much is the shirt?A. £19.15.B. £9.18.C. £9.15.答案是C。

1. What are the speakers going to do?A. Wash a car.B. Take a flight.C. Buy some food.2. What is the relationship between the speakers?A. Strangers.B. Tourist and guide.C. Postman and customer.3. How many tickets for the tennis game do they have in total?A. Two.B. Three.C. Four.4. What are the speakers probably talking about?A. The man’s job interview.B. The man’s mistake.C. The man’s future career.5. What does the man think about the woman?A. She spends money wisely.B. She needn’t buy a new laptop.C. She is careless with money.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。

湖南省长沙市2024-2025学年高三上学期月考(三)化学试卷含答案

湖南省长沙市2024-2025学年高三上学期月考(三)化学试卷含答案

2025届高三月考试卷(三)化学(答案在最后)命题人:得分:______本试题卷分选择题和非选择题两部分,共8页。

时量75分钟,满分100分。

可能用到的相对原子质量:H~1C~12N~14O~16Na~23S~32Cl~35.5Zr~91第Ⅰ卷(选择题共42分)一、选择题(本题共14小题,每小题3分,共42分,每小题只有一个选项符合题意。

)1.化学和我们的生活有十分密切的联系,下列表述不正确的是()A.在碳素钢中加入Cr 和Ni 制得不锈钢可以增强钢的强度以及抗腐蚀能力B.改变铝制品表面氧化膜的厚度可以影响染料着色从而产生美丽的颜色C.焰色试验选择Fe 作为载体是因为铁元素受热不发生电子跃迁、不产生发射光谱D.半导体材料氮化镓是一种新型无机非金属材料2.下列化学用语表示不正确的是()A.2,2-二甲基丁烷的结构简式:B.三氟化硼分子的空间填充模型:C.次氯酸分子的电子式: H O Cl:::D.基态溴原子的简化电子排布式:[]25Ar 4s 4p3.2024年诺贝尔化学奖表彰了三位科学家在蛋白质设计和结构预测领域作出的贡献,中国科学家颜宁在这方面也做了大量的工作,以下相关说法不正确的是()A.蛋白质分散在水中形成的分散系可以产生丁达尔效应B.要使蛋白质晶化得到较大的蛋白质晶体需要快速结晶C.通过X 射线衍射可以得到高分辨率的蛋白质结构D.蛋白质复杂结构的形成与极性键、非极性键、氢键、范德华力等有关4.以下实验方案正确且能达到实验目的的是()选项实验目的实验方案A 制备少量硝酸边加强热边向饱和硝酸钠溶液中滴加浓硫酸B 验证晶体的自范性将形状不规则的蔗糖块放入饱和蔗糖溶液中静置一段时间后取出C验证C 和Si 的非金属性强弱将焦炭和石英砂混合加强热(1800~2000℃),检验气体产物以证明反应发生D 测定中和热将稍过量的NaOH 固体投入装有一定量稀盐酸的烧杯中并测量其温度变化A.AB.BC.CD.D5.某化学小组在实验室尝试用氨气制备硝酸,过程如下:32NH NO NO →→→3HNO 。

四川省成都市2024-2025学年高三上学期10月月考试题 英语含答案

四川省成都市2024-2025学年高三上学期10月月考试题 英语含答案

成都2024-2025学年度上期高2025届十月月考英语试卷(答案在最后)试卷说明:英语考试时间共120分钟,满分150分。

英语试题卷分第I卷(选择题)和第II卷(非选择题)。

考试做答时,须将答案答在答题卡上,在本试卷、草稿纸上答题无效。

第一部分听力(共两节,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。

每段对话后有一个小题,从题中所给的A、B、C,三个选项中选出最佳选项,并标在试卷的相应位置。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

1.When will the woman meet the staff manager?A.At9:30.B.At11:00.C.At12:40.2.Why hasn’t the woman seen the man for a long time?A.He went traveling.B.He moved to Glasgow.C.He was ill.3.Where does the conversation take place?A.At a restaurant.B.At a supermarket.C.At home.4.How does the man feel now?A.Excited.B.Regretful.C.Refreshed.5.What is the man doing?A.Offering a favor.B.Serving a customer.C.Showing the way.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。

