镧系元素-最详细的介绍
稀土元素 镧系

稀土元素镧系镧系元素是指周期表中镧(La)到镱(Yb)这15个元素,它们统称为镧系元素。
镧系元素是稀土元素中的一类,具有独特的化学和物理性质,广泛应用于各个领域。
下面将对镧系元素进行详细介绍。
一、镧系元素的概述镧系元素是指原子核中电子的填充顺序为4f的元素,它们的外层电子结构为5d1 6s2。
镧系元素的原子序数从57到71,依次为镧、铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱。
这些元素的原子半径逐渐缩小,原子质量逐渐增加。
二、镧系元素的性质1. 化学性质镧系元素具有较强的还原性和氧化性,可以与大多数非金属和金属反应。
其中镧、铈和钇是相对稳定的,而镝、钬和铒则比较活泼。
镧系元素的化合价一般为+3,但也可表现出+2和+4的化合价。
2. 物理性质镧系元素是金属,具有良好的导电性和热导性。
它们的熔点和沸点较高,且在常温下呈固态。
镧系元素的磁性多样,有的呈铁磁性,有的呈反铁磁性,还有的呈顺磁性。
三、镧系元素的应用1. 钢铁冶炼镧系元素可用作钢铁冶炼中的合金元素,能够提高钢的强度、塑性和耐腐蚀性。
其中钕铁硼磁体是应用最广泛的稀土磁体,被广泛应用于电机、传感器、声学设备等领域。
2. 光学材料镧系元素的化合物具有良好的光学性能,可用于制备激光材料、光纤通信材料和荧光材料。
镧系元素的荧光粉被广泛应用于LED照明、荧光屏幕和激光显示器等领域。
3. 催化剂镧系元素的化合物具有良好的催化性能,可用作汽车尾气净化催化剂、石油加工催化剂和化学合成催化剂。
镧系催化剂能够提高反应速率、改善反应选择性和延长催化剂寿命。
4. 核能材料镧系元素的同位素镧-138是一种重要的核能材料,可用于核反应堆的燃料制备。
镧系元素还可用于制备核探测仪器、核医学放射性示踪剂和放射治疗药物。
5. 稀土磷光粉镧系元素的磷光粉广泛应用于荧光显示器、荧光屏幕、LED照明等领域。
镧系元素的磷光粉具有高亮度、长寿命和良好的发光特性。
6. 其他应用镧系元素还可用于制备陶瓷材料、玻璃材料、高温超导材料和磁性材料等。
镧系元素-最详细的介绍

(三)、+2价 有Sm2+、Eu2+、Yb2+ 、CeCl2、 NdI2、TmI2等,其中 Eu 4f76s2 ―-2e→ 4f 7 半满 Eu2+ ϕ°(Eu3+/ Eu2 +)=-0.43 V Yb 4f146s2 ―-2e→ 4f 14 全满 Yb2+ ϕ°(Yb3+/ Yb 2+)=-1.21 V +2价稀土亦如碱土Ba2+ ,与SO42-生成沉淀。 如:用Zn还原稀土,+SO42-则可分离EuSO4 (四)、配合物 +3价较硬的酸,与硬碱F-、O2- 配位稍稳定; 配位数较大是特点之一,因为其离子半径较大, 有8、9、10、12等
⑥ 高 温 超 导 , YBaCuO,Tc=90K,1987 ; LaxBayCuzOw 1986,Tc=35K,之后发现加压 可提高Tc;再后用更小的Sc取代,则无超导性, 因得不到钙钛矿型;另外之后发现 Tl2Ba2Ca2Cu3O10 也是高温超导,所以超导与f 电子无关。 ⑦ 激光晶体,1960红宝石(Al2O3:Cr3+); 1962,CaWO4:Nd3+ 输出连续激光;1964, Y3Al5O12:Nd3+ 室 温 下 连 续 输 出 ; LiNbO3: Nd3+ 自倍频晶体(1.06µm 红外,0.53µm 绿 光)。目前已知有320种激光晶体,其中290种 以稀土为激活离子。
总之,稀土将是磁、光、电等功能材料的 最佳载体。所以小平同志曾指出:“中 东有石油,中国有稀土”。我们希望能 用自己的能力完成两次飞跃: 第一次飞跃,从稀土资源大国-→生产大 国飞跃 第二次飞跃,从生产大国-→科技大国飞 跃 稀土是21世纪的“战略元素”;美国定出 25种,其中15种镧系元素,15/25;日本 40种,其中稀土17种,17/40。