每段对话或独白后有2至4个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。

听每段对话或独白前,你将有5秒钟的时间阅读各个小题;听完后,各小题将给出5秒钟的作答时间。

每段对话或独白读两遍。

2023-2024学年八年级上学期第三次月考数学试题(原卷版)

2023-2024学年八年级上学期第三次月考数学试题(原卷版)

2023-2024学年八年级上学期12月份质量监测数学(本试卷共6页,25题,全卷满分:120分,考试用时:120分钟)1.答题前,先将自己的姓名、准考证号写在试题卷和答题卡上,并将准考证条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上相应题目的答案标号涂黑.写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,将答题卡上交.一、选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本大题共10个小题,每小题3分,共30分)1.体育是一个锻炼身体,增强体质,培养道德和意志品质的教育过程,是培养全面发展的人的一个重要方面,下列体育图标是轴对称图形的是()A. B. C. D.2.如图,空调安装在墙上时,一般都会采用如图所示的方法固定,这种方法应用的几何原理是()A.三角形两边之差小于第三边B.三角形两边之和大于第三边C.垂线段最短D.三角形的稳定性3.用下列长度的三条线段能组成三角形的是()A.2cm,3cm,5cmB.8cm,12cm,2cmC.5cm,10cm,4cmD.3cm,3cm,5cm4.2023年9月9日,上海微电子研发的28nm浸没式光刻机的成功问世,标志着我国在光刻机领域迈出了坚实的一步.已知28nm为0.000000028米,数据0.000000028用科学记数法表示为()A.102.810-⨯ B.82.810-⨯ C.62.810-⨯ D.92.810-⨯5.下列运算正确的是()A.()1432a a = B.236a a a ⋅= C.()32626a a -=- D.842a a a ÷=6.一个多边形的内角和是外角和的2倍,则这个多边形的边数为()A.4B.5C.6D.77.下列等式成立的是()A.22(1)1x x -=- B.22(1)1x x x +=++C.2(1)(1)1x x x +-+=- D.2(1)(1)1x x x -+--=--8.下列说法:①三角形的外角等于两个内角之和;②三角形的重心是三条垂直平分线的交点;③有一个角等于60︒的等腰三角形是等边三角形;④分式的分子与分母乘(或除以)同一个整式,分式的值不变,其中正确的个数有()A.0个 B.1个 C.2个 D.3个9.如图,在ABC 中,AB AC =,点D ,P 分别是图中所作直线和射线与AB ,CD 的交点.根据图中尺规作图的痕迹推断,以下结论错误的是()A.PBC ACD ∠=∠B.ABP CBP ∠=∠C.A ACD ∠=∠D.AD CD=10.如图,在ABC 中,90BAC ︒∠=,AD 是高,BE 是中线,CF 是角平分线,CF 交AD 于点G ,交BE 于点H ,给出以下结论:①BE BCE S S =△A △;②AFG AGF ∠=∠;③2FAG ACF ∠=∠;④BH CH =;⑤::AC AF BC BF =.其中结论正确的有()A.2个B.3个C.4个D.5个二、填空题(本大题共6个小题,每小题3分,共18分)11.因式分解:316y y -=______.12.在平面直角坐标系中,点P (3,﹣2)关于y 轴对称的点的坐标是____.13.若分式211x x --的值为0,则x 的值为______.14.如图,PA OA ⊥,PB OB ⊥,PA PB =,26POB ∠=︒,则APO ∠=________°.15.如图,等边ABC 中,D 为AB 的中点,过点D 作DFAC ⊥于点F ,过点F 作FE BC ⊥于点E ,若4AF =,则线段BE 的长为________.16.如图,在平面直角坐标系中,点()7,0A ,()0,12B ,点C 在AB 的垂直平分线上,且90ACB ∠=︒,则点C 的坐标为________.三、解答题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题8分,第22、23题每小逪9分,第24、25题每小题10分,共72分,解答应写出必要的文字说明,证明过程或演算步骤)17.计算:()2202301|3|120243-⎛⎫-+-+- ⎪⎝⎭.18.先化简,再求代数式221122x x x x ⎡⎤-⎛⎫-÷⎢⎥ ⎪++⎝⎭⎢⎥⎣⎦的值,其中2x =.19.如图,在ABC 中,DE 是线段AB 的垂直平分线.(1)若35B ∠=︒.求ADC ∠的度数:(2)若AD CD =.求证:AC AB ⊥.20.如图,在正方形网格中,点A 、B 、C 、M 、N 都在格点上.(1)作△ABC 关于直线MN 对称的图形△A'B'C';(2)若网格中最小正方形的边长为1,则△ABC 的面积为;(3)点P 在直线MN 上,当△PAC 周长最小时,P 点在什么位置,在图中标出P 点.21.如图,在四边形ABCD 中,AB CD ,连接BD ,点E 在BD 上,连接CE ,若12∠=∠,AB ED =.(1)求证:BD CD =.(2)若13555A BCE ∠=︒∠=︒,,求DBC ∠的度数.22.【阅读理解】若x 满足(32)(12)100x x --=.求()()223212x x -+-的值.解:设32x a -=,12x b -=.则()()3212100x x a b --=⋅=,()()321220a b x x +=-+-=.()()()22222232122202100200x x a b a b ab -+-=+=+-=-⨯=.我们把这种方法叫做换元法.利用换元法达到简化方程的目的.体现了转化的数学思想.【解决问题】(1)若x 满足()()1025x x --=.则()()22102x x -+-=________;(2)若x 满足()()222025202266x x -+-=.求()()20252022x x --的值;(3)如图,在长方形ABCD 中,25cm AB =,点E ,F 是边BC ,CD 上的点,13cm EC =,且cm BE DF x ==.分别以FC ,CB 为边在长方形ABCD 外侧作正方形CFGH 和CBMN ,若长方形CBQF 的面积为2300cm ,求图中阴影部分的面积之和.23.ABC 中,AB AC =,点D 是边AB 上一点,BCD A ∠=∠.(1)如图1,试说明CD CB =的理由;(2)如图2,过点B 作BE AC ⊥,垂足为点E ,BE 与CD 相交于点F .①试说明2BCD CBE ∠=∠的理由;②如果BDF V 是等腰三角形,求A ∠的度数.24.如图,在平面直角坐标系中,A 点在第二象限、坐标为(,)m m -.(1)若关于x 的多项式24x x m ++是完全平方式,直接写出点A 的坐标:________;(2)如图1,ABO 为等腰直角三角形.分别以AB 和OB 为边作等边ABC 和等边OBD ,连接OC ,AD ;①若4=AD ,求OC 的长;②求COB ∠的度数.(3)如图2,过点A 作AM y ⊥轴于点M ,点E 为x 轴正半轴上一点,K 为ME 延长线上一点,以MK 为直角边作等腰直角三角形MKJ ,90MKJ ∠=︒,过点A 作AN x ⊥轴交MJ 于点N ,连接EN .试猜想线段AN ,OE 和NE 的数量关系,并证明你的猜想.25.定义:若分式A 与分式B 的差等于它们的积.即A B AB -=,则称分式B 是分式A 的“可存异分式”.如11x +与12x +.因为()()1111212x x x x -=++++,11112(1)(2)x x x x ⨯=++++.所以12x +是11x +的“可存异分式”.(1)填空:分式12x +________分式13x +的“可存异分式”(填“是”或“不是”;)(2)分式4x x -的“可存异分式”是________;(3)已知分式2333x x ++是分式A 的“可存异分式”.①求分式A 的表达式;②若整数x 使得分式A 的值是正整数,直接写出分式A 的值;(4)若关于x 的分式22n mx m n +++是关于x 的分式21m mx n-+的“可存异分式”,求2619534n n ++的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