镧系元素和锕系元素知识总结

镧系元素和锕系元素知识总结
镧系元素是指的是镧(La)和镝(Dy)之间的元素,包括了镧、铈、镨、钕、钐、铕、钆、铽、镝、钬、铒和铥。
锕系元素是指镤(Pa)和铀(U)之间的元素,包括了镤、铀、镅、锔、锫、锎、锿、镄、钔、锘、铹和八氦。
这两个系列的元素都是内过渡金属元素,具有一些共同的特点和性质。
1. 化学性质:
- 镧系元素和锕系元素都具有较高的原子序数和较复杂的电子结构,因此在化学反应中表现出多样的化学性质。
- 这些元素的氧化态多种多样,一般有+2到+4的氧化态,也有较高的氧化态。
- 镧系元素和锕系元素都具有较强的还原性和氧化性。
2. 物理性质:
- 镧系元素和锕系元素都是铁磁性金属,具有较强的磁性。
- 这些元素的原子半径和离子半径较大,因此在金属中常以+3价状态存在。
- 镧系元素和锕系元素的原子核比较稳定,存在较多的同位素,包括放射性同位素。
3. 应用:
- 镧系元素和锕系元素在工业上有广泛的应用,尤其是镧、钇和铀等元素。
- 镧系元素广泛应用于电子产业、催化剂产业、照明产业等领域,如镧系金属在气体燃料电池中的应用和镧系氧化物作为催化剂的应用等。
- 锕系元素主要应用于核能产业,如铀和镅等元素被用作核燃料和核燃料后处理等。
神秘而罕见镧的化学奥秘

神秘而罕见镧的化学奥秘镧是一种神秘而罕见的化学元素,它的存在却很少为人所知。
本文将带您一探镧的化学奥秘。
首先,让我们来了解一下镧的基本信息。
镧的原子序数为57,化学符号为La。
它是镧系元素中最常见的一种,属于稀土金属。
镧在自然界中较为稀少,常以化合物的形式存在。
镧的物理性质非常特殊,具有良好的延展性和导电性。
它还具有较强的磁性和反铁磁性,因此在磁学和材料科学中有重要的应用。
接下来,让我们来探讨一下镧的化学性质。
镧是一种化性较活泼的金属元素,与氧、水和酸等物质反应活跃。
与氧气反应时,镧可以形成氧化物La2O3。
此外,镧还可以与非金属元素形成多种化合物,如与卤素形成的镧氯化物(LaCl3)、镧溴化物(LaBr3)等。
这些化合物在催化剂、电池、光学器件等领域都有广泛的应用。
然而,镧最引人注目的特性之一是其在配合物中的应用。
镧离子可以与不同的配体形成稳定的配合物,这种特性使得镧在有机合成和荧光探针方面有很大的潜力。
镧配合物不仅在光谱分析、医学影像等领域发挥重要作用,还被用于发展新型荧光材料和化学传感器。
这些应用展示了镧的巨大潜力和化学奥秘。
除此之外,镧还在核能领域有着重要的应用。
镧的同位素镧-138是一种优良的热中子吸收剂,可用于核电站中的熔盐反应堆。
熔盐反应堆利用镧来控制裂变链式反应,确保反应过程的稳定性和安全性。
这种应用使得镧在核科学领域的地位愈加重要。
总而言之,镧作为一种神秘而罕见的化学元素,具有独特的物理和化学性质。
它在催化剂、荧光探针、核能等领域有着广泛的应用前景。
镧的化学奥秘还有待深入研究和探索,相信在未来的科学发展中,镧会为我们带来更多惊喜和突破。
让我们一同期待镧这个神秘元素的更多奇迹!。
稀土元素 镧系

稀土元素镧系
稀土元素是指在自然界中含量极少的一类元素,其中镧系元素是稀土元素中最为重要的一类。
镧系元素包括镧、铈、镨、钕、钷、铕、钐、铽、镝、钬、铒、铥和镱等15种元素,它们的化学性质相似,但物理性质却有很大的差异。
镧系元素在现代工业中有着广泛的应用,其中最为重要的是钕铁硼磁体。
钕铁硼磁体是一种高性能永磁材料,具有高磁能积、高矫顽力、高磁导率等优良性能,被广泛应用于电机、发电机、电动汽车、航空航天等领域。
而钕铁硼磁体中的主要元素就是钕和铁,而钕的含量占比最高,因此钕是镧系元素中最为重要的元素之一。
除了钕铁硼磁体,镧系元素还广泛应用于石油化工、电子、冶金、光学等领域。
例如,镧系元素可以用于制备催化剂、光学玻璃、荧光粉、电子材料等。
此外,镧系元素还可以用于医学领域,例如用于制备核医学诊断剂和治疗剂等。
然而,由于镧系元素的产量极少,且分布不均,因此其价格较高。
此外,镧系元素的开采和加工也存在环境污染等问题。
因此,如何合理利用镧系元素,保护环境,成为了一个重要的课题。
镧系元素是稀土元素中最为重要的一类元素,具有广泛的应用前景。
在利用镧系元素的过程中,需要注意环境保护和资源合理利用的问题,以实现可持续发展。
元素周期表中的镧系与锕系元素

元素周期表中的镧系与锕系元素镧系元素和锕系元素是元素周期表中两个重要的连续元素系列。
它们在化学性质和应用中都具有独特的特点。
下面将对镧系元素和锕系元素进行详细介绍。
一、镧系元素镧系元素是指周期表中镧(La)至镤(Lr)这一系列的元素。
镧系元素具有相似的化学性质和电子结构,这是由于它们都有4f轨道的电子。
镧系元素主要包括镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)和镥(Lu)。
镧系元素具有较强的还原性和催化活性,广泛应用于催化剂、照明材料和电子器件等方面。
以镧系元素为主的合金在航天、国防等领域也有重要应用。
二、锕系元素锕系元素是指周期表中锕(Ac)至铀(U)这一系列的元素。
锕系元素的特点是其核外电子排布在5f轨道上,这使得它们具有较复杂的电子结构和较高的电子自旋磁矩。
锕系元素主要包括锕(Ac)、钍(Th)、镤(Pa)、铀(U)、镅(Np)、钚(Pu)、镎(Am)、锔(Cm)、锫(Bk)、锎(Cf)、锿(Es)、镄(Fm)、钔(Md)、锘(No)和鿃(Lr)。
锕系元素具有重要的核物理性质和广泛的应用价值。
铀是锕系元素中应用最广泛的元素,被广泛应用于核能产业和核武器制造。
锕系元素还可以用于放射性同位素的制备、放射性示踪和医学诊断等领域。
总结:镧系元素和锕系元素在元素周期表中具有重要的位置和作用。
它们的电子结构和化学性质的独特性使得它们在催化、照明、电子器件、核能产业等方面具有广泛的应用价值。
对镧系和锕系元素的深入研究有助于我们更好地理解元素周期表和探索新的材料与技术。
通过对元素周期表中镧系和锕系元素的了解,我们可以更好地认识这些元素的特性和应用,并且在科学研究和工业生产中发挥其独特作用。
希望对您有所帮助!。
镧系元素

原子半径/pm
187.7 182.4 182.8 182.1 181.0 180.2 204.2 180.2 178.2 177.3 176.6 175.7 174.6 194.0 173.4
Ln3+半径 /pm E q /V
106.1 -2.38
103.4 -2.34
101.3 -2.35
99.5 -2.32
97.9
-2.29
96.4
-2.30
95.0
-1.99
93.8 -2.28
92.3
-2.31
90.8
-2.29
89.4
-2.33
88.1
-2.32
86.9
-2.32
85.8
-2.22
84.8
-2.30
7Hale Waihona Puke 从上图中可以看出,镧系元素的原子半径和
离子半径在总的趋势上都随着原子序数的增加而
缩小的幅度很小,这叫做
2
3 Li
锂
4 Be
铍
5 B 6 C 7 N 8 O 9 F 10 Ne
硼 碳 氮氧 氟 氖
3
11 Na
钠
12 Mg
镁
IIIB
IVB
VB
VIB VIIB
VIII
13 Al 14 Si 15 P 16 S 17 Cl 18 Ar
IB IIB 铝 硅 磷 硫 氯 氩
4 19 K 20 Ca 21 Sc 22 Ti 23 V 24 Cr 25 Mn 26 Fe 27 Co 28 Ni 29 Cu 30 Zn 31 Ga 32 Ge 33 As 34 Se 35 Br 36 Kr