巫溪中学高2015级5月语文月考试题卷时间150分钟总分150分一、(12分,每小题3分)1、下列词语中字形与字音全都正确的一项是A.梦魇(yǎn)胴(tóng)体影牒陈词滥调B.神祇(dǐ)信笺(jiān)慰藉鞠躬尽悴C.汲(jí)取参与(yǔ)座落佶屈聱牙D.贮(zhù)藏僭(jiàn) 越芜菁直截了当2.下列各句中,加横线的词语使用恰当的一项是A. 台风“海燕”以破竹之势来袭,菲律宾沿海地区损失惨重,联合国呼吁各国加大救灾援助力度,帮助灾民渡过难关。

B. 跑步运动有助于增强心肺功能,但对于心脏病患者来说,进行这项运动不仅不能获得益处,而且会诱发其他疾病。

C. 诗圣杜甫用诗歌记述了风云多变、国破家亡的社会现实,他在众多诗篇中对尖锐的社会矛盾的揭露可谓力透纸背。

D. 四川旅游局整合资源,积极推动大九寨环线区域旅游发展,力争改变假日期间景区游客重足而立、拥堵滞留的状况。

3. 下列各句中,没有语病的一句是A. 为让市民更多地呼吸到新鲜空气,各省大力倡导绿色生活方式,限行机动车、管控扬尘、禁止露天烧烤等强制性措施,全面开展大气污染防治工作。