整个电子壳层依次收缩的积累造成总的镧系收缩
镧系元素

镧系元素在周期系中,你知道什么是镧系元素?什么是稀土元素吗?它们的电子层结构和性质有什么特点?它们在科学技术和生产中扮演了什么样的角色?“镧系元素”在周期表中从原子序数为57号的镧到原子序数为71号的镥共15种元素,它们的化学性质十分相似,都位于周期表中第ⅢB族,第6周期镧的同一格内,但它们不是同位素。
同位素的原子序数是相同的,只是质量数不同。
而这15种元素,不仅质量数不同,原子序数也不同。
称这15种元素为镧系元素,用Ln表示。
它们组成了第一内过渡系元素。
“稀土元素”镧系元素以及与镧系元素在化学性质上相近的、在镧系元素格子上方的钇和钪,共17种元素总称为稀土元素,用RE表示。
按照稀土元素的电子层结构及物理和化学性质,把钆以前的7个元素:La、Ce、Pr、Nd、Pm、Sm和Eu称为轻稀土元素或铈组稀土元素;钆和钆以后的7个元素:Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu,再加上Sc和Y共10个元素,称为重稀土元素或钇组稀土元素。
“稀土”的名称是18世纪遗留下来的。
由于当时这类矿物相当稀少,提取它们又困难,它们的氧化物又和组成土壤的金属氧化物Al2O3很相似,因此取名“稀土”。
实际上稀土元素既不“稀少”,也不像“土”。
它们在地壳中的含量为0.01534,其中丰度最大的是铈,在地壳中的含量占0.0046,其次是钇、钕、镧等。
铈在地壳中的含量比锡还高,钇比铅高,就是比较少见的铥,其总含量也比人们熟悉的银或汞多,所以稀土元素并不稀少。
这些元素全部是金属,人们有时也叫它们稀土金属。
我国稀土矿藏遍及18个省(区),是世界上储量最多的国家。
内蒙包头的白云鄂博矿是世界上最大的稀土矿。
在我国,具有重要工业意义的稀土矿物有氟碳铈矿Ce(CO3)F,独居石矿RE(PO4),它们是轻稀土的主要来源。
磷钇矿YPO4和褐钇铌矿YNbO4是重稀土的主要来源。
我们从以下几个方面来讨论镧系元素的通性:1、价电子层结构2、氧化态3、原子半径和离子半径4、离子的颜色5、离子的磁性6、标准电极7、金属单质电子层结构这是目前根据原子光谱和电子束共振实验得到的镧系元素原子的电子层结构:根据电子填充的一般规律,由于4f能级的能量介于6s和5d之间,由表Ln-1中可见,从第57号元素镧开始,新增加的电子填充在4f能级上,应该4f能级充满后再填充到5d能级上去。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⑥ 高 温 超 导 , YBaCuO,Tc=90K,1987 ; LaxBayCuzOw 1986,Tc=35K,之后发现加压 可提高Tc;再后用更小的Sc取代,则无超导性, 因得不到钙钛矿型;另外之后发现 Tl2Ba2Ca2Cu3O10 也是高温超导,所以超导与f 电子无关。 ⑦ 激光晶体,1960红宝石(Al2O3:Cr3+); 1962,CaWO4:Nd3+ 输出连续激光;1964, Y3Al5O12:Nd3+ 室 温 下 连 续 输 出 ; LiNbO3: Nd3+ 自倍频晶体(1.06µm 红外,0.53µm 绿 光)。目前已知有320种激光晶体,其中290种 以稀土为激活离子。
三、重要化合物
(一)、+3价 1、氧化物,mp高熔点,偏离子型晶体;从氢氧 化物、各种含氧酸盐灼烧可得,或金属单质灼 烧直接氧化也可得;通式:Ln2O3 Ln2(C2O4)3 -→ >800°C → Ln2O3 最常见的方法 Ln2O3难溶于水或碱;易溶于强酸 2、 Ln(OH)3 碱性近似于碱土,但溶解度很小,Ksp:10-19~ 10-24 ;在NH4Cl存在下加NH3·H2O可沉淀,借 此可与Mg2+等碱土离子分离。 碱性:从La3+ -→ Lu3+ 减小