B. 复旦大学研究者近日发布关于曹操家族DNA研究的最新成果,如同当年安阳发现“曹操墓”一样,这一消息引起人们的广泛关注,并引发热烈讨论。

C. 社区工作人员表示,困难再多再大,越要想方设法努力搞好社区活动,让活动成为激活社区活力的载体,成为邻里之间快乐相识、融洽相处的平台。

D. 科幻大片《地心引力》用3D动画特效完成的背景画面,将电影拍摄科技提高到了一个全新的高度,受到众多影迷的大力推崇,被称为“年度神作”。

4.下列各句中,标点符号使用正确的一项是A.作家大都重视写作前的情感培养:有的借欣赏音乐进入情境;有的面对墙壁久久沉思;有的甚至跳起迪斯科来兴奋自己。

B.农历新年的习俗可多啦,贴春联、挂年画、舞龙灯、放花炮、穿新衣……等等,到处呈现祥和、热闹的气氛。

C.小李见他笑得有点异样,就问:“怎么了?你。

”他回答说:“没什么,别多心。

”D.《旧的•创世纪》中说:“神以自己的形象创造了人。

”应当倒过来说才对,即“人以自己的形象创造了神”。

二、(9分,每小题3分)阅读下面的文字,完成5~7题。

①黄梅戏是从民间的采茶调发展成为如今中国五大戏曲剧种之一,它的发展及艺术特点的形成是学习借鉴的结果。

②黄梅戏原名“黄梅采茶调”,起源于唐初。

清乾隆时期,湖北黄梅县一带大别山采茶调传入毗邻的安徽省怀宁县等地区,与当地民间艺术结合,并用安庆方言歌唱和念白,逐渐发展为一个新的戏曲剧种。

其后黄梅戏又借鉴吸收了青阳腔和徽调的音乐、表演和剧目,开始演出“本戏”。

但作为地方剧种,黄梅戏也存在一定的局限。

念白及唱词,很多用的是地方语言,剧情反映的也是老百姓所熟悉的故事和人物。

黄梅戏中经常演出的大本戏,只限于男女情爱,伦理道德等,很少演出反映重大历史题材及文学经典的剧目。

黄梅戏长期以来局限在安庆地区以及安徽其他地区范围内演出,这也局限了眼界和视角。

黄梅戏的传承者们也意识到了这一点,作出了很多努力,并取得了一定的突破。

③首先,在形体语言上要处理好继承与发展的关系。

吴亚玲主演的《墙头马上》,就在形体语言上做了很大突破,这出戏把舞蹈和戏曲程式经过精心提炼,二者融成一体,戏中人物形象达到了现代古典艺术的审美高度。

《墙头马上》的成功,使我们相信:形体语言的拓展与解放是可行的,甚至是必须的。

当然,在借鉴的同时,也不能本末倒置,失去剧种本身的特点,而应当处理好继承与发展的关系。

所以,黄梅戏在继承的同时,需要学习借鉴,与时俱进,逐步建立起具有自身特点的、完善的艺术体系,从而向更高的艺术领域迈进。

④其次,要创新运用声光电等新技术手段打造感官盛宴。

近些年来,大量的高科技声光电产品运用到舞台上来,这奠定了灯光在戏曲表演中的重要地位,它不光把环境和人物照亮,更把人物立体化、背景生活化,为舞台美术增色添彩。

舞台灯光在戏剧舞台中有了思想,起到了刻画人物、转换时空、渲染气氛的作用。

新创作的3D版舞台剧《牛郎织女》正是一部集声光电于一体的视觉大餐,为黄梅戏舞台艺术增添了一道亮丽的风景线。

由此可见,积极研究与运用现代化科技手段将会越来越成为黄梅戏发展中必不可少的一项重要内容。

⑤最后,要处理好新剧目创作与市场经济之间的关系。

如今,在文化体制改革的大潮中,如何处理好新剧目创作与市场经济之间的平衡关系,成为了一个非常重要的课题。

同时,这也是每一个文艺团体所面临的一个比较难的课题。

黄梅戏剧团转企后,首先面临的是生存问题,一个企业要生存下去,经济效益是第一关注点。

没有了效益,企业就失去了生存的基础,艺术创作也就无从谈起了。

但如果一味的追求经济效益,追求利润最大化,那么,就会忽视艺术创作,忽视生存的意义,最终也会因为没有好的艺术产品提供给社会而退出市场舞台。

所以,在两者之间如何权衡,如何博弈,成为了在市场经济下顺利发展黄梅戏艺术的最重要的课题,这一点对于其它艺术形式也同样适用。

5.下列对原文思路的分析,不正确的一项是A.①段提出了文章观点:作为如今中国五大剧种之一的黄梅戏,其发展艺术特点的形成是学习借鉴的结果,引出下文。

B.②段介绍了黄梅戏的来历与发展,但由于受到语言、题材和演出地区等方面的局限,自身的发展也受到了很大的阻碍。

C.③④段提出黄梅戏的传承者在形体语言和声光电新技术创新运用上,作出了很多努力与突破,促进了黄梅戏艺术发展。

D.⑤段承接上文,提出黄梅戏在学习借鉴的同时,也要理顺经济效益和艺术创作之间的关系,并且要在两者之间作出选择。

6.下列对原文内容的分析和概括,正确的一项是A.黄梅戏是大别山采茶调与怀宁地方民间艺术结合,并用安庆方言进行演出的地方戏曲剧种,后为青阳腔、徽调所吸收,诞生出“本戏”。

B.吴亚玲主演的黄梅戏新作品《墙头马上》的成功说明,只要能够解放与拓展形体语言,就能很好地处理黄梅戏艺术继承与发展的关系。

C.声光电等新技术手段可以创新运用到黄梅戏中,为舞台增色添彩,为观众带来视觉享受,它已成为黄梅戏发展中必不可少的重要内容。

D.在当前社会背景下,黄梅戏剧团在转企后,首先应该关注经济效益。

但如果一味地追求经济效益就会忽视艺术创作,忽视生存的意义。

7.从原文看,下列对黄梅戏存在“一定局限”的理解,正确的一项是A.黄梅戏的念白与唱词很多用的是地方语言,剧中的故事和人物也广为老百姓所熟悉。

B.黄梅戏剧目题材只限于男女情爱,伦理道德等,较少涉及重大历史题材及文学经典。

C.由于眼界和视角的局限,黄梅戏的发展进程很缓慢,演出的范围也只局限在安徽地区。

D.黄梅戏在学习和借鉴的同时,也需要保持自身的特点,从而迈进更高的艺术领域。

三、(6分,每小题3分)阅读下面的文言文,完成8—9题。

浮生六记·浪游记快沈复余自粤东归来,有吴云客偕毛忆香、王星灿邀余游西山小静室,余适腕底无闲,嘱其先往。

吴曰:“子能出城,明午当在山前水踏桥之来鹤庵相候。

”余诺之。

越日,余独步出阊门,至山前,过水踏桥,循田塍而西。

见一庵南向,门带清流,剥啄问之。

应曰:“客何来?”余告之。

笑曰:“此…得云‟也,客不见匾额乎?…来鹤‟己过矣!”余曰:“自桥至此,未见有庵。

”其人回指曰:“客不见土墙中森森多竹者,即是也。

”余乃返,至墙下。

小门深闭,门隙窥之,短篱曲径,绿竹猗猗,寂不闻人语声,叩之,亦无应者。

一人过,曰:“墙穴有石,敲门具也。

”余试连击,果有小沙弥出应。

余即循径入,过小石桥,向西一折,始见山门,悬黑漆额,粉书“来鹤”二字,后有长跋,不暇细观。

入门经韦陀殿,上下光洁,纤尘不染,知为好静室。

忽见左廊又一小沙弥奉壶出,余大声呼问,即闻室内星灿笑曰:“何如?我谓三白决不失信也!”旋见云客出迎,曰:“候君早膳,何来之迟?”一僧继其后,向余稽首,问知为竹逸和尚。