稀土在地表中总含量0.0153%,相对来说(第六周期 中)较高的,但分散分布,同时总是混合存在,总 纯度也不高,如含有10%稀土的矿就算是富含矿; 由于性质相近提取分离较难,所以纯的单稀土产品 较贵。 稀土元素发现较晚,从最初发现Y于1787年,到 最后一个由铀裂变找到Pm于1947年,将近两个 世纪。 稀土资源我国最为丰富,占世界的80%,而且矿 藏分布广,从南到北十多个省区均有,品种齐全, 北偏轻稀土,南偏中重稀土。内蒙的包头市堪称 稀土之城。
3、 卤化物 F-:LnF3 在3M HNO3 中仍沉淀(鉴定方法), 其它卤化物易溶; Ln2O3 + 6NH4Cl 300°C → 2 LnCl3 + 3H2O + 6NH3 Ln3+ 也易水解,所以其结晶水盐加热脱水时需 加条件。 LnCl3 + H2O ≒ LnOCl + 2HCl LnCl3·nH2O 欲脱水要采用1 低温抽真空;2通 HCl 3加NH4Cl一起加热。
ϕ°(Sm3+/ Sm2+)=-1.55 V ϕ°(Yb3+/ Yb2+)= -1.21 ϕ°(Ce4+/ Ce3+)= +1.70 V ϕ°(Pr4+/ Pr3+)=+2.86 V
单质稀土金属有很强的还原性,仅次于碱土 金属 ϕ°(Ln3+/ Ln)=-2.52~-2.26;其性质 也类似于碱土金属。
5、 草酸盐 Ln2(C2O4)3 难溶于水又难溶于酸,以此与 其它金属离子分离开来,对于提炼稀土 有重要的意义。硝酸盐或氯化物中加 6MHNO3和H2C2O4得到。
Ln2(C2O4)3 ∆ → ―→ ―→ ―→ CO,CO2,Ln2O3 Ln2(C2O4) (CO3)2, Ln2 (CO3)3, Ln2O (CO3)2, + CO + CO +CO2
二、氧化态,+3常见态 二、氧化态,+3常见态
少数的有+2价,但在溶液中有很强的还原性,如Sm2 +、Eu2+、Yb2+ 少数的有+4价,但在溶液中有很强的氧化性,如Ce4+、 Pr4+、Tb4+ 至于为什么有少数的例外价态,与该离子的水合热等 多种因素有关;另一主要原因是离子的f亚层全满、 半满、全空最稳定有关:Eu2+ (4f 7)、Yb2+(4f 14)、 Ce4+(4 f 0)、Tb4+(4f 7)
第二十二章 稀土元素
57~71号 15个元素位于周期表的,第六周期, IIIB族,是内过渡元素,f亚层电子0~14个间, 价电子4f 0~14 5d 0~1 6s2 ,称为镧系元素;有 La Ce Pr Nd Pm Sm Eu Gd Tb Dy La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、 Ho、Er、Tm、Yb、Lu 它们加上同族的Sc、Y等17个元素叫做稀土元素; 其中La、Ce、Pr、Nd、Pm、Sm、Eu又称为轻 稀 土 , Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、 Sc、Y称为重稀土。
一、La系收缩 一、La系收缩
原子半径:La-→Lu 169pm-→158pm 减少11pm,称La系收缩 其中Eu和Yb金属半径特大,因为f电子半满 和全满时膨胀。 离子半径(+3价):La3+ 106.1 pm-→Lu3 + 84.8 pm 逐渐减小。 该收缩引起 Zr-Hf,Nb-Ta,Mo-W性 质相近;甚至Ru-Os、Rh-Ir、Pd-Pt 也相似