入其室,仅小屋三椽,额曰“桂轩”,庭中双桂盛开。

星灿、忆香群起嚷曰:“来迟罚三杯!”席上荤素精洁,酒则黄白俱备。

余问曰:“公等游几处矣?”云客曰:“昨来已晚,今晨仅到得云、河亭耳。

”欢饮良久。

饭毕,仍自得云、河亭共游八九处,至华山而止。

各有佳处,不能尽述。

华山之顶有莲花峰,以时欲暮,期以后游。

桂花之盛至此为最,就花下饮清茗一瓯。

即乘山舆,径回来鹤。

桂轩之东,另有临洁小阁,已杯盘罗列。

竹逸寡言静坐而好客善饮。

始则折桂催花,继则每人一令,二鼓始罢。

余曰:“今夜月色甚佳,即此酣卧,未免有负清光,何处得高旷地,一玩月色,庶不虚此良夜也?”竹逸曰:“放鹤亭可登也。

”云客曰:“星灿抱得琴来,未闻绝调,到彼一弹何如?”乃偕往。

但见一路霜林,月下长空,万籁俱寂。

星灿弹《梅花三弄》,飘飘欲仙。

忆香兴发,袖出铁笛,呜呜而吹之。

云客曰:“今夜石湖看月者,谁能如吾辈之乐哉?”盖吾苏八月十八日石湖行春桥下,有看串月胜会,游船排挤,彻夜笙歌,名虽看月,实则挟伎哄饮而己。

未几,月落霜寒,兴阑归卧。

(有删节)【注】①沈复(1763年—1825),清乾隆时文学家,字三白,号梅逸,江苏苏州人。

②剥啄,敲门声。

③吾苏,作者家乡苏州。

8.下列各组句子中,加点词的意义和用法相同的一组是A.循田塍而西臣恐见欺于王而负赵B.叩之,亦无应者常惠请其守者C.与俱何来之迟胡为乎惶惶欲何之D.实则挟伎哄饮而己位卑则足羞9.对下列句子中加点词的解释,不正确的一项是A.余适腕底无闲适:恰逢B.门带清流带:环绕C.即乘山舆舆:车D.兴阑归卧阑:残尽10.把原文中画线的句子翻译成现代汉语。

(8分)(1)以时欲暮,期以后游。

桂花之盛至此为最,就花下饮清茗一瓯。

(4分)(2)即此酣卧,未免有负清光,何处得高旷地,一玩月色,庶不虚此良夜也?(4分)11、作者与友人浪游体会到哪些快乐?请加以概括。

(4分)12. 用斜线(/)给下面的文段断句。

(限8处)(4分)孔子谓南宫敬叔曰吾闻老聃博学知古通礼乐之原明道德之归则吾师也今将往矣敬叔与俱至周问礼于老聃访乐于苌弘。

13.阅读下面的诗歌,然后回答问题。

(8分)金陵晚望高蟾曾伴浮云归晚翠,犹陪落日泛秋声。

世间无限丹青手,一片伤心画不成。

金陵图韦庄谁谓伤心画不成? 画人心逐世人情。

君看六幅南朝事,老木寒云满古城。

(1)这两首诗都写到了“伤心”,诗人为什么伤心?(4分)(2)两位诗人一位说“一片伤心画不成”,一位说“谁谓伤心画不成”。

请结合诗歌对此作简要分析。

(4分)14、补写下列名句名篇的空缺部分。

(7分)(1)雷霆乍惊,宫车过也;辘辘远听,。

(2)会桃花之芳园,。

(3),洞庭波兮木叶下。

(4),两朝开济老臣心。

(5),铁马秋风大散关。

(6)江畔何人初见月??(7)千岩万转路不定,。

五、(22分)阅读下面的文章,完成15——18题。

传奇女子——林徽因柳已青①林徽因(1904年~1955年),一位充满传奇色彩的女性,她才华横溢,光彩照人。

相关文档
最新文档