6、 硝酸盐 有带结晶水4、5、6个,易溶于水,同时也 溶于醇、酮、酯、胺等有机溶剂。 Ln(NO3)3 灼烧 → LnO(NO3) ―→ Ln2O3 +NO2 +NO2 随离子半径减小,分解速率加快,可达到分 级分解的分离目的。 轻稀土硝酸盐可与MI,NH4+,Mg2+,Zn2+, Ni2+,Mn2+等成溶解度很小的复盐,利用 这点可以分离轻、重组稀土。
(二)、+4价,有Ce4+、Pr4+、Tb4+其中 Ce 4f15d16s2 ―-4e→ 4f 0 全空 Ce4+ 相对稳定 Tb 4f96s2 ―-4e→ 4f 7 半满 Tb4+ Ce4+ + H2O ―→ CeO2·H2O↓ PH=0.7~1.0 时就沉淀 ,而其它Ln3+ 必须在PH =6~8 时才沉淀。所以Ce的分离比较容易。 混合稀土 Ln(OH)3 O2+H2O → Ce(OH)4 HNO3, PH=2.5→ 其余的溶解,而CeO2仍为沉淀。
4、 硫酸盐 常含结晶水,Ln2(SO4)3·8H2O,溶解度随升 温而降低;加 MI2SO4 可复,盐,但化 学式与常规的不同:
xLn2(SO4)3·y MI2SO4·zH2O x:y:z = 1:1:2 或 1:1:4 Ln2(SO4)3·8H2O ∆ → Ln2(SO4)3 ∆ → Ln2O2SO4 + 2SO2 + O2 Ln2O2SO4 ∆ →Ln2O3 + SO2 + 0.5O2
稀土元素结构特点和性能: ①4f0~4f14 独特亚层 ②大的原子磁矩、各向异性(磁性材料) ③丰富的能级跃迁(发光材料) ④大范围可变的配位数6~14(材料、生 命科学) ⑤有序变化的原子和离子半径
稀土典型应用: ① 热电子发射材料(LaB6)1951年,用于通讯 ② 石油催化裂解,生产轻质油,1962 ③ Y2O3:Eu3+ 掺杂发光材料(红光),1963; LaPO4:Ce绿光;Sr5(PO4)3Cl:Eu2+蓝光 ④ SmCo5 永磁体磁性材料,1967;Nd2Fe14B (第二代,1975),Sm2Fe17N(第三代,1985 年)。 ⑤ 储氢材料,LaNi5,253kPa, 1kg吸氢15g; 1982年利用提取Ce后的富La混合稀土镍合金, 更廉价储氢更大,并可分离和纯化氢达6个9。 通常钢瓶15Mpa储氢0.5kg。
总之,稀土将是磁、光、电等功能材料的 最佳载体。所以小平同志曾指出:“中 东有石油,中国有稀土”。我们希望能 用自己的能力完成两次飞跃: 第一次飞跃,从稀土资源大国-→生产大 国飞跃 第二次飞跃,从生产大国-→科技大国飞 跃 稀土是21世纪的“战略元素”;美国定出 25种,其中15种镧系元素,15/25;日本 40种,其中稀土17种,17/40。
镧系元素有不满的f亚层,它就蕴含着特殊性质,是 其它元素不可替代的,有着许多已发现和未发现 的特殊功能:比如过渡元素有d-d跃迁,呈现色 彩斑斓的景象;那么,f-f跃迁将会更加绚丽多 彩 , 如 现 代 彩 电 的 发 光 材 料 (Y2O3·La2O3·Gd2O3)。Fe3O4 有铁磁性(因为有 d5 ),那么f7 将会有更好的磁性;稀土磁性材料, SmCo5 ( 第 一 代 ) , Nd2Fe14B( 第 二 代 ) , Sm2Fe17N(第三代,1985年)。过渡元素有丰富 的催化性能,稀土将会有更优秀的催化特性……。
(三)、+2价 有Sm2+、Eu2+、Yb2+ 、CeCl2、 NdI2、TmI2等,其中 Eu 4f76s2 ―-2e→ 4f 7 半满 Eu2+ ϕ°(Eu3+/ Eu2 +)=-0.43 V Yb 4f146s2 ―-2e→ 4f 14 全满 Yb2+ ϕ°(Yb3+/ Yb 2+)=-1.21 V +2价稀土亦如碱土Ba2+ ,与SO42-生成沉淀。 如:用Zn还原稀土,+SO42-则可分离EuSO4 (四)、配合物 +3价较硬的酸,与硬碱F-、O2- 配位稍稳定; 配位数较大是特点之一,因为其离子半径较大, 有8、9、10、12